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Abstract
Calculation of similarity between two entities is a key step in
several data mining processes. While there are several com-
mon similarity measures for continuous data, there is little
work for categorical data. Most approaches are purely data-
driven and don’t consider the inherent dependencies of com-
plex domains such as geological structures, phylogenetics,
etc. We propose two new similarity measures that take into
account semantic information to calculate the similarity be-
tween two categorical values. Semantic information is repre-
sented as a hierarchy extracted from an ontology or a domain
taxonomy. The first approach calculates semantic similarity
by combining the data-driven approach with the hierarchy
imposed on the possible categorical values. The second ap-
proach ignores the data and uses only the hierarchy to calcu-
late semantic similarity. We apply our methods to a specific
complex data mining task in the oil and gas industry: reser-
voir analogue identification. The two proposed measures are
compared to existing data-based measures.

1 Introduction
The context of this work is the combination of data-based
(statistical) methods with knowledge-based methods in data
science. In many disciplines, there is a considerable body of
domain knowledge available, while data sets may not always
be large enough to support machine learning of complex re-
lationships. In this work, we look specifically at similarity
measures (or equivalently distance measures), which lie at
the core of a number of machine learning tasks such as clus-
tering, outlier identification and classification (k-NN). We
concentrate on entities described by categorical data, fea-
ture values taken from a finite set of possible values with no
inherent order. The domain knowledge we wish to incorpo-
rate is given in the form of hierarchies that can be extracted
from domain ontologies, standard classifications, etc.

There is a variety of suitable metrics to quantify similar-
ity for numerical data such as Euclidean or Manhattan dis-
tance (Esposito et al. 2000). These methods are not directly
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applicable to non-numerical data. However, defining sensi-
ble metrics for categorical attributes is challenging.

The most common approach in machine learning al-
gorithms for handling categorical data is one-hot encod-
ing (Alkharusi 2012; Davis 2010). A binary column is cre-
ated for each unique value of the categorical column. This
yields a high-dimensional sparse matrix, containing a signif-
icant proportion of zeros. This approach requires high com-
putational resources, is unable to handle unseen values and
ignores any domain dependencies known to exist between
values of the same categorical attribute.

In a supervised learning approach, the distance δ(x, y) be-
tween two categorical values can be defined using value dis-
tance matrix (Stanfill and L. Waltz 1986) and modified value
distance matrix (Cost and Salzberg 1998).

For unsupervised learning, the hamming distance is used
and similarity is defined as a matching measure that assigns
1 if both values are identical, and 0 otherwise (Esposito et al.
2000; Ahmad and Dey 2007). Various similarity measures
have been derived using this distance measure, e.g. Jaccard
similarity coefficient, Sokal-Michener similarity measure,
Grower-Legendre similarity measure, etc. (Esposito et al.
2000). These measures are inherently quite coarse: in the
absence of an ordering between the categorical values, the
only possible distinction is whether two values are identical
or not (Esposito et al. 2000).

To improve on these, frequency-based similarity measures
have been proposed that take the frequency distribution of
different attribute values into account. These measures are
data-driven and hence are dependent on certain data char-
acteristics such as the size of data, number of attributes,
number of values for each attribute and distribution of fre-
quency of each value. While data-driven measures perform
well on simple datasets, these measures are unable to take
into account semantic relationships and often don’t perform
well on complex datasets with hidden domain dependencies.
Moreover, a concept of similarity that is based solely on how
often values occur in the data cannot be expected to give rea-
sonable results in all cases. Using frequencies seems more
like a ‘last straw’ when frequencies are the only distinguish-
ing feature between categorical values.

In this paper, we propose an alternative way to measure
similarity for categorical data in an unsupervised setting. We
combine a frequency-based measure with explicitly repre-



sented domain knowledge given in the form of a hierarchy
on attribute values, and we also consider a measure that is
based purely on the hierarchy, without taking frequencies
into account.

Section 2 describes the related work. Section 3 explains
the problem formulation and proposed algorithm. Section 4
presents the dataset and evaluation by comparing with exist-
ing algorithms.

