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Abstract We introduce a framework for acquiring structured know-
ledge from human-lead demonstrations and generate task planning do-
mains for robots. It is based on a novel algorithm that builds symbolic
models of environmental states as structured memory items, which are
stored and retrieved after reasoning processes. The paper addresses the
formalisation of memory items and its management over time through
cognitive-like functions, i.e., encoding, storing, retrieving, consolidating
and forgetting. Based on the two simple scenarios, we present preliminary
results and we discuss the benefits and limitations of our approach.
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1 Introduction

Robots should be able to bootstrap knowledge by observing humans [12], which
might communicate verbally with supervising purposes. A robot needs to fo-
cus on the important changes of the environment in order to build an agnostic
structure, which will be used for reproducing the observed task in other contexts.
State of the art approaches use imitation learning for mapping observations and
interactions into motion primitives at the trajectory and symbolic levels [2]. Re-
current Neural Networks [10], Reinforcement Learning [13] and Deep Learning
[15] have been used to actuate a robot based on demonstrations, and the latter
work relies on cognitive aspects to acquire knowledge, i.e., with attention factors.
However, it is challenging to address the issue of storing tasks structures that
are communicable to users, which might improve them through dialogues for
instance. Also, learning black-box like structures strongly limits the integration
of state of the art symbolic task planners and imitation learning techniques.

We present an approach to structure models of the observed environment into
a memory, which can be used with reasoning and planning purposes. We used
Description Logic (DL) [1] to manage a general-purpose memory, which contains
items and have functions to store and retrieve observations deduced through
interaction. This paper introduces a formal framework to investigate methods
to acquire communicable knowledge into the robot’s memory for supporting its
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Figure 1. Input facts based on an interface specifying Λ1≡RedBox, Λ2≡GreenBox,
Λ3≡BlueBox, and R1≡alignedWith, R2≡connectTo. From facts, SIT derives the be-
liefs of the scene εt, which are used to build the Φt category.

actions. In particular, we consider a scenario where knowledge is memorised
online and stored into a structured tasks representation domain.

2 Memory Items

We developed the Scene Identification and Tagging (SIT) algorithm [7], which
generate a symbolic representation of a scene acquired while observing a human-
lead demonstration. The algorithm models scene categories from beliefs about
the environment, which are computed with perception modules that provide
facts. Facts and beliefs describe the environment only for the current instant of
time, while categories are stored in – and retrieved from – the memory. SIT uses
scene beliefs for (i) creating a new category from observation, and (ii) classifying
the current scenes with respect to categories previously learned, if any.

Since SIT is based on symbols in an ontology, it can be defined with a general-
purpose input interface, based on (i) a set of DL concepts Λ̄ v {Λ1 . . . Λn} de-
scribing entities in the environment (e.g., RedBox), and (ii) a set of DL role
R̄ v {R1 . . .Rm} representing relationship among entities of type Λ̄. Thus, the
input facts are role assertions at a specific time instant, i.e., a role γ1,γ3:R1,
which relates the DL instances γ1 and γ3, that are classified in Λ̄ (e.g., γ1:Λ1).
Figure 1 shows a simple 2D example and possible input facts required by SIT.
In this case, a fact is γ1,γ3: alignedWith, where γ1: RedBox and γ3: BlueBox.

For each fact, SIT computes a belief that contributes to the description of
the scene εt. Beliefs are computed through reification, which defines a DL role
R
Λj

i with a symbol deduced from the concatenation of the symbols defining Ri

and Λj , e.g., RΛ3
1 ≡ alignedWithBlueBox. With beliefs about εt, SIT can create

a new DL concept Φt that represents a scenes category in the ontology, which is
defined with conjunctions of cardinality restrictions, as shown in the last column
of Figure 1. In the example of Figure 1, the model of the environment at time t
is expressed as a scene category Φt where: “at least 1 BlueBox is alignedWith
a RedBox, and at least 2 GreenBox are connectedTo a BlueBox”. Remarkably,
each Φt is defined with respect to the universal scene Φ̄, which contains all the
possible scenes that can be represented with an input interface 〈Λ̄, R̄〉.

