
Threshold Optimization in Multiple Binary Classifiers for Extreme Rare Events
using Predicted Positive Data

Edgar Robles∗, Fatima Zaidouni∗, Aliki Mavromoustaki, Payam Refael
Univeristy of Costa Rica, San José, Costa Rica
University of Rochester, Rochester, NY, USA

Institute of Pure and Applied Mathematics, University of California Los Angeles, CA, USA
Google Inc. , Los Angeles, CA, USA

{edgar.roblesarias@ucr.ac.cr, fzaidoun@u.rochester.edu, aliki.mavromoustaki@gmail.com, payamiam@google.com}

Abstract

Binary classification is challenging when dealing with im-
balanced data sets where the important class is made of
extremely rare events, usually with a prevalence of around
0.1%. Such data sets are common in various real-world prob-
lems. Examples are medical diagnostics where the disease
is considered a rare event, or multiple types of fraud detec-
tion where regular transactions are the most prevalent. The
events are categorized as either predicted positive or pre-
dicted negative against a certain threshold. In large imbal-
anced data sets, it is expensive to verify, through human
raters, all the predictions made by the classifier. As a result,
only predicted positive events are rated. Additionally, in most
industrial applications, it is useful to combine multiple clas-
sifiers to make a decision. We developed a machine learning
pipeline which, combined with expert knowledge, decides on
an optimal threshold. ROC curves are reformulated to true
positive (TP) versus false positive (FP) curves. We propose
two solutions to select an optimal threshold by maximizing
the area under the curve (AUC): a graph-based approach and
an analytic approach. The graph-based approach constructs a
graph to select an optimal path in the threshold space and the
analytic approach minimizes an energy function. Our results
agree with the Google team’s manual attempts to choose the
operating point in their private data sets and binary classifiers
while providing a rigorous mathematical framework. Our so-
lutions built on the Google team’s expert knowledge efforts
which identified the marginal precisions used in our methods.
To further evaluate the performance of our algorithm, we split
3 public data sets into training and testing sets and used them
to train five different classifiers. The results show improve-
ment of the f-1 measure by 1.5%, the precision was improved
by an average of 5.1% and, the recall was reduced by 1.6%
on average. Depending on the purpose of the classification,
we show how to reverse this trade-off.

∗Co-First authors: Both authors contributed equally to this
work.

Copyright c© 2020 held by the author(s). In A. Martin, K. Hinkel-
mann, H.-G. Fill, A. Gerber, D. Lenat, R. Stolle, F. van Harmelen
(Eds.), Proceedings of the AAAI 2020 Spring Symposium on Com-
bining Machine Learning and Knowledge Engineering in Practice
(AAAI-MAKE 2020). Stanford University, Palo Alto, California,
USA, March 23-25, 2020. Use permitted under Creative Commons
License Attribution 4.0 International (CC BY 4.0).

Introduction
Our study focuses on data sets with extreme rare events,
where the minority class accounts for 0.01% to 0.19% of
the population. Such data is very common in many applica-
tions including fraud detection where fraudsters constitute
a small percentage of users, medical diagnostics, face de-
tection, money laundering, and intrusion detection. In such
data sets, the distribution of positive to negative classes is
extremely imbalanced and it is typically more important to
correctly detect the positive class (Aggarwal 2014) that cor-
responds to the rare events. For instance, one of the examples
used in the result section is a public data set on credit card
fraud detection where the positive class accounts for 0.17%
of all transactions.
In the rest of this paper, we provide some background about
binary classifiers and their performance, we summarize re-
lated work and describe the problem statement in detail.
Then we propose solutions for single classifier threshold-
ing and for an ensemble of classifiers where two methods
are proposed; the analytic and graph approach. Finally, we
explain two experiments to benchmark our results and eval-
uate the performance of our algorithm, one using public data
sets, and the other one using private Google data sets.

Background
Binary Classifiers
A binary classifier is a model that classifies its input into
two classes; a positive and negative class. In this paper, we
call the classifier’s input a document, and its output a score.
The higher the score, the more the classifier is confident
that the document is in the positive class and vice versa. In
the threshold binary model, a threshold number is picked
and compared to the output score of the classifier to decide
which class is predicted. If the score is larger than the se-
lected threshold, the document is classified in the positive
class. If the score is lower than the threshold, the document
is classified in the negative class.

Classifier performance
To evaluate the performance of the classifier, the documents
are often presented to human raters to determine the true
positives, the false positives, and the true and false nega-
tives. A higher threshold will cause the predicted class to be-

come more precise on average while losing some recall and
a lower threshold will cause the predicted class to become
less precise on average while gaining some recall. Note that:

Precision =
TP

TP + FP

and
Recall =

TP

TP + FN

This results in a trade-off where a very low threshold might
yield many false positives and a high threshold might yield
many false negatives. This trade-off is usually visualized
with a receiver operating characteristic (ROC) curve that
plots the true positive rate (TPR), defined as

TPR =
TP

TP + FN
,

versus the false positive rate (FPR), defined as

FPR =
FP

FN + TP
,

as suggested in (Bradley 1997) and (Provost and Fawcett
2001). A random classifier would be located along the main
diagonal (Fawcett 2006) and a good classifier would have
points in the upper left corner. This is visualized in Figure 1.
A widely used performance measurement is the area under
the curve (AUC) of the ROC. An optimal threshold is needed
to minimize the false positives and negatives by maximizing
the AUC.