2 Literature Review
The surveys (Boriah, Chandola, and Kumar 2008; Alamuri,
Surampudi, and Negi 2014) discuss various similarity mea-
sures for categorical data. Wilson and Martinez (Wilson and
Martinez 2000) have studied in-depth heterogeneous func-
tions for mixed data (categorical and continuous variables)
for instance-based learning. Their approach is based on su-
pervisor learning where each instance has class labels in ad-
dition to input variables. The focus of this paper is to find
similarity in an unsupervised setting where information re-
garding classes is unknown.

For unsupervised learning, various techniques have been
proposed (Boriah, Chandola, and Kumar 2008). The major-
ity of these techniques are based only on the data-driven
approach. However, in some other domains like in natural
language processing, research is being conducted to calcu-
late similarity based on semantics and domain knowledge.
Below, we provide an overview of the existing data-driven
measures, followed by research done in natural language
processing.

The simplest similarity measure used is known as over-
lap measure (Boriah, Chandola, and Kumar 2008). Similar-
ity of 1 is assigned when two categorical values are identi-
cal otherwise similarity is assigned as 0. The overall simi-
larity between two data instances of multivariate categorical
data is proportional to the number of attributes in which they
are identical. The overlap measure does not distinguish dif-
ferent values of attributes hence matches and mismatches
are treated equally. Goodall proposed a similarity measure
to normalize similarity between two data instances by the
probability of occurrences in a random sample (W. Goodall
1966). This measure assigns a higher similarity score to the
values which are less frequent. Gambaryan proposed sim-
ilarity measure by giving more weight to matches where
the frequency of occurrence of categorical values is about
half in the dataset (Gambaryan 1964). (Eskin et al. 2002)
developed a normalization kernel intrusion detection sys-
tem. This measure assigns more weight to mismatches of
attributes that contain many values. Inverse Occurrence fre-
quency (IOF) assigns lower similarity values to mismatches
that are based on more frequent values. IOF measure is de-
rived from information retrieval (Sparck Jones 2004) and is
associated with the idea of inverse document frequency. The
Occurrence frequency (OF) measure assigns lower similar-
ity to mismatches on less frequent values and mismatches on
more frequent items are assigned higher similarity (Boriah,
Chandola, and Kumar 2008).

Lin proposed a similarity framework based on informa-
tion theory (Lin 1998). According to Lin, similarity can be

explained in terms of a set of assumptions. If the assump-
tions are considered true, the similarity measure is necessar-
ily followed. Therefore, the similarity between the two val-
ues is calculated by the ratio between the amount of infor-
mation required to state the commonality of both values and
the information needed to fully describe both values sepa-
rately. Lin derived similarity measure for words, ordinal and
string data.

Das and Mannila’s research is based on the key point that
attribute value similarity is related to other attributes (Das
and Mannila 2000). They proposed Iterated Contextual Dis-
tances (ICD) based on the idea that attribute and object sim-
ilarities are interdependent. ICD finds attribute similarity,
sub relation, and row similarity. Ahmed and Dey proposed a
distance-based measure in term of co-occurrence of values,
the overall distribution of two attribute values are consid-
ered along with their co-occurrence with the values of other
attributes (Ahmad and Dey 2007).

Document or sentence similarity is considered the ba-
sic task for many natural language processing(NLP) en-
gines such as information retrieval, query answering, and
text summarization. Semantic-based methods use informa-
tion from dictionaries (WordNet) to find relatedness between
two terms. Classic methods in NLP are based on the short-
est path measure (Roy et al. 1989). (Leacock and Chodorow
1998) proposed a similarity technique based on the short-
est path between nodes in a taxonomy and the number of
nodes.(Huang and Sheng 2012) based their sentence simi-
larity measure by using WordNet information content and
string edit distance, for paraphrase recognition.

However, the techniques mentioned above are not directly
suitable for categorical features. In an NLP setting, there are
many terms in a complete sentence or document, that pro-
vide the neighborhood context and aid understanding the se-
mantics. Furthermore, NLP tasks are constrained by the sen-
tence structures and grammar of a particular language such
as the ordering of subject, verb, noun, etc. However, categor-
ical features are represented by single domain terms with no
obvious representation of neighborhood or the context that
explains the semantic similarity. The main focus here is to
define semantic similarity between categorical terms based
on the characteristics extracted from domain knowledge.

