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Abstract
Transformer deep learning models, such as BERT, have
demonstrated their effectiveness over previous baselines on
a broad range of general-domain natural language processing
(NLP) tasks such as classification, named entity recognition,
and question answering (Devlin et al. 2018). They also exhibit
enhanced performance in domain-specific NLP tasks, includ-
ing BioNLP tasks (Lee et al. 2019; Alsentzer et al. 2019). In
this study, we focus on clinical trial protocols: exploring and
extracting key terms (a named entity recognition task) as well
as their relations (a relation extraction task) from the proto-
cols using transformer pre-trained deep learning models. We
compare several model configurations and report their results.
Our NLP model achieves good performance considering the
complex and unique nature of the language in real-world pro-
tocols, and has been integrated into the organization’s pro-
tocol analytics practice. This approach and the extracted in-
formation will greatly facilitate trial feasibility analysis for
developing new drugs.

Introduction
Clinical trial protocols (often called “study protocols”) con-
tain key information specifying the trial design and imple-
mentation, but are usually in unstructured or semi-structured
format, which presents a huge challenge for running com-
putational analysis on them. Due to protocols’ critical role,
drug development businesses, such as contract research or-
ganizations, have been devoting significant amount of re-
sources in analyzing study protocols to precisely understand
the operational requirements, comprehensively evaluate the
systemic challenges, unbiasedly assess the probability of
success, accurately forecast the cost implications for optimal
business planning. Currently, this protocol analysis work is
still performed in a labor-intensive fashion, involving nu-
merous resource checking and cross referencing works. To
develop safer, cheaper and more effective drugs faster for
better public health, this presses an urgent need for more ef-
ficient and effective ways to process text-based protocols.
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Here, we present our efforts to facilitate the protocol anal-
ysis workflow by automating the process of extracting key
information from the protocols using natural language pro-
cessing (NLP) techniques. More specifically, we focus on
the eligibility criteria section in the protocols, which con-
tains patient selection criteria information; we extract key
clinically relevant entities (i.e. named entities) and entity re-
lations (i.e. syntactic relations) from this section. Based on
the extracted information, the unstructured protocols can be
transformed into a structured network with interconnected
key entities (e.g. condition, drug, observation etc.) that can
be fed into various data-based analytic tasks, for example to
query against various real-world evidence databases for pa-
tient population estimation, which is critical for clinical trial
design in drug development.

Covance Inc. is the world’s largest provider for clinical
trial design, monitoring, managing and central lab testing
services, and has accumulated large volume of study proto-
cols. The presented work is our first step of a bigger mis-
sion towards solving the protocol analysis challenge. To this
end, we employed the transfer learning strategy and exper-
iment with deep learning family of algorithms by using the
recently developed Bidirectional Encoder Representations
from Transformers (BERT) based models and fine-tuning
them on our in-house clinical trial protocol corpus to iden-
tify the named entities and their relations.

Study protocols are rigorous scientific documents with
highly domain-specific terms and complex relations. These
characteristics bring both benefits and challenges to NLP
work: we concern less about preprocessing due to its rig-
orous use of language, but need to attend more to its unique
yet complex clinical terms and relations. A study protocol’s
eligibility criteria section is usually composed of two parts:
inclusion criteria and exclusion criteria, which respectively
describe the unambiguous characteristics of patients to be
included in and excluded from the clinical trial. The general
public can access some simplified protocol texts via web-
sites such as ClinicalTrials.gov, which already contain many
clinical terminologies. However, the real protocols are much
longer with even more domain-specific terms, thus more dif-
ficult for the NLP task. We employ pre-trained BERT trans-
formers to tackle this challenging NLP task and our study
provides quantified evidence of how BERT performs in the
clinical trial domain.



Figure 1: Structured information extracted from protocol el-
igibility criteria.

In our practice, the extracted information are stored in a
structured format. Figure 1 shows an example: the inclusion
criteria is represented as several key-value clauses such that
we can query a patient database to find the patients satisfy-
ing these criteria. Through extraction we are essentially con-
necting dots to build a larger graph for knowledge engineer-
ing purpose, i.e. we connect protocol text to patient database
records, connect protocol to condition terms in a medical
ontology, and so on. Once the dots are properly connected,
we are empowered to perform many protocol analysis tasks
such as building a search engine for precise search, compos-
ing graph networks for graph analysis for capturing missing
links, evaluating drug effectiveness by comparing with sim-
ilar drugs, clustering and recommending similar protocols
for study feasibility analysis.