1.00

0.00
0.00 1.00

False positive rate

Tr
ue

 p
os

it
iv

e
ra

te

ROC

random
good
be�er
ideal

Figure 1: Typical ROC curve plotting TPR vs FPR. Random
classifier produces a lines a long the diagonal, the closer the
points to the upper left corner the better the classifier perfor-
mance

Related Work
ROC and precision-recall analysis are widely used in
imbalanced data set classification, as shown in various types
of rare event data sets in (Kubat, Holte, and Matwin 1998),
(Weiss 1999), and (Carvalho and Freitas 2002). However,
choosing an optimal threshold also called “optimal op-
erating point”, is only well-understood for balanced data
sets where there are approximately as many positives as
negatives. A standard method is to take the intersection of
the iso-performance tangent line in the ROC as the optimal

cut-off (Hong 2009). The challenge arises when dealing
with imbalanced data sets where rare events constitute the
positive class.
The iso-performance line method maximizes the classifica-
tion accuracy, which places more weight on the majority
class, therefore overlooking the minority class in which
we are interested the most. This method is therefore not
applicable in our case, its pitfalls are discussed in detail in
(Calabrese 2014) and (Fawcett and Provost 1996). Opti-
mizing the threshold as a method to improve classification
accuracy was explored in (Weiss 2004) and (Provost 2000)
where rarity is explored and the challenges that it implies
are investigated. In (Weiss and Provost 2003), the authors
show that adjusting decision thresholds is an efficient way to
deal with this bias. In (Calabrese 2014), the author suggests
a quality measure called the cost-sensitive unweighted
accuracy which uses the true rate as defined in (Hong 2009)
as a quality criterion. It finds the optimal threshold that
minimizes the difference between the simple mean of the
Type 1 error, associated with false positives, and Type 2
error associated with false negatives. To correct for the
imbalanced misclassification costs, the errors are weighted
by their respective costs for which the ratio is usually
known. An example using this method is found in (Roelens
et al. 2018) for flood prevention data.
In the context of credit card assessment, an MCDM (Mul-
tiple Criteria Decision Making) was proposed in (Beulah
Jeba Jaya .Y 2015) to select an optimal probability cut-off
using hybrid data mining approaches.
Ensemble classifiers are common methods to combine
multiple classifiers, each one looking at different features of
a dataset. In (Breiman 2001), a method is shown where a
group of poor classifiers can be harnessed together to obtain
a way better performance. (Dietterich 2000) shows how dif-
ferent methods for voting in these ensembles of classifiers,
from bayesian averaging to error-correcting, output coding,
and boosting can often perform better than a single classifier.

Different thresholding methods were suitable for a range
of applications, we identified few very important challenges,
described below, that are faced when dealing with rare event
data sets, which were not addressed before, in our knowl-
edge.

Problem Description
In an extreme rare event problem, if one positive event hap-
pens in every ten thousand samples, one would have to la-
bel a million samples to detect 100 positive events. Like the
data we are dealing with from Google, many datasets will
lack information about the true and false negatives, because
it is very expensive to have humans spend time rating such a
large amount of data. Therefore, it makes sense that the only
data classified by humans is the data that scored higher than
a given score on the classifier i.e the positive class. Unfor-
tunately, not knowing the true and false negatives, therefore,
calls for analysis methods that do not require them.

The second important challenge to address occurs when
using multiple classifiers to evaluate a single document. It
often happens that we need to look at different aspects of

the document using different classifiers before making a de-
cision. For instance, one classifier can be assigned images
and another classifier can look for text. Each classifier will
output a different score and after a threshold is chosen, it can
be compared to each of the score and a decision can be made
about whether the document belongs to the positive or neg-
ative class. The difficulty arises in finding a threshold that
optimizes all the models jointly. This takes us from a single-
dimensional optimization problem to a multi-dimensional
one. In the following sections, we will explore the meth-
ods developed to address these challenges in the context of
extreme rare event data sets.

Proposed Methods
For a single classifier
For the sake of completeness, we begin with the simple case
of one classifier where we start defining the framework of
our methods.

LetXi be the independent and identically distributed (iid)
random variable representing the score of positive docu-
ments. The number of true positives at a threshold t is
the number of positive documents greater than the score t.
Hence, for each threshold t we have TPR as:

1

n

n∑
i=1

IXi≥t,

where n is the total number of positive samples and IXi≥t is
the indicator function. Similarly, let Yi be the iid random
variable of the score of negative documents, then FPR is
given as:

1

m

m∑
i=1

IYi≥t,

where m is the total number of negative samples. The ROC
curve is then parametrized as(

1

m

m∑
i=1

IYi≥t,
1

n

n∑
i=1

IXi≥t

)
, t ∈ R,

and is expected to converge to (P (Yi ≥ t), P (Xi ≥ t)). The
trade-off optimization problem then becomes one of find-
ing a threshold t that maximizes P (Xi ≥ t) and minimizes
P (Yi ≥ t). However, as mentioned in the introduction, we
are addressing the situation where only the portion of the
documents having scored higher than a certain threshold are
rated. In other words, the distributions are left-censored, we
only have IXi≥t, IYi≥t for t ≥ 0 and we only know the to-
tal number of sample m + n but do not have knowledge of
either m or n. Hence, we are unable to plot an ROC curve.