3 Problem Formulation
In this section, we first discuss a toy example to identify the
drawbacks of frequency-based similarity approaches. Fur-
ther, we provide an overview of metric properties and se-
mantic similarity to establish the foundation of the proposed
similarity measure.

We analyze the problems in existing work and inherent
challenges associated with categorical data based on the toy
dataset in Table 1. The dataset consists of candidates’ pro-
files and we wish to retrieve matching candidates for a given
job advertisement.

Many of the data-driven similarity measures consider two
values of a given categorical attribute to be similar if both
have similar frequency distributions. For instance, the OF
similarity measure for values of an attribute is calculated as
follows (Boriah, Chandola, and Kumar 2008).



Table 1: Toy Dataset

User ID Occupation Education
1 Computer Programmer Bachelors
2 Administrative Staff Bachelors
3 HR Manager Bachelors
4 HR Manager Masters
5 Software Developer Bachelors
6 Computer Programmer Masters

OF (x, y) =

{
1 if x = y

1
(1+log( N

f(x)+1
)+log( N

f(y)+1
))

if x 6= y

(1)
where f(x) is the number of occurrences of the attribute
value x andN represents the total number of observations in
the data set. Similarity between pairs ‘Computer Program-
mer’ and ‘HR Manager’ and ‘Computer Programmer’ and
‘Software Developer’ based on equation 1 is calculated as:
OF (Comp. Programmer,HR Manager) = 0.64
OF (Comp. Programmer,Soft. Developer) = 0.44

These numbers would indicate that the Programmer is
more similar to HR Managers than to Developers. However,
based on the evaluation of semantic evidence observed in a
knowledge source (such as an ontology or a standard classi-
fication) shown in Table 2, it is evident that computer pro-
grammers and software developers perform the same work
activities and tasks hence having a greater semantic similar-
ity.

Semantic similarity can be made explicit in different
ways, and one of the prominent ways is through hierarchies,
which we will use in this paper. Section 3.1 explains in detail
the formal definition of hierarchies.

3.1 Hierarchies
Our similarity measures are based on a given hierarchical
structure of the value range of categorical features. Formally,
we assume that the categorical values for each feature form a
finite, partially ordered set (poset). A poset is an ordered pair
of binary relation v defined over a set S, such that (v, S)
satisfies the following properties: Let x, y, z ∈ S,
• Reflexivity: x v x
• Antisymmetry: if x v y and y v x, then x = y

• Transitivity: if x v y and y v z, then x v z
If a v b, we call b an ancestor of a. The intention of a v b
is that b is in some way more general, broader, etc. than a.
E.g., for the occupations in Fig. 1, TopExecutives v Man-
agementOccupations; for data about geographic areas, we
could have Oslo v Norway v Europe.

If domain knowledge is given in the form of an ontol-
ogy, in some cases (depending on the modeling style), the
relation v will correspond to parts of the is-a subclass re-
lation of the ontology, but in others it won’t. E.g. it doesn’t
make sense to consider Norway a sub-class or sub-concept

of Europe, but it still makes sense to consider a hierarchy of
geographic regions.

A value c ∈ S is called a lowest common ancestor of
two node values a ∈ S and b ∈ S if c ∈ S is the lowest (i.e.
deepest) node that has both a ∈ S and b ∈ S as descendants.
It is the first shared ancestor of a and b located farthest from
the root. In a hierarchy two values have a lowest common
ancestor denoted as a t b. A value is called a leaf value if it
is not the ancestor of any other value.

In this paper, we add a restriction to our hierarchies by
only considering mono-hierarchies: we assume that there is
some root value r in the hierarchy, such that a v r for all
a ∈ S, and that all values except the root have exactly one
direct ancestor. In other words, the hierarchy is tree-shaped.