Related Work
Named entities recognition (NER) and relation extraction
(RE) are two classical natural language processing (NLP)
tasks, which we carry out to extract entities and syntactic
relations respectively in our study. Previously, for NER, re-
searchers have mainly investigated probabilistic sequence
labeling models such like conditional random fields (CRF),
maximum entropy Markov models, and hidden Markov
model(Lafferty, McCallum, and Pereira 2001; McCallum,
Freitag, and Pereira 2000; Bikel et al. 1998). For RE, text
classification methods, such as support vector machine, lo-
gistic regression, and perceptron, along with feature engi-
neering, have been used to assign relations between enti-
ties(Bach and Badaskar 2007; Jurafsky 2000).

In recent years, with the advances in deep neural network
methods, significant performance improvement has been
achieved for the NER and RE tasks. For NER tasks, em-
beddings are widely used in neural network models to rep-
resent words or characters as high-dimensional vectors. Re-
current neural networks (RNN), including LSTM, GRU, and
their variants, are applied because their architectures repre-
sent better the sentence context as well as the dynamic sen-
tence length in natural languages (Huang, Xu, and Yu 2015;
Yang, Salakhutdinov, and Cohen 2016). The Bidirectional
LSTM (Bi-LSTM) plus CRF network architecture has also
been widely used to achieve better NER performance (Ma
and Hovy 2016; Lample et al. 2016).

Despite the improvement from previous models, RNN

and LSTM models tend to “forget” earlier context in long
sequences, which limits the model performance. Transform-
ers are subsequently proposed to counter this issue. Trans-
former models use the attention mechanism that attends to
each word in a sequence by replacing the sequence-based
RNN style network structure with dot products and multi-
plications between the key/value/query matrices projected
from the embedding vectors (Vaswani et al. 2017). Trans-
formers have the advantage of attending to every token in
a sequence, whether long or short, and therefore they can
capture associations between tokens that are even distantly
separated from each other. BERT models (Bidirectional En-
coder Representations from Transformers), a recent popular
NLP deep learning model, is a model employing multiple
layers of attentions and significantly improved NLP task per-
formance over previous models (Devlin et al. 2018).

Additionally, transfer learning aims to transfer pre-trained
model from one task to another, usually by training a gen-
eral language model on general-domain data set and trans-
ferring it to a downstream task by fine-tuning on the task-
specific data set. A number of pre-trained language mod-
els have been created to facilitate downstream tasks such
as NER and RE, examples including ELMO, ULMFit,
OpenAI GPT, and BERT, which have outperformed previ-
ous baselines and some even achieved the state-of-the-art
performance(Peters et al. 2018; Howard and Ruder 2018;
Radford et al. 2019).

Based on the original BERT architecture, a number of
BERT variants have emerged with alterations for differ-
ent purposes. For example, RoBERTa removes next sen-
tence prediction from the original loss function along with
some other hyperparameter changes; Transformer-XL cap-
tures context both within and between segments for tack-
ling long-term dependency across sentences; and T5 advo-
cates for encoding-decoding architecture, denoising objec-
tives and other changes based on extensive experiments(Liu
et al. 2019; Dai et al. 2019; Raffel et al. 2019).

NER and RE have also been longstanding tasks in the
biomedical NLP domain. Researchers have investigated ap-
plying similar yet more customized approaches to biomedi-
cal texts, such as using CRF models and BiLSTM+CRF neu-
ral networks (Leaman and Gonzalez 2008; Lyu et al. 2017;
Wei et al. 2016). With the introduction of the BERT model,
BERT based models have been adopted to the biomedical
domain by retraining it with biomedical corpus, among the
examples are BioBERT, SciBERT, and clinical BERT(Lee
et al. 2019; Beltagy, Cohan, and Lo 2019; Alsentzer et al.
2019).

In the clinical informatics field, it is important to convert
unstructured criteria text to structured format because this
enables people to automatically parse a criteria and query for
proper patients against certain real-world evidence database.
Therefore, NER and RE algorithms are an appropriate and
natural fit to this practice: NER extracts concepts such as
conditions and observations that is related to a patient; RE
provides operational information such as the range for a par-
ticular lab test result for patient selection. Criteria2Query is
a pioneering work in the space of translating study criteria
to SQL queries(Yuan et al. 2019). It relies mainly on CRF



sequence labeling for the NER task and SVM classification
for relation extraction. To the best of our knowledge, there
has been no research and practice to use pre-trained trans-
former deep learning methods to extract structured informa-
tion from unstructured clinical trial protocols. Motivated by
the excellent performance of BERT based models on NER
and RE tasks in general domains, we experiment and de-
velop models and evaluate the performance in the clinical
trial domain.