Since we lack information about the true and false neg-
atives, we use a reformulation of the ROC curve that plots
TP instead of TPR and FP instead of FPR , this removes
the normalization to probabilities that a normal ROC does
by dividing by the positives or negatives. The reformulation
is referred to as the positive-negative (PN) curve as defined
in [8]. In our paper, we also refer to it as a partial ROC
curve. The appearance is the same between the PN and ROC
curve, but the chance-line (diagonal) in the ROC becomes

the break-even line as known in information retrieval, a more
detailed explanation is given in [8].

Mathematically,(
m∗∑
i=1

IYi≥t,

n∗∑
i=1

IXi≥t

)
, t ∈ R≥0,

wherem∗ and n∗ are the total number of positives and nega-
tives, respectively, having scores greater than 0 for instance.

Given a classifier, a low threshold T can be set, the docu-
ments with a score higher than T can be sent to human raters
to determine the TP and FP, then in the resulting data set,
the threshold is raised to see how the TP and FP change.
Note that as the threshold keep getting higher, we would
have fewer data points in the sub-sample and therefore a
wider confidence interval. Using the partial ROC curve im-
plies that we can not use the rated data to simulate the TP
and FP count had the model threshold been set even lower
than T.
With the partial ROC curve, we can formulate our optimiza-
tion problem as follows:
Given any point on the curve, if this point was the operat-
ing point and we wanted to get one additional true positive
document, we can determine the cost that we need to pay in
terms of a raw number of false positives.

In many situations, this formulation can relate to a busi-
ness goal. For example, the positive class could be unwanted
documents that a company needs to filter out without losing
the wanted documents. Thus, they can provide a number to
quantify how many good documents they are willing to give
up in order to filter out one additional bad document. This
can be answered by analyzing monetary costs for instance.
Based on this, a target derivative FP

TP can be chosen, again
this represents the amount of false positives gained vs the
amount of true positives gained at a certain threshold. The
target derivative is based on expert knowledge, which was
provided for us by Google in our application.

A partial ROC curve can be described as a parametric
function

f(t) = (FP (t), TP (t)), where f : T → R2,

where T is the threshold space. A fit can be applied to find
the points where the derivative has the desired value. In the
result section, we present the fitting methods that worked
best for typical partial ROC curves.

For an ensemble of classifiers
In this case, the PN curve (partial ROC) becomes an N-
dimensional manifold, dTP

dFP becomes a more complicated
notion since a local direction must be picked for a unique
derivative to exist.
In general, one can define the function as

f(~t) = (FP (~t), TP (~t)); f : T̂ → R2, (1)

where T̂ is the threshold space described by the cross
product of all the threshold values for each classifier.

We can consider the derivative at a point to be:

lim
∆x→0

∆TP · u
∆FP · u

,

where u is a vector that describes the direction at which
the derivative is being taken.

We describe a path

φ(s) = (g(s), h(s)) for 0 ≤ s ≤ 1

over T̂ space, that is, a function φ : [0, 1]→ T̂ .
We impose the following restrictions on φ for the resulting

curve to behave like a partial ROC curve:
• φ(0) = (inf T1, inf T2, . . . , inf Tn)

• φ(1) = (supT1, supT2, . . . , supTn)

• f(t) and g(t) must be monotonous
The first two conditions are so that the curve starts and

ends at the correct points, and the last point is so that the
amount of true positives and false positives decrease with
respect to our new “threshold”.
To pick the best classifier, φ should maximize the area under
the curve:

argmaxφ

∫
φ([0,1])

TP dFP

We propose two algorithms to find φ, one is based on min-
imizing a function (the analytic approach) and the other one
is based on building a graph (the graph approach).

Before we give a step by step example implementation for
both methods, we introduce the following simple base algo-
rithm for both methods to find the optimal operating point.

Algorithm 1 Base algorithm for finding the optimal operat-
ing point
Input: Set of points P representing (TP, FP, T1, T2, ...),
target derivative d
Output: Optimal operating point (T1, T2, ...)

1: C ← FindOptimalCurve(P)
2: Find point q where d

dtC(q) = d
3: return q

In what follows, we explain the FindOptimalCurve func-
tion used in Algorithm 1 in the context of both the analytic
and graph approach.

Analytic approach
The core of this approach is the usage of a family of func-
tions for which we optimize the parameters in a way that
maximizes the area under the corresponding PN curve. This
approach estimates the integral yielding the area under the
curve using the simple trapezoidal method. The algorithm
implementation is summarized in Algorithm 2.

We describe the implementation of this algorithm in more
detail using two thresholds, as an example, in the following
steps:

Algorithm 2 Analytic implementation of FindOptimal-
Curve
Input: Set of points P representing (TP, FP, T1, T2, ...),
a family of curves fp defined on [0, 1]→ T
Output: A curve C

1: Fit a function F̂ (T1, T2, ...) as the best fit for the points
(FP, T1, T2, ...)

2: Fit a function T̂ (T1, T2, ...) as the best fit for the points
(TP, T1, T2, ...)