3.2 Semantic Similarity
Semantic similarity refers to similarity based on meaning
or semantic content as opposed to form (Smelser and Baltes
2001). Semantic similarity measures are automated methods
for assigning a pair of concepts a measure of similarity and
can be derived from a taxonomy of concepts arranged in is-a
relationships (Pedersen, Pakhomov, and Patwardhan 2005).
The concept of semantic similarity has been applied in Nat-
ural language processing for the past decade to solve tasks
such as the resolution of ambiguities between terms, docu-
ment categorization or clustering, word spelling correction,
automatic language translation, ontology learning or infor-
mation retrieval. Similarity computation for categorical data
can improve the performance of existing machine learning
algorithms (Ahmad and Dey 2007) and may ease the inte-
gration of heterogeneous data (Wilson and Martinez 2000).

Is-a relationships in a concept hierarchy encompass for-
mal classification, properties and relations between concepts
and data. This provides us with a common understanding of
the structure of a domain, explicit domain assumptions and
reuse of domain knowledge. In order to achieve interpretable
and good quality results in machine learning models, it is vi-
tal to take this information into account. This intuition mo-
tivates us to link the notion of similarity based on is-a rela-
tionships with the similarity measures for categorical data.
We develop a framework to use is-a relationships extracted
from a concept hierarchy to quantify semantic similarity and
propose a distance measure for categorical data.

3.3 Proposed Framework
In this paper, we propose two techniques for measuring sim-
ilarity based on domain knowledge, extracted as the concept
hierarchy. First, we present a framework for calculating se-
mantic similarity using information content and concept hi-
erarchy by modifying Resnik’s idea (Resnik 1970). To com-
pare the performance of information-content based semantic
measure, we extended the idea to introduce a simple similar-
ity measure based only on concept hierarchy.

Further, we are interested in computing global semantic
similarity in a multi-dimensional setting where we have sev-
eral hierarchy-structured features. We define the global sim-
ilarity between two data objectsX and Y in a d-dimensional



Table 2: Occupation Activities and Skills

Occupation Work Activity Skills
HR Manager Liaise between departments PeopleSoft, SAP

Computer Programmer Write programming code C++, Java, Python
Software Developers Modify software programs C++, Oracle ,Python

attribute space as,

δ(X,Y ) =

d∑
i

wiδ(xi, yi) (2)

where δ(xi, yi) corresponds to similarity between two val-
ues x and y in the i-th dimension and wi is the weight asso-
ciated with each dimension. The following section presents
both frameworks for calculating semantic based similarity
δ(xi, yi).

Information Content Semantic Similarity (ICS) This
approach is based on a modification of Resnik’s idea (Resnik
1970). Resnik proposed a measure for finding semantic sim-
ilarity in an is-a taxonomy based on information content and
defined similarity between two nodes in a hierarchy as the
extent to which they share common information.

In order to formulate the semantic similarity of two given
categorical values, the key intuition is to find the common in-
formation in both values. This information is represented by
the lowest common ancestor in the hierarchy that subsumes
both values (Lin 1998). If the lowest common ancestor of
two values is close to leaf nodes, that implies both values
share many characteristics. As the lowest common ancestor
moves up in the hierarchy, fewer commonalities exist be-
tween a given pair of values.

For the given dataset, we can map the ‘Occupation’ at-
tribute to the O*net taxonomy1(Fig. 1) by placing all the
values at the corresponding leaf nodes in the occupation
hierarchy whereas intermediate nodes represent the lowest
common ancestors for given pairs. In Fig. 12,‘Computer
Programmer’ and ‘Software Developer’ are both subsumed
by the lowest common ancestor ‘Computer Occupations’,
whereas the lowest common ancestor that subsumes the con-
cept ‘HR Manager’ and ’Computer Programmer’ is ‘Occu-
pation’(root node of the occupation hierarchy). Hence, tak-
ing into account the lowest common ancestor, we expect that
the similarity between Computer Programmer and Software
Developer to be significantly greater than the similarity be-
tween the Computer Programmer and HR Developer.

Our intuition about the concept of semantic similarity is
that for two categorical values x and y that share lowest
common ancestor c, farthest from the root node, are always
considered to be more semantically similar than to two cate-
gorical values x and z that share lowest common ancestor c′
close to root node. In addition, identical values should have
a maximum similarity of 1.