SIT checks the consistency among categories restrictions through DL reas-
oning, which generates a graph, i.e., the robot’s memory. In the memory, each
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(a) A demonstration of an assembly task. (b) A demonstration of objects stacking.

Figure 2. Salient scenes acquired during two demonstrations sequentially performed
and arranged over time.

node is an item describing a scene category, while each edge identifies a logic
implication among them (Figure 3). Such a graph does not only represents rela-
tions among sub-scenes (i.e., Φi v Φj), but it can also be used to classify a scene
εt with respect to previously generated categories, i.e., εt:Φt−i.

For instance, if at t2 a new block is introduced in the scene of Figure 1
(acquired at t1), SIT will perform one-shot learning to generate a new category
Φ2. Then SIT would classify the new scene ε2 in the categories Φ1 and Φ2, which
are related to time t1 and t2 respectively. This occurs because ε2 has beliefs that
also respect the restrictions learned from ε1 and stored in Φ1. In other words,
SIT infers that the second category implies the first, i.e., Φ2 v Φ1, that is related
to an edge in the memory graph (e.g., Figure 3).

Moreover, SIT provides a normalised similarity value to describe the classi-
fication of εt in more categories. This value is low when few beliefs of εt satisfy
the restrictions of a category Φt−i, and high otherwise. Based on such a value,
the SIT output interface is a sub-graph of the memory containing each node Φj
that (i) has all the restrictions satisfies by the beliefs of the current scene εt,
and (ii) does not have too many unspecified restrictions for the other beliefs of
εt (e.g., the once introduced by the new block when ε2:Φ1 is evaluated).

3 Memory Capabilities

Since we want to use SIT when demonstrations hold for a reasonably long interval
of time, and the robot perceives inputs fact about the scenes observed with a
suitable frequency, we define a consolidation score for each node in the memory
graph Φt, and five functions inspired by cognitive models. Remarkably, since
SIT performs one-shot learning, it might occur that the knowledge in memory
overfits a particular demonstration. In our framework, the consolidating and
forgetting capabilities are used to avoid this issue by implementing an attentive
behaviour that identifies the important items to maintain in memory, e.g., the
once that do not involve the pens in Figure 2.

More in detail, (i) the encoding functionally generates input fact based on
a contextualisation of sensory data, e.g., to extract spatial relations based on



4 Luca Buoncompagni and Fulvio Mastrogiovanni

Φ̄

Φ1 Φ2 Φ3 Φ4 Φ5

Φ6 Φ7 Φ8 Φ9

Figure 3. The memory after having observed the two demonstrations in Figure 2,
and the representation of the scene categories Φt sored in the graph at the end of the
experiment.

the centre of mass and shape of objects. During (ii) the storing function, SIT
attempts to classify εt and, if it successes, each Φt−i node in the output graph will
increase their consolidating score. Otherwise, a new category Φt will be derived
from beliefs and added to the memory. (iii) The retrieving function uses DL
queries to classify categories when a scene is requested through beliefs. Similarly
to storing, also retrieving affects the consolidating scores. (iv) The consolidate
function traverses the memory and normalises the scores of each node based
on its neighbours and time trace decay theory [11]. Whereas (v) the forgetting
function removes the nodes with a low score and restructures the edges of the
graph consistently.

4 Preliminary Results

The consolidation score does not only rank categories for retrieving purposes, but
it also allows to implement a forgetting function for removing categories that are
not relevant to the demonstrated task. We preliminary tested our system with
the hypothesis that often observed scenes are more important (and might never
be forgotten), than sporadic configurations of facts (which can be neglected). We
tested this approach in two scenarios involving different types of demonstrations.
One consists of assembling the four legs of a table (Figure 2a), while the second
in stacking four objects on top of each other (Figure 2b). For both scenarios
we considered the R̄ v {connectedTo} role assertion, which is estimated from
objects’ centre of mass. Whereas Λ̄ v {Support, Leg, Pen} was considered in the
first scenario, while Λ̄ v {Box, Pen} in the second. In each scenario, we consider
an object not related to the task (i.e., Pen), which is used to increase the scenes
variability with configurations not strictly related to the demonstrated task.

