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ABSTRACT

We describe in this paper our deep learning-based approach
for the EndoCV2020 challenge, which aims to detect and
segment either artefacts or diseases in endoscopic images.
For the detection task, we propose to train and optimize
EfficientDet—a state-of-the-art detector—with different Ef-
ficientNet backbones using Focal loss. By ensembling mul-
tiple detectors, we obtain a mean average precision (mAP)
of 0.2524 on EDD2020 and 0.2202 on EAD2020. For the
segmentation task, two different architectures are proposed:
UNet with EfficientNet-B3 encoder and Feature Pyramid
Network (FPN) with dilated ResNet-50 encoder. Each of
them is trained with an auxiliary classification branch. Our
model ensemble reports an sscore of 0.5972 on EAD2020 and
0.701 on EDD2020, which were among the top submitters of
both challenges.

1. INTRODUCTION

Disease detection and segmentation in endoscopic imaging
play an important role in the early detection of numerous
cancers, such as gastric, colorectal, and bladder cancers [1].
Meanwhile, the detection and segmentation of endoscopic
artefacts is necessary for image reconstruction and quality
assertion [2]. Many approaches [3, 4, 5] have been proposed
to detect and segment artefacts and diseases in endoscopy.
This paper describes our solution for the EndoCV2020 chal-
lenge, which consists of two tracks1: one deals with artefacts
(EAD2020) and the other one is for diseases (EDD2020)
. Each track is divided into two tasks: detection and seg-
mentation. We tackle both tasks in both tracks by exploiting
state-of-the-art deep architectures like EfficientDet [6] and
U-Net [7] with variants of EfficientNet [8] and ResNet [9] as
backbones. In the next sections, we provide a short descrip-
tion of the datasets, the details of the proposed approach, and
experimental results.
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Fig. 1. The number of bounding boxes for each disease class
in training set provided by the EDD2020 dataset.

2. DATASETS

EDD2020 [1] is a comprehensive dataset established to
benchmark algorithms for disease detection and segmentation
in endoscopy. It is annotated for 5 different disease classes,
including BE, Suspicious, HGD, Cancer, and Polyp. The
dataset comes with bounding boxes for disease detection and
with masked image annotations for semantic segmentation.
The training set includes total 386 endoscopy frames, each
of which is annotated with either single or multiple diseases.
Regions of the same class are merged into a single mask,
while a bounding box of multiple classes is treated as sepa-
rate boxes with the same location. Figure 1 shows the number
of bounding boxes for each disease class. EAD2020 [10, 11],
on the other hand, is used for the track of endoscopy artefact
detection and segmentation. The training set contains 2,531
annotated frames for 8 artefact classes, including specular-
ity, bubbles, saturation, contrast, blood, instrument, blur, and
imaging artefacts. Note that only first 5 classes are used for
the segmentation task.

3. PROPOSED METHODS

3.1. Multi-class detection task

Detection network: For the detection task, we deployed
EfficientDet [6], currently a state-of-the-art architecture for



Fig. 2. The U-Net with EfficientNetB3/B4 encoder and a clas-
sification branch architecture.

object detection. It employs EfficientNet [8] as the backbone
network, BiFPN as the feature network, and shared class/box
prediction network. Both BiFPN layers and class/box net
layers are repeated multiple times based on different resource
constraints. Figure 3 illustrates the EfficientDet architecture.
Training procedure: Due to the limited training data avail-
able (386 images in EDD2020 and 2531 images in EAD2020),
we use various data augmentation techniques, including ran-
dom shift, random crop, rotation, scale, horizontal flip, verti-
cal flip, blur, Gauss noise, sharpen, emboss, and contrast. In
particular, we found that the use of mixup could significantly
reduce the overfitting. Given x1 and x2 as input images, the
mixup image x̃ is constructed as

x̃ = λx1 + (1− λ)x2,

x̃
Network−−−−→ ŷ.

During training, our goal is to minimize the MixLoss Lmixup,
which is expressed as

Lmixup = λL(ŷ, y1) + (1− λ)L(ŷ, y2). (1)

where the symbolL denotes the Focal loss [12] and λ is drawn
from β(0.75, 0.75) distribution; y1 and y2 are the ground-
truth labels, while ŷ is the predicted label produced by the
network. Fig. 4 visualizes a mixup example with λ being
fixed to 0.5.

Our detectors are optimized by the gradient decent using
Adam update rule [13] with weight decay. In addition, cycli-
cal learning rate [14] with restarts is also used. The ensemble

of 6 models with different backbones (D0, D1, D2, D3, D4,
and D5) using weighted box fusion [15] serves as our final
model. Additionally, we search for the non-maximum sup-
pression (NMS) threshold and the confidence threshold for
different categories so that the resulting score (0.5 × mAP +
0.5× IOU) is maximized.

3.2. Multi-class segmentation task

Segmentation network: We propose two different archi-
tectures for this task: U-Net with EfficientNet encoders and
BiFPN with ResNet encoders.