1https://www.onetcenter.org/taxonomy.html
2https://www.bls.gov/soc/soc structure 2010.pdf

In order to formulate the semantic similarity of values
based on the lowest common ancestor, we use the idea of
associating probabilities with the values (Resnik 1970). We
base ourselves on a function p : C → [0, 1] such that for any
c ∈ S, p(c) represents the probability of the feature value
being v c. Furthermore, using information theory we can
state that the information content of a feature having some
value is quantified as negative of log likelihood (Ross 1976).

For categorical data, we can find the information content I
of the lowest common ancestor c by finding the information
content of all the leaf values subsumed by c in the hierarchy.

I(c) = −log
∑

n∈ leaf (c)

p(n) (3)

where leaf (c) is the set of all leaf values in x ∈ S such that
x v c. The probability of leaf values may be estimated by
the relative frequency.3

p(n) =
frequency(n)

N
(4)

where N is the number of samples.
Based on the above definitions, we formulate information

content based semantic similarity(ICS) between two cate-
gorical values x and y as

Sim(x, y) =

{
1 if x = y.

I(xty)
max(I(xty)) else if x 6= y

(5)

where I(xty) denotes the information content of the lowest
common ancestor of x and y, calculated by using equation 3
and max(I(xty) represents the maximum information con-
tent of all given pair of leaves and is used for normalization.

Hierarchy-based Semantic Similarity(HS) As explained
earlier, the main intuition of semantic similarity is based on
the idea that any two values having the lowest common an-
cestor close to leaf nodes, should have high similarity and
vice versa. Hence, we quantify semantic similarity by con-
sidering the level of the lowest common ancestor in the hi-
erarchy. The level of a node is defined by 1+ the number
of connections between the node and the root4. Greater the
level of the lowest common ancestor of any given pair of
values in the hierarchy, more similar the values are. We for-
mulate the similarity as,

Sim(x, y) =

{
1 if x = y.

λd−level(x∪y) else if x 6= y
(6)

3Probabilities may also be known from other sources, for in-
stance known priors for the specific domain.

4Level starts from 1 and the level of the root is 1



Figure 1: O*net Occupation Taxonomy

Where 0 < λ < 1 is a fixed decay parameter, level(n) is
the distance of n from the root in the hierarchy, and d =
maxn∈X level(n) is the maximum depth of the hierarchy.

The main advantage of equation 6 is that the calculation of
semantic similarity no longer requires any input from train-
ing data such as information content. Once the concept hier-
archy is formalized, we can measure the similarity between
any two values including the categorical values not observed
in the training data.

Below, we explain how to perform evaluation of the pro-
posed techniques.

4 Evaluation
In this section, we compare the ICSD and HDM approaches
to other similarity measures for the identification of reser-
voir analogues of a target reservoir, given a dataset of known
reservoirs. This use-case is further explained in Section 4.2
below.

4.1 Baseline Methods
The following four state-of-the-art similarity/distance mea-
sures are compared with the proposed techniques: Occur-
rence Frequency (OF) (Boriah, Chandola, and Kumar 2008),
Eskin Similarity measure (Boriah, Chandola, and Kumar
2008; Eskin et al. 2002) , Lin Similarity measure (Lin 1998)
and Coupled Similarity Matrix (CMS) (Jian et al. 2018).

We compare the performance of the different similar-
ity measures in a recommendation scenario: given a query
item, we compute its similarity to each item in the ‘training’
dataset using Equation 2, and determine the top k items with
highest similarity.

For our evaluation, we do this for all of the different sim-
ilarity measures, and compare the outcome to a fixed ‘gold
standard’ list of items to determine the average precision.

For our experimental evaluation, we have chosen reservoir
analogues (explained in the section below): a complex task
in the Oil and Gas industry. To the best of our knowledge,

there exists no standard machine learning system for solving
this use case. The common industrial practice to date is to
conduct a manual analysis by human experts.