3: Let gp ← (T̂ , F̂) ◦ fp
4: q ← argmaxpAUC(gp(t))dt
5: return {(t, fq(t))∀t ∈ [0, 1]}

1. Normalizing the thresholds

2. Plotting the three-dimensional plots (TP, T1, T2) and (FP,
T1, T2) and fitting a surface through each one of them us-
ing an interpolation technique. We create an n × n grid
on the threshold plane with each point on the grid corre-
sponding to a pair of thresholds and a value of TP and FP.
This step allows finding the estimators T̂P and F̂P at each
point of the surface.

3. Turning the grid into a linear space; since the data is nor-
malized at this point, the domain will be from 0 to 1. We
can also specify the granularity i.e the size of the parti-
tions in this domain. In the next steps, the granularity will
also indicate the number of AUC samples that are calcu-
lated in the process.
This step is the start of the parametrization used in this
approach. If s denotes the parameter indicating the order
of the partitions, then both thresholds are a function of s
which is then used as an index in a separate parametric
function to output the corresponding TP and FP values
separately.

4. Defining an energy function as follows:

E(~p) = AUC(F̂P ◦ φ~p, T̂P ◦ φ~p)

where:
φ~p is a family of parametric functions defined from [0,1]
to T1×T2 with ~p being the parameter. In our algorithm, we
used a parametric function that is graphically close to the
resulting discrete path and that passes through the bounds
(0,0) and (1,1):

φ~p = xp (2)

AUC is a function that calculates the area under the curve
using the trapezoidal formula, this is an estimation of the
integral form of the calculation of the area under the curve
described by:

∫
{(x,φ~p(x))} TP dFP

5. Minimizing the function below using the Nelder-Mead
minimization function.

− log(log(E))

Figure 2: The graph used in this approach; each circle rep-
resents a node which is a 4-tuple from the data (T1, T2, TP,
FP) and each arrow represents an edge.

Note that we made the previous function negative so we
can use a minimization method to maximize the AUC. We
also composed E with two logarithms in order to make
it converge faster, otherwise, it might get stuck on local
minima.

6. Creating a function that determines the curve in the TP-
FP space that corresponds to the resulting path within the
threshold space using the parameterization mentioned in
Step 3.

7. Finding the point s where dTP
dFP w.r.t. the parameterization

s equals the target marginal precision, by estimating the
derivative of f ◦ φ.

8. Finding the optimal operating point (T1,T2,TP,FP) given
a target marginal precision ie. the values of t where
φ(t) = s. It can be interpolated at the value of s given
by the closest marginal precision to the target.Ridders
method can be used for root finding to get the best pa-
rameter s.

Graph-based approach
The goal of the graph-based approach is again to find the
continuous path on the threshold space that maximizes the
area under the curve in the TP-FP space, now with the con-
straint that every point is only allowed to move through its
neighbors.

We defined the node, edge, and weight of the graph shown
in Figure 2, for 2-dimensions, as follows:
• Node v: represents a pair of thresholds, having attributes

of (T1,T2,TP,FP)
• Edge e: the connection between the nodes is established

if and only if one of their thresholds is equal or their other
threshold is consecutive in the discrete set of thresholds.

• Weight of edge e = (v1, v2): this is equal to the
negative of the area under the segments (trapezoid)
(FP(v1),TP(v1)) and (FP(v2),TP(v2)) as shematized
in Figure 3. Mathematically, the weight is defined as:

w(e) = −1

2
(|FP(v1)− FP(v2)|)(TP(v1) + TP(v2))

(3)

TP

FP

Figure 3: The trapezoid area under a single segment between
two edges, the weight is defined to be the negative of the
highlighted area

Then the total weight of edges in a path is the negative
of the area under the curve swept out in the TP vs FP plot.
In another words, by fixing end points, we can find a better
TP vs FP curve by finding a path that has a minimal weight.
So, it suffices to find the shortest path from v0 to v∞ ,with
(t1(v0), t2(v0)) = (0, 0) , (t1(v∞), t2(v∞)) = (∞,∞) .
Intuitively, it finds a shortest path from the left bottom corner
to the right upper corner in the thresholds space T1 × T2 .
The edge is directed towards up or right to avoid bent paths
in the corresponding TP vs FP curve.

After we find the set of nodes in the shortest path, we con-
nect the corresponding points and re-parametrize the path.
Note that it would be continuous but not smooth.
The algorithm for this method is the following:

Algorithm 3 Graph based implementation of FindOptimal-
Curve
Input: Set of points P representing (TP, FP, T1, T2, ...)
sampled in a grid with respect to the thresholds
Output: A curve C

1: Create a graph G connecting points to neighbors with a
greater coordinate than them

2: Let the origin be A0 and the point with the biggest co-
ordinates be A∞

3: P ← FindOptimalPath(G,A0, A∞)
4: Let f(t) : [0, 1]→ FP×TP such that it passes through

the path P
5: return {(t, f(t))∀t ∈ [0, 1]}

Below we explain this approach in detail, starting from
step 3 of the analytic approach for a 2-dimensional example,
since the first two steps are similar.

1. Transforming the threshold space into an n× n grid with
each point on the grid corresponding to a pair of thresh-
olds and a value of TP and FP.