Figure 3 shows the memory graph after the observation of the demonstrations
partially shown in Figure 2. We notice that all the categories restricting some
pens in the scene have been forgotten since they were not persistent during the
overall demonstrations. In our scenario, SIT generates a memory that supports
planning techniques because it is possible to find the differences among a ij-th
category pair, and perform the actions required to change the classification of
εt from Φi to Φj (e.g., with simulations [5]). Without using a consolidating and
forgetting approach, we obtained a memory graph including all the demonstrated
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scenes, and many nodes were not directly related to the task. This would not
only strongly limit the performances of SIT over time, but it also requires to
deploy sophisticated reasoning and planning techniques since the graph becomes
more complex. Instead, with the forgetting policy configured for our tests, SIT
represents the tasks in a manner that is effective for planning purposes. However,
to generalise this result for many different scenarios is still an open issue.

We implemented the SIT algorithm in a ROS architecture based on the AR-
MOR service [3], and we investigate a scenario where a human could refine the
robot knowledge through dialogues during the demonstration. In [8], we ad-
dressed this complex human-robot interaction with a relatively simple system
since we exploited the transparent representation that SIT generates. More gen-
erally, we obtained such representation because we based SIT into a symbolic
representation that is familiar to users.

Nonetheless, using a symbolic formalism also allows us to design SIT with a
general-purpose input interface, which supports multimodality and that can be
used to generate graphs that contextualise facts differently, e.g., for implementing
semantic and episodic memory types [14]. On the other hand, our symbolic
input interface also leads to the main drawback of our framework since it does
not allow to use sensory data directly, and it requires a prior symbolic set of
environmental features 〈Λ̄, R̄〉 to be accurately perceived over time, e.g., using
[4] and [6]. Nonetheless, our framework gives a formal platform to investigate the
generation of planning domain through demonstrations also under uncertainties
since the approach presented in this paper is compliant with the SIT extension
based on fuzzy logic [9].

5 Conclusions

We presented a framework to acquire knowledge through interaction and produce
a transparent robot memory that can represent planning domains. The memory
allows encoding, storing, retrieving, consolidating and forgetting models of en-
vironmental states based on reasoning and contextualisation. With two proof
of concept scenarios, we discussed a flexible framework for further investigating
memory capabilities. Also, we introduced some open issues and limitations.

References

1. Baader, F., Calvanese, D., McGuinness, D., Patel-Schneider, P., Nardi, D., et al.:
The description logic handbook: Theory, implementation and applications. Cam-
bridge university press (2003)

2. Billard, A., Calinon, S., Dillmann, R., Schaal, S.: Robot Programming by Demon-
stration. In: Siciliano, B., Khatib, O. (eds.) Springer Handbook of Robotics, pp.
1371–1394. Springer Berlin Heidelberg, Berlin, Heidelberg (2008)

3. Buoncompagni, L., Capitanelli, A., Mastrogiovanni, F.: A ros multi-ontology refer-
ences service: Owl reasoners and application prototyping issues. In: Proceedings of
the 5th Italian Workshop on Artificial Intelligence and Robotics A workshop of the



6 Luca Buoncompagni and Fulvio Mastrogiovanni

XVII International Conference of the Italian Association for Artificial Intelligence
(AI*IA 2018). vol. 2352, pp. 36–41. CEUR-WS, Trento, Italy (nov 2018)