4.2 Reservoir Analogues
In the Oil and Gas Industry, during the exploration phase,
analogous reservoirs are used to study reservoirs that lack
critical information. Any reservoir with a deficit of critical
information is known as a “target reservoir”, and “analo-
gous reservoirs” are ones expected to have similar charac-
teristics. (Martı́n Rodrı́guez et al. 2013).

Usually, a technical evaluation team must analyze various
data types – seismic, well logs, test, and cores – in order to
make the first approximation of analogous reservoirs. Due to
a lack of resources and time constraints, the first approxima-
tion is usually the neighboring reservoirs to provide an esti-
mate of the fluid and rock properties of the target reservoir.
A single analogue is mostly used because it is in the same
geographic region or basin. This is risky however, since it
does not always give sufficient information to characterize
a new prospect. Furthermore, it becomes a tedious task for
new target reservoirs where no neighboring reservoir exists.

Limited efforts have been made to identify analogues
based on machine learning (Martı́n Rodrı́guez et al. 2013;
Perez-Valiente et al. 2014). In order to generate a list of
ranked reservoirs based on similarity, it is important to au-
tomate this process using a standard knowledge source and
to develop a method that is flexible enough to produce ana-
logues for reservoirs with no neighboring analogues.

4.3 Dataset
The main source of information used in this evaluation is the
dataset of reservoirs licensed by IHS5. It comprises a total
of 43000 reservoirs and various properties/attributes associ-
ated with each reservoir. According to domain experts, only
a few key parameters are known during the initial stage of

5https://ihsmarkit.com/index.html



Figure 2: The hierarchy of geologic age.

reservoir identification. Hence for our analysis of retrieving
similar reservoirs, we use the following set of key parame-
ters/attributes identified by domain experts.

• Depositional Environment

• Lithology

• Age

• Geographical Location

• Structural Setting

Detailed definitions of these parameters are described in
the section below.

4.4 Semantic Information for Attributes
This section explains the process of standardizing the se-
mantic information used in the calculation of similarity. Due
to data confidentiality, we only explain two attributes ‘Age’
and ‘Lithology.’

Reservoir Age: A geologic age is a subdivision of geo-
logic time that divides an epoch into smaller parts. A succes-
sion of rock strata laid down in a single age on the geologic
timescale is a stage. The geological time has been divided
into eras, periods and epochs. The named divisions of the
geological time are based on fossil evidence. Fig. 2 shows a
part of an ontology developed to show how geological times
are organized into Erathem, Period, Epoch and Age.

Note that age can also be given on a linear scale, e.g. in
millions of years. However, the characteristics of rocks de-
posited in different geologic eras, periods, and epochs differ
so much that their position in the hierarchy is a much better
indicator of similarity than the numerical difference in age.

Figure 3: Ontology showing IS-A relationships for Lithol-
ogy

Lithology: The lithology of a rock unit is a description
of its physical characteristics visible at outcrop, in hand or
core samples or with low magnification microscopies, such
as color, texture, grain size, or composition. There is no stan-
dard ontology for lithology. With the help of geologists, we
develop an ontology that considers all the categorical values
occurring in data and groups them based on similar physical
characteristics. In Fig. 3, we show a part of this ontology.

4.5 Data Pre-processing
The main challenge associated with the given data is a large
number of categorical values associated with each attribute.
For the attribute ‘Age,’ there are about 250 unique values.
These values are not standardized. Hence, there are instances
where the same category exists in the dataset with various
names. Furthermore, most of the age values are unofficial
names, which are used only in a few specific areas of the
world. With the help of geological experts, we replaced these
unofficial names by standard domain names.

For the attribute ‘Depositional Environment,’ there are 32
unique values occurring in the given data set. Some categori-
cal values are merged together based on the same geological
properties identified by domain experts.

In the original data set, there are 1731 categories of the
attribute ‘Lithology.’ The raw values of lithology contain
abbreviations for the same lithology, unofficial lithology
names, and combinations of various lithologies. These cat-
egories are replaced with the standard names and combina-
tions are replaced with only primary lithology, which leads
to 228 unique categories.