U-Net: Our first network design makes use of U-Net with
EfficientNetB3/B4 as backbones. We keep the original strides
between blocks in EfficientNet and extract the feature maps
from the last 5 blocks for the segmentation. A classification
branch is used to provide the label predictions. The overall
framework is depicted in Figure 2.

BiFPN: To generate the segmentation output from the
BiFPN features, we combine all levels of the BiFPN pyramid
by following the design illustrated in Figure 5. Starting with
the deepest BiFPN level (stride-32 output), we apply three
upsampling stages to obtain the feature map of the stride-4
output. An upsampling stage consists of a 3×3 Convolution,
BatchNorm, ReLU and a 2×2 bilinear upsampling. This
strategy is repeated for other BiFPN levels with strides of 16,
8, and 4. The result is a set of feature maps at the same scale,
which are then channel-wise concatenated. Finally, a 1 × 1
Convolution, 4×4 bilinear upsampling and Sigmoid activa-
tion are used to generate the mask at the image resolution.

Training procedure: All models are trained end-to-end
with additional supervision from the multi-label classifica-
tion task. The image labels are obtained directly from the
segmentation masks. For example, if an image has B.E. mask
annotation then the B.E. label is 1. Due to class imbalance
in the training dataset, we use Focal loss for the classifica-
tion task. Our final loss isL = Lseg+λ×Lcls where λ = 0.4.

Inference: Relying solely on segmentation branch to pre-
dict masks will result in high false positives. Hence, we make
use of the class predictions to remove masks. We search opti-
mal classification thresholds to maximize the macro F1 score
on the validation set. For every image, if the class probability
is less than the optimal threshold then its predicted mask is
completely removed.

4. EXPERIMENTAL RESULTS

Table 1 summarizes the detection and segmentation results
of our submissions for both challenges. We describe the re-
sults of each sub-task below. Results on the validation set of
EDD2020 for the detection task are detailed in Table 2. Our
best single model (i.e. EfficientDet-D5) obtained a detection



Fig. 3. The EfficientDet architecture. The class prediction network was modified for providing the probabilities of 5 disease
classes. The figure was reproduced from Tan et al. [6].

Fig. 4. Mixup visualization with λ = 0.5.

Fig. 5. The BiFPN decoder for semantic segmentation.

score (dScore) of 0.41. The best detection performance was
provided by the ensemble model, which reported a dScore of
0.44, a mean mAP of 0.36±0.05, and an IoU of 0.52. As
shown in Table 1, our ensemble model yielded dScores of
0.2524±0.0948 and 0.2202±0.1029 on the hidden test sets of
EDD2020 and EAD2020, respectively.

Results on validation sets for the segmentation task are
provided in Table 3 and Table 4. On the EDD2020 validation
set, our best single model achieved a Dice score of 0.854 and
an IoU of 0.832. On the EAD2020 validation set, we obtained
a Dice score of 0.732 and an IoU of 0.578. As shown in Ta-

Challenge dscore dstd sscore sstd
EAD2020 0.2202 0.1029 0.5972 0.2765

EDD2020 0.2524 0.0948 0.7008 0.3211

Table 1. Detection and segmentation scores on the En-
doCV2020 test set.

Method dScore mAP IoU
ED0 [6] 0.23 0.13± 0.04 0.33

ED0, Augs 0.34 0.26±0.07 0.42

ED0, Augs, Mixup, CLR [16] 0.40 0.30±0.05 0.51

ED5, Augs, Mixup, CLR [16] 0.41 0.29±0.05 0.54

Ensemble (ED0-ED5), WBF [15] 0.44 0.36±0.05 0.52

Table 2. Experimental results on EDD2020 validation set.

Method Dice IoU
UNet-EfficientNetB4 [8][7] 0.8522 ± 0.0221 0.8279 ± 0.0213

BiFPN-ResNet50 0.8544 ± 0.0232 0.8317 ± 0.0228

Table 3. 5-fold cross-validation results on EDD2020.

Method Dice IoU
UNet-EfficientNetB4 0.7131 ± 0.0379 0.555 ± 0.0451

BiFPN-ResNet50 0.7325 ± 0.0162 0.578 ± 0.0201

Table 4. 3-fold cross-validation results on EAD2020.

ble 1, our ensemble achieved a segmentation score (sscore) of
0.5972 in the EAD2020 challenge and an sscore of 0.7008 in
the EDD2020 challenge, both of which were among the top
results for the segmentation task of both tracks.



5. CONCLUSION

We have described our solutions for the detection and seg-
mentation tasks on both tracks of EndoCV2020: EAD for
artefacts and EDD for diseases. By using EfficientDet for de-
tection and U-Net/BiFPN for segmentation, we obtained sig-
nificant results on both datasets, especially for the segmen-
tation task. These results suggest that some of the deep ar-
chitectures that are effective for natural images can also be
useful for medical images like endoscopic ones, even with a
small-size training datasets.
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