2. Calculating the weight of the graph as the negative area
under the segment formed by 2 points v1, v2 in the TP vs
FP curve using equation 3

3. Determining the weight of the edge connecting the node
of two consecutive points.
Note that the predicted positives have to be non-negative,

hence the segment is above the x-axis. The weight is
non-positive therefore a lower weight indicates a higher
area under the segment.

4. Store the (TP,FP, T1, T2) tuple in every node as extra
information. The edge can then be defined as a 3-tuple of
(nk, nl, wk,l), where nk and nl are each node and wk,l is
the negative area under the curve of each node.
The nodes are connected if they are within the same
neighborhood. A function can do so if the one of the
thresholds is the same between two neighbours or the
thresholds are consecutive to each other in the discrete
set of thresholds.
The path selected is therefore just a collection of nodes
from the left bottom to right upper corner in thresholds
space and the total weight of the path corresponds to the
negative area under the curve swept out by it in the TP -
FP space.

Note that in order to compute the shortest path be-
tween the lower-left corner (source node) to the top
right corner node, the Bellman-Ford algorithm can be
implemented since it accepts edges with negative weights
unlike the usual Dijkstra’s algorithm.

5. Connecting the nodes to obtain a continuous path in the
threshold space and determining the curve in the TP-FP
space that corresponds to the selected path. It does so us-
ing the same parametrization explained in step 3 of the
analytic approach.

6. Getting the marginal precision, refer to step 7 of the ana-
lytic approach.

7. Determining the optimal operating point given a target
marginal precision, refer to step 8 of the analytic ap-
proach.

Experiments and Results
Evaluating the performance using public datasets
To evaluate the performance of the method, we use rare
event data sets where the amount of false negatives and true
positives can be calculated, in order to compare the preci-
sion and recall of two standard classifiers with our methods
on the resulting ensemble of classifiers. This was done using
three rare event datasets123 whose true and false positive and
negative values are known.

Each dataset was cleaned by changing empty values for
the average value in the column, turning categorical datasets
into one-hot encoded vectors, and encoding cyclical values
like days of the weeks into points in a unit circle. These
datasets were then passed through a PCA procedure (Princi-
pal Component Analysis) to reduce the dimensionality. The
data sets were then split into a training set T and a holdout
testing set H , where T represents 75% of the data set and H
represents the other 25%.

1https://www.kaggle.com/mlg-ulb/creditcardfraud
2https://www.kaggle.com/henriqueyamahata/bank-marketing
3https://www.kaggle.com/c/ieee-fraud-detection

Each classifier was trained using the first 20% of the com-
ponents of the PCA. We need to simulate a joint optimiza-
tion of two classifiers where each one of them makes deci-
sions over a separate but related data set. Thus, one of the
classifiers was assigned the remaining even components and
a second classifier of the same type was assigned the remain-
ing odd components.

The hyperparameters, for each classifier, were tuned by
maximizing the average accuracy in a cross-validation test.
A cross-validation test was done by splitting the training
set T into 5 different cross-validation groups: T1, T2, ...T5,
where for each training set Ti, a classifier is trained using
the set

⋃
j 6=i Tj and the score for the ith fold is denoted by

si and is obtained by evaluating the accuracy of the classifier
on Ti. The hyperparameters with the highest average value
of s1, ..., s5 are picked.

The classifiers used for the testing were Linear SVMs,
Random Forests, Decision Trees, k-nearest neighbors, XG-
Boosting and Naive Bayes.

We explored multiple classification techniques to deter-
mine whether our methods improve their performance. We
relied on (Pedregosa et al. 2011) for a compilation of clas-
sification algorithms. In all classifiers, we estimated the hy-
perparameters through a grid search with cross-validation.
For the k-nearest neighbors classifier, we tested all the val-
ues of k from 1 to

√
n where n is the number of points

in the training data, as well as the L1 and L2 metrics, the
default behavior for classification, is to pick the class with
the biggest number of nearest neighbors assigned to them.
The decision tree classifier used the grid search coupled with
the Gini and entropy criterion. We optimized the maximum
depth parameter for all integer values between 1 and 500 as
well as without setting a maximum depth, the default clas-
sification method is to follow the instructions for the tree.
The random forest classifier also used the Gini and entropy
criterion with the number of estimators between 50 and 500,
with steps of 10 between them, the default behavior for clas-
sification is to let each decision tree in the forest vote, and
the class with the most votes wins. For the extreme gradient
booster (XGboost), we used a maximum depth from 1 to 20,
a learning rate from 0.1 to 1, with steps of 0,1, and a number
of estimators from 50 to 500 with a step of 10, the default
classification behavior is the same as random forests. For
the linear SVMs, we again used the grid-search with cross-
validation to look for the hyperparameters between using L1
and L2 norm for the penalty, the default threshold used was
0. For SVMs, we used the hinge or squared hinge loss func-
tions to train the classifier with a dual true or false and using
all values of the regularization parameter λ from 0 to 1 with
a step of 0.1, the default threshold is 0. We also used a Naive
Bayes classifier with no optimized parameters, whose de-
fault classification behavior is to choose the class with the
highest probability.