Outliers are extreme values that deviate from other obser-
vations on data, they may indicate variability in measure-
ment, experimental errors or a novelty. In order to avoid the



disastrous effect on the results of the statistical analysis, a
step is added to identify, analyze and delete outliers in the
dataset. In this step, for every attribute, we remove the val-
ues that don’t confirm with standard domain names.

After cleaning the data, the comparative evaluation be-
tween ICS, HS and existing similarity algorithms is con-
ducted.

4.6 Evaluation Method
For the given task, we will evaluate the similarity measure
on two main objectives.

• Retrieving top 15 similar analogues to the target reservoir.

• Producing the result in a ranked order such that the first
retrieved analogue corresponds to the most similar reser-
voir to the target reservoir.

Mean Average Precision (MAP) is the mostly commonly
used evaluation metric in information retrieval and object
detection (Baeza-Yates and Ribeiro-Neto 2008). MAP is the
arithmetic mean of the average precision (AP) values for
an information retrieval system over a set of n query top-
ics (Liu Ling 2009) . It can be expressed as follows:

MAP =
1

n

∑
n

APn (7)

Precision for a classification task is defined as

Precision =
TruePositive

TruePositive + FalsePositive
(8)

Based on Equation 8, recommender system Precision (P)
is defined as,

P =
# of our recommendations that are relevant

# of items we recommended
(9)

For evaluating the performance of recommender systems,
we are only interested in recommending top-N items to the
user. Usually, the higher the number of relevant recommen-
dations at the top, the more positive is the impression of the
users. Therefore, it is sensible to compute precision and re-
call metrics in the firstN items instead of all the items. Thus
the precision at a cutoff k is introduced in order to evaluate
ranking, where k is an integer that is set by the user to match
the objective of the top-N recommendations. Average preci-
sion at cutoff k, is the average of all precisions in the places
where a recommendation is a true positive and is defined as
follows:

APq@K =
1

K

K∑
i=1

P (i) ·Rel(i) (10)

where K represents the top K recommendations for the
given query q and Rel(i) shows the relevance of the rec-
ommendation. Rel(i) is 1 if the recommended item was rel-
evant(true positive) otherwise 0.

Usually, the performance of a recommendation system is
calculated by considering a set of queries. Therefore, given

Table 3: Average Precision for the selected target reservoirs

Reservoir ICS HS OF CMS Eskin
Snorre 39 59 39 40 34
Snohvit 57 66 15 29 27

Table 4: Mean Average Precision

ICS HS OF CMS Eskin
MAP 48 63 27 35 30

a set of queries Q, the mean average precision(MAPQ@K)
of an algorithm is defined as

MAPQ@K =
1

Q

Q∑
q=1

APq@K (11)

where APq@K is calculated by using Equation 10

4.7 Experimental Results
There is no standard way to evaluate similarity measures
for semantic similarity. Resnik uses human expert similar-
ity ranking to judge similarity (Resnik 1970). We follow the
same approach. In order to perform this evaluation, we se-
lected two target reservoirs ‘Snorre’ and ‘Snøhvit.’ We then
asked our domain experts to produce a gold set for each
reservoir. This gold set contains a set of reservoirs identified
by our experts as most similar to the target reservoir based on
their hindsight knowledge about the target reservoir. Further-
more, the gold set is produced in a ranked manner, the first
item in the list corresponds to the highest similar analogue
and the last item corresponds to the lowest similar reservoir.

After acquiring the gold dataset, we perform an experi-
mental evaluation to compare the performance of the pro-
posed techniques with three existing similarity measures
(OF (Boriah, Chandola, and Kumar 2008) , Eskin (Eskin et
al. 2002) , CMS (Jian et al. 2018) for finding reservoir ana-
logues. For each selected target reservoir, all the remaining
reservoirs in the dataset are given as input to each similar-
ity measure and the similarity between the target and all re-
maining reservoirs is calculated. The top 15 reservoirs with
maximum similarity are retrieved and are now referred to as
analogues to the target reservoir.

In order to penalize poor estimations, we are using Av-
erage Precision (e Equation 10) as a quality criterion for
evaluation of similarity between reservoirs. For this metric,
a higher value corresponds to better results. Table 3, shows
the experimental result of each similarity measure separately
for each target reservoir 6.