4. Buoncompagni, L., Carfì, A., Mastrogiovanni, F.: A software architecture for multi-
modal semantic perception fusion. In: Proceedings of the 5th Italian Workshop on
Artificial Intelligence and Robotics A workshop of the XVII International Confer-
ence of the Italian Association for Artificial Intelligence (AI*IA 2018). vol. 2352,
pp. 18–23. CEUR-WS, Trento, Italy (nov 2018)

5. Buoncompagni, L., Ghosh, S., Moura, M., Mastrogiovanni, F.: A Scalable Archi-
tecture to Design Multi-modal Interactions for Qualitative Robot Navigation. In:
Ghidini, C., Magnini, B., Passerini, A., Traverso, P. (eds.) AI*IA 2018 – Advances
in Artificial Intelligence. pp. 96–109. Lecture Notes in Computer Science, Springer
International Publishing, Trento, Italy (nov 2018)

6. Buoncompagni, L., Mastrogiovanni, F.: A software architecture for object percep-
tion and semantic representation. In: Proceedings of the 2nd Italian Workshop on
Artificial Intelligence and Robotics A workshop of the XIV International Confer-
ence of the Italian Association for Artificial Intelligence (AI*IA 2015). vol. 1544,
pp. 116–124. CEUR-WS, Ferrara, Italy (sep 2015)

7. Buoncompagni, L., Mastrogiovanni, F.: Teaching a robot how to spatially arrange
objects: Representation and recognition issues. In: 2019 28th IEEE International
Conference on Robot and Human Interactive Communication (RO-MAN). pp. 1–8.
New Delhi, India (Oct 2019)

8. Buoncompagni, L., Mastrogiovanni, F.: Dialogue-based supervision and explan-
ation of robot spatial beliefs: a software architecture perspective. In: 2018 27th
IEEE International Symposium on Robot and Human Interactive Communication
(RO-MAN). pp. 977–984. IEEE, Nanjing, China (Aug 218)

9. Buoncompagni, L., Mastrogiovanni, F., Saffiotti, A.: Scene learning, recognition
and similarity detection in a fuzzy ontology via human examples. In: Proceedings of
the 4th Italian Workshop on Artificial Intelligence and Robotics A workshop of the
XVI International Conference of the Italian Association for Artificial Intelligence
(AI*IA 2017). vol. 2054, pp. 10–15. CEUR-WS, Bari, Italy (nov 2017)

10. Duan, Y., Andrychowicz, M., Stadie, B., Ho, J., Schneider, J., Sutskever, I., Abbeel,
P., Zaremba, W.: One-shot Imitation Learning. In: Proceedings of the 31st Inter-
national Conference on Neural Information Processing Systems. pp. 1087–1098.
NIPS’17, Curran Associates Inc., New York, USA (dec 2017)

11. Jonides, J., Lewis, R.L., Nee, D.E., Lustig, C.A., Berman, M.G., Moore, K.S.: The
Mind and Brain of Short-Term Memory. Annual review of psychology 59, 193–224
(sep 2008)

12. Kunze, L., Burbridge, C., Hawes, N.: Bootstrapping Probabilistic Models of Qual-
itative Spatial Relations for Active Visual Object Search. In: 2014 AAAI Spring
Symposium Series (Mar 2014)

13. Stulp, F., Theodorou, E.A., Schaal, S.: Reinforcement Learning With Sequences
of Motion Primitives for Robust Manipulation. IEEE Transactions on Robotics
28(6), 1360–1370 (Dec 2012)

14. Vernon, D.: Artificial Cognitive Systems: A Primer. MIT Press (Oct 2014)
15. Zhang, T., McCarthy, Z., Jow, O., Lee, D., Chen, X., Goldberg, K., Abbeel, P.:

Deep Imitation Learning for Complex Manipulation Tasks from Virtual Reality
Teleoperation. In: 2018 IEEE International Conference on Robotics and Automa-
tion (ICRA). pp. 1–8. Brisbane, Australia (May 2018)


	A Framework Inspired by Cognitive Memory to Learn Planning Domains From Demonstrations