A grid was made using the result of the cross product of
the thresholds of equally spaced points in each dimension.
An input would be considered to have a true value if either
of the scores produced by each classifier surpassed their own
threshold. This means that we are taking the union of the
classification. Using the scores outputted by the classifiers,

Figure 4: The F1 measure of the best performing method
to create the ensemble against the average F1 measure of
the two classifiers that compose it for each pair of dataset
and classifier type. The classifier types are abbreviated as
the following: KNN isK-nearest neighbors, SVM is a linear
SVM, NB is Naive Bayes, RF is Random Forests and XGB
is XGBoosting.

we calculated the amount of false positives and true positives
for each pair of thresholds in the grid. This was the input
for Algorithm 1. We then calculated the precision and recall
from the testing set.

To evaluate their performance, the F1 measure was used
instead of the accuracy score. This latter is not suitable for
rare event data sets where a difference in accuracy of 0.01%
can make a huge difference in both the precision and recall.
The F1 measure is calculated by

F1 = 2
pr

p+ r
,

where p is the precision and r is the recall.
Figures 4, 5 and 6 show the F1 measure, precision, and

recall, respectively, for each experiment. An experiment was
defined as a combined pair of a dataset and a classifier type.
When either the precision or recall were extremely low, the
other quantity is ”undefined”. In this case, taking the union
of the classifiers’ decisions results in classifying every doc-
ument as positive, which makes the ensemble classify every
document as positive.

Overall, the precision was increased on average by 5.1%
while the recall was reduced by an average of 1.6% and F1

measure increased by an average of 1.5%.
Table 1 and Table 2 of the appendix show the results for
all the simulated experiments with all the mentioned classi-
fiers. Undefined values are showed as - on the tables. As the
F1 measure of the classifiers that do not use the proposed
methods increases, the F1 measure of the ensemble result-
ing from the proposed methods also increases. This trend
is shown on figure 7. It also plots the identity line to show
that the proposed methods improve the F1 measure of all the
points above this line.

Benchmark using Google data sets
The Google data contains 22 data sets each consisting of
about 10,000 rows and 4 columns of data. The two first

Figure 5: The precision of the best performing method to
create the ensemble against the average F1 measure of the
two classifiers that compose it for each pair of dataset and
classifier type. The classifier types are abbreviated as the
following: KNN is K-nearest neighbors, SVM is a linear
SVM, NB is Naive Bayes, RF is Random Forests and XGB
is XGBoosting.

Figure 6: The recall of the best performing method to create
the ensemble against the average F1 measure of the two clas-
sifiers that compose it for each pair of dataset and classifier
type. The classifier types are abbreviated as the following:
KNN is K-nearest neighbors, SVM is a linear SVM, NB is
Naive Bayes, RF is Random Forests and XGB is XGBoost-
ing.

columns represent two thresholds of two different classifiers
and the next two represent the number of true and false
positives for each pair of thresholds as determined by
human raters, assuming all documents over the threshold is
considered as part of the positive class. These datasets, have
a prevalence of the positive class of about 0.01% of the total
number rows.

The result of running Algorithm 2 and 3 is shown in
Figure 10 for an example data set. The figure represents the
threshold paths obtained using both the analytic and graph
approach, as well as the location of the operating point.

Using the parameterization from Equation 1, we can use
the threshold paths to determine the optimal partial ROC
curve that was selected by each of these algorithms.

Figure 7: The average F1 measure of the classifiers with-
out the proposed method compared to the F1 measure of the
with the proposed method.

Next, we can determine the optimal operating point given a
target marginal precision as determined by a business goal
set by Google’s expert knowledge efforts prior to this work.
The result of running Algorithm 1 is shown for 3 different
methods in Figure 8 in the threshold space and correspond-
ingly in Figure 9 in TP vs FP space.

Figure 8: The operating point picked by each algorithm in
the threshold space.

The analytic and graph methods mentioned in figures 8
and 9 are the proposed methods, while the benchmark is a
fine-tuned operating point used by Google based on sepa-
rating the false positives into small intervals called buckets,
and picking the highest TP for each bucket, then adjusting
this manually to fit the goals of the optimal operating point.
While this latter is good as a benchmark for our algorithms,
it can not be used as another optimization method since it
lacks mathematical rigor and produces an erratic behavior in
the threshold space which, without fine-tuning, would imply
the non-existence or non-uniqueness of the derivative of the
partial ROC curve needed to find the operating point.
Our methods make a good attempt at approximating the
operating point selected by the benchmark method. These
points are also plotted on their respective paths in Figure 10.

Figure 9: The operating point picked by each algorithm in
the TP vs FP space.

Discussion
We used an or (union) in combining the decisions of the clas-
sifiers but it can be substituted by an and operation depend-
ing on whether the application prioritizes positive classifi-
cation or negative classification. Our methods also assume
that the ROC curve for both of the classifiers has a unique
decreasing derivative which can be expected from a tuned
classifier.
Both the analytic and graph methods were presented as al-
though both useful, there are different disadvantages to each
one of them. The analytic method is heavily dependent on
the family of functions used to optimize over, and is prone
to get stuck in an optimal minimum. On the other hand, it
is uncertain whether the graph method is prone to overfit-
ting to the data or not, however, unlike the analytic method,
there is no way to mitigate it. A possible alteration to be
done to mitigate overfitting with the graph method would be
to hold a series of simulations where some connections be-
tween the nodes are deleted, and then picking the average
path between the resulting set of paths.