As shown in table 3, ICS and HS measures outperform
the data-driven similarity measures for both selected reser-
voirs. For the target reservoirs, ’Snorre’ and ’Snohvit’, the

6Similarity measure proposed by Lin (Lin 1998) doesn’t re-
trieve any similar analogues in the top k-recommendations. There-
fore, results are not included in table 3.



average precision for ICS is 39% and 57% which is higher
than the average precision of other similarity measures. For
HS average precision for ’Snorre’ and ’Snohvit’ is 59% and
66%.Further, table 4 shows that the MAP (Equation 11)
for ICS and HS is 48% and 63% respectively, which signifi-
cantly better than the MAP values of other algorithms. This
evaluation supports the initial hypothesis that by adding do-
main information to the similarity measure, we can increase
the similarity performance for the complex categorical data.

It is important to note that results obtained using ICS and
HS are not directly comparable with the gold set provided by
human experts. In order to produce a gold set, human experts
take into account the geological history of the current basin,
analysis of geological time periods and overall processes
of formation of reservoir rocks. Furthermore, they also use
conceptual facies models, reservoir simulation models, core
samples and well logs for selecting appropriate analogues. In
contrast to this, our experimental evaluation of the proposed
technique is based only on a limited part of this information.
Achieving 63% precision in this scenario highlights the fact
that it is highly remarkable to correctly retrieve analogues in
the top 15 recommendations based only on hierarchy-based
semantic measure.

5 Conclusion & Future Work
Computing similarity measure in an unsupervised setting is
a complex task. In this paper, we propose a method based on
domain information extracted in the form of is-a links from
a concept hierarchy. The experimental results in the previ-
ous section, show that by using domain information, the re-
sults are significantly better than the traditional methods of
finding similarity only based on frequency match/mismatch.
In our current work, we approach the problem by consider-
ing the lowest common ancestor in the concept hierarchy by
considering mono-hierarchies only and in an unsupervised
setting. In the future, we want to extend the notion of sim-
ilarity for categorical data in a supervised setting for com-
plex use cases such as mortality prediction in the medical
domain. Furthermore, the idea can be extended to find sim-
ilarity for categorical data in poly-hierarchies (i.e. not tree-
shaped).
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Liu Ling, Özsu, M. T. 2009. Encyclopedia of Database
Systems. Springer US.
Martı́n Rodrı́guez, H.; Escobar, E.; Embid, S.; Rodriguez,
N.; Hegazy, M.; and Lake, L. 2013. New approach to iden-
tify analogue reservoirs. SPE Economics & Management 6.
Pedersen, T.; Pakhomov, S.; and Patwardhan, S. 2005. Mea-
sures of semantic similarity and relatedness in the medical
domain. Journal of Biomedical Informatics - JBI.
Perez-Valiente, M.; Rodriguez, H.; Santos, C.; Vieira, M.;
and Embid, S. 2014. Identification of reservoir analogues in
the presence of uncertainty. SPE Intelligent Energy Confer-
ence and Exhibition.
Resnik, P. 1970. Using information content to evaluate se-
mantic similarity in a taxonomy. IJCAI 95.
Ross, S. M. 1976. A First Course in Probability. Pearson
Education, Inc.
Roy, R.; Hafedh, M.; Ellen, B.; and Maria, B. 1989. “devel-
opment and application of a metric on semantic nets. IEEE
Transactions on Systems, Man, and Cybernetics 19:17–30.
Smelser, N., and Baltes, P. 2001. International Encyclopedia
of the Social & Behavioral Sciences. Elsevier.



Sparck Jones, K. 2004. A statistical interpretation of term
specificity and its application in retrieval. Journal of Docu-
mentation 28:493–502.
Stanfill, C., and L. Waltz, D. 1986. Toward memory-based
reasoning. Commun. ACM 29:1213–1228.
W. Goodall, D. 1966. A new similarity index based on
probability. Biometrics 22.
Wilson, D., and Martinez, T. 2000. Improved heterogeneous
distance functions. J. of Artif. Intell. Res. 6.