Both algorithms scale reasonably well with respect to the
amount of data. The graph algorithm scales at a rate of
O(nk), where n is the number of rows and k is the num-
ber of classifiers. This is good when the number of dimen-
sions is low, however, it scales exponentially with the num-
ber of classifiers in the ensemble. The analytic approach
works the opposite way since it depends on an optimiza-
tion problem, it does not scale very well with respect to the
number of rows, however, it scales linearly with the number
of dimensions. We compared the running time of the algo-
rithms using a computer with an i7-6700 and 32GB of RAM
for all the Google data sets combined. The analytic approach
ran on average 10 times faster than the graph approach; for
n = 10, 000 and k = 2, the analytic method takes 60 sec-
onds while the graph method takes 6 seconds in our condi-
tions.

Finally, the experiments were done using an automated
method to tune the classifiers, notably the grid-search with
cross-validation in order to obtain a large number of samples
across different accuracies. However, this could be improved
since it does not reflect a real-world application of this pro-

Figure 10: The path picked by the analytic (top) and graph
method (bottom), using the function in equation 2 for the
analytic method.

cess in which the hyperparameters would be estimated with
the help of additional fine-tuning methods that depend on
the specific application of the data set.

Conclusion
The proposed algorithm finds optimal thresholds for the out-
put of binary classifiers used for rare event datasets. The
method works by finding the best possible path in the TP
- FP space, which is the one that maximizes the area under
the curve of the projected partial ROC curve. This curve is
then used to find the optimal operating point corresponding
to a given target derivative. The latter represents the trade-
off of lost false positives to gained true positives which was
obtained from the Google team’s expert knowledge efforts
prior to this work. Two optimization methods are proposed:
an analytical method, which optimizes parameters of an en-
ergy function and a graph method, which performs the op-
timization through finding the path in a graph to maximize
the AUC.

Our results were very close to the optimal operating
points that were picked manually by the Google team. We
were, therefore, able to automate their process of finding
an optimal threshold while providing a mathematical frame-
work and using their target derivatives(marginal precisions).
Moreover, we compared the F1 measure, precision, and re-
call of combining five classifiers and three datasets while
either relying on our thresholding methods and taking the
union of the decisions or using the classifiers individually

with their default classification behavior. The result im-
proved the precision while lowering the recall less signifi-
cantly. This tradeoff could be reversed, if desired, by sim-
ply changing the ensemble decision between the individual
classifiers from ’or’ to ’and’. We discussed important limita-
tions and possibilities for future work. Notably, optimizing
different metrics other than AUC individually or in combi-
nations would be worth exploring. Moreover, we optimized
two binary classifiers jointly but the theoretical framework
described in the methods section extends to N dimensions.
Using this in practice will require optimizing over multi-
ple parameters in the analytic approach and extending the
graph to an N-dimensional lattice. Exploring this possibility
through practical applications might open great avenues for
the general optimization of ensemble classifiers.

Acknowledgements
We would like to thank our teammates Ching Pui Wan and
Joanne Beckford, NSF grant DMS-0931852, Payam Re-
fael and his team from Google, our academic mentor Aliki
Mavromoustaki, and all of the IPAM staff at UCLA for mak-
ing this work possible.

References
Aggarwal, C. C. 2014. Data classification: algorithms and
applications. CRC Press, Taylor & Francis Group.
Beulah Jeba Jaya .Y, J. J. T. 2015. Multiple criteria deci-
sion making based credit risk prediction using optimal cut-
off point approach. International Journal of Applied Engi-
neering Research 10:20041–20054.
Bradley, A. P. 1997. The use of the area under the roc curve
in the evaluation of machine learning algorithms. Pattern
recognition 30(7):1145–1159.
Breiman, L. 2001. Random forests. Machine Learning
45(1):5–32.
Calabrese, R. 2014. Optimal cut-off for rare events and un-
balanced misclassification costs. Journal of Applied Statis-
tics 41(8):1678–1693.
Carvalho, D. R., and Freitas, A. A. 2002. A genetic-
algorithm for discovering small-disjunct rules in data min-
ing. Applied Soft Computing 2(2):75–88.
Dietterich, T. G. 2000. Ensemble methods in machine learn-
ing. In Multiple Classifier Systems, 1–15. Berlin, Heidel-
berg: Springer Berlin Heidelberg.
Fawcett, T., and Provost, F. 1996. Combining data mining
and machine learning for effective user profiling. In Pro-
ceedings of the Second International Conference on Knowl-
edge Discovery and Data Mining, 8–13. AAAI Press.
Fawcett, T. 2006. An introduction to roc analysis. Pattern
recognition letters 27(8):861–874.
Hong, C. S. 2009. Optimal threshold from roc and cap
curves. Communications in Statistics - Simulation and Com-
putation 38(10):2060–2072.
Kubat, M.; Holte, R. C.; and Matwin, S. 1998. Machine
learning for the detection of oil spills in satellite radar im-
ages. Machine learning 30(2-3):195–215.

Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.;
Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss,
R.; Dubourg, V.; Vanderplas, J.; Passos, A.; Cournapeau, D.;
Brucher, M.; Perrot, M.; and Duchesnay, E. 2011. Scikit-
learn: Machine learning in Python. Journal of Machine
Learning Research 12:2825–2830.
Provost, F., and Fawcett, T. 2001. Robust classification for
imprecise environments. Machine learning 42(3):203–231.
Provost, F. 2000. Machine learning from imbalanced data
sets 101. In Proceedings of the AAAI’2000 workshop on
imbalanced data sets, volume 68, 1–3. AAAI Press.
Roelens, J.; Rosier, I.; Dondeyne, S.; Van Orshoven, J.;
and Diels, J. 2018. Extracting drainage networks and
their connectivity using lidar data. Hydrological processes
32(8):1026–1037.
Weiss, G. M., and Provost, F. 2003. Learning when training
data are costly: The effect of class distribution on tree induc-
tion. Journal of artificial intelligence research 19:315–354.
Weiss, G. M. 1999. Timeweaver: A genetic algorithm
for identifying predictive patterns in sequences of events.
In Proceedings of the 1st Annual Conference on Genetic
and Evolutionary Computation-Volume 1, 718–725. Mor-
gan Kaufmann Publishers Inc.
Weiss, G. M. 2004. Mining with rarity: a unifying frame-
work. ACM Sigkdd Explorations Newsletter 6(1):7–19.

Appendix

Table 1: The results of the experiment being performed on multiple datasets with different types of classifiers. The empty values
in precision or F1 measure occur when every data point is classified as a negative, and so precision is undefined and recall is 0.

Dataset Ensemble Classifier Precision Recall F1 measure
CreditCards LinearSVM Analytical 0.88 0.76 0.82

Graph 0.897 0.76 0.82
Linear SVM 1 0.88 0.66 0.75
Linear SVM 2 0.88 0.56 0.68

Random Forest Analytical 0.90 0.76 0.82
Graph - 0 -
Random Forest 1 0.94 0.73 0.82
Random Forest 2 0.92 0.73 0.81

Decision Tree Analytical - 0 -
Graph - 0 -
Decision Tree 1 0.6696 0.63 0.65
Decision Tree 2 0.7818 0.72 0.75

k-nearest neighbors Analytical - 0 -
Graph - 0 -
k-nearest neighbors 0.8191 0.6417 0.7196
k-nearest neighbors 0.9342 0.5917 0.7245

xgboost Analytical 0.9231 0.7000 0.7962
Graph 1.0000 0.0083 0.0165
xgboost 0.9140 0.7083 0.7981
xgboost 0.9000 0.7500 0.8182

Naive Bayes Analytical 0.0836 0.8000 0.1513
Graph - 0.0000 -
Naive Bayes 0.0671 0.8417 0.1243
Naive Bayes 0.0746 0.8167 0.1368

Bank LinearSVM Analytical 0.1125 1.0000 0.2022
Graph - 0.0000 -
Linear SVM 1 0.6633 0.3368 0.4467
Linear SVM 2 0.6582 0.3359 0.4448

Random Forest Analytical 0.6529 0.4905 0.5602
Graph - 0.0000 -
Random Forest 1 0.6477 0.4827 0.5532
Random Forest 2 0.6516 0.4732 0.5483

Decision Tree Analytical - 0.0000 -
Graph - 0.0000 -
Decision Tree 1 - 0.0000 -
Decision Tree 2 - 0.0000 -

k-nearest neighbors Analytical 0.6766 0.3903 0.4951
Graph - 0.0000 -
k-nearest neighbors 0.6528 0.4482 0.5315
k-nearest neighbors 0.6508 0.4473 0.5302

xgboost Analytical 0.6458 0.4724 0.5456
Graph 0.6832 0.3929 0.4989
xgboost 0.6359 0.4870 0.5516
xgboost 0.6333 0.5026 0.5604

Naive Bayes Analytical 0.5724 0.3584 0.4408
Graph 0.5694 0.3083 0.4000
Naive Bayes 1 0.5284 0.5147 0.5214
Naive Bayes 2 0.5206 0.5121 0.5163

Table 2: Continuation of Table 1
Dataset Ensemble Classifier Precision Recall F1 measure
IEEEFraud k-nearest neighbors Analytical - 0.0000 -

Graph - 0.0000 -
k-nearest neighbors 1 0.6380 0.0897 0.1573
k-nearest neighbors 2 0.6476 0.0942 0.1645

Naive Bayes Analytical 0.0342 1.0000 0.0662
Graph - 0.0000 -
Naive Bayes 1 0.0873 0.1356 -
Naive Bayes 2 0.0840 0.0954 0.0004

LinearSVM Analytical 0.0342 1.0000 0.0662
Graph 0.0000 0.0000 -
Linear SVM 1 0.0175 0.0002 0.0004
Linear SVM 2 0.0870 0.0008 0.0016

Decision Tree Analytical - 0.0000 -
Graph - 0.0000 -
Decision Tree 1 - 0.0000 -
Decision Tree 2 - 0.0000 -

Random Forest Analytical 0.7605 0.2647 0.3927
Graph - 0.0000 -
Random Forest 1 0.8652 0.1855 0.3055
Random Forest 2 0.8641 0.1851 0.3049