Methodology
Data Set
To facilitate our NLP approach, we selected 470 study pro-
tocols from Covance’s in-house protocol database. And our
protocol corpus comprises eligibility criteria sections from
these selected study protocols. An eligibility criteria section
typically contain 5 - 20 sentences that define the criteria to
select and recruit patients for the clinical study. Our data
contain a total of 30,183 criteria sentences.

Data Annotation. We have the eligibility criteria anno-
tated using the IOB format (Ramshaw and Marcus 1999).
The corpus is annotated by well-trained biomedical domain
experts as the gold standard for training and testing. They
manually annotate the key clinical entities and their pairwise
relations if there exist any. We focus on 15 types of entities
and 7 types of relations that help clinically define a patient
cohort:

Entities: Condition, Observation, Procedure, Device,
Drug, Investigational product, Event, Refractory condition,
Demographics, Measurement, Temporal constraints, Quali-
fier/modifier, Anatomic location, Negation cue, Permission
cue

Syntactic relations: Has value, Has temporal constraint,
Modified by, Located in, Is negated, Is permitted, Specified
by

Data Split. For the NER task, we randomly split the
30,183 sentences into training (60%, 18,109 sentences) and
test (40%, 12,074 sentences) sets. For the RE task, before
splitting the data for training and testing, we first check
whether a sentence contains multiple relations and if so,
we duplicate the sentence for each pair of related entities
and make their relation type as the label for classification.
This results in 52,470 relation sample sentences, based on
which we perform a random split with stratification on re-
lation classes to derive training (60%, 31,482 relation sam-
ples) and test sets (40%, 20,988 relation samples). Tables 1
and 2 show data statistics for the NER and RE tasks.

NER Task
As previously mentioned, we use NER algorithms to extract
clinically relevant entities in eligibility criteria section and
particularly choose BERT, a pre-trained transformer type of
deep learning model, because of its reported superior per-
formance in many NLP tasks. Due to the attention trans-
former in BERT, it is able to provide dynamic context em-
bedding for tokens, which helps addressing the polysemy
issue. BERT is a language model pre-trained on a large gen-
eral domain corpus and can be applied towards downstream

Table 1: Train and test data counts for the NER task.
Entity Train Test
Condition 12,682 8,537
Observation 7,309 5,218
Procedure 3,406 2,234
Device 221 140
Drug 7,793 5,858
Investigational product 329 224
Event 2,430 1,625
Refractory condition 381 278
Demographics 498 381
Measurement 4,540 3,344
Temporal constraints 6,968 4,589
Qualifier/modifier 7,853 5,196
Anatomic location 427 223
Negation cue 921 615
Permission cue 1,236 869

Table 2: Train and test data counts for the RE task.
Relation Train Test
is negated 703 468
is permitted 1,009 673
modified by 5,715 3,810
has value 3,326 2,218
has temporal constraint 6,169 4,112
is located 215 143
specified by 3,729 2,486
no relation 10,616 7,078
total count 31,482 20,988

tasks by adding simply structured task layers and fine tun-
ing on task-specific data set. We hereby follow the fine tun-
ing practice based on pre-trained models to derive our NER
model (Devlin et al. 2018; Lee et al. 2019). We explore sev-
eral options with regard to choice of pre-trained models and
task layers.

NER task layers. The original BERT paper indicates that
when use for NER tasks, the pre-trained BERT model can
be simply followed by a softmax layer where each token is
classified to their most likely entity class without adding any
CRF layer(Devlin et al. 2018). However, our experiments
suggest that this approach sometimes fails to recognize con-
tiguous phrases as whole entities. To address this issue, we
further experiment the architecture with BiLSTM+CRF lay-
ers as the NER task layer for its potentially better ability in
capturing bi-diretional context as well as tagging likelihood
at the sentence level (as opposed to token level).

Cased or uncased. The BERT model provided by Google
includes versions with and without lowercasing preprocess-
ing on the tokens. We experiment with both the cased (not
applying lowercasing) and uncased (applying lowercasing)
options. Consequently, the two options use different set of
subword vocabularies, with cased model of 28,996 subwords
and uncased model of 30,522 subwords.

Pre-trained models. We use BERT-base, a smaller ver-



Figure 2: Neural architecture of the BERT NER task (with
Softmax as the task layer).

sion of BERT that comprises 110 millions of parameters,
in our first set of experiments. BERT also has a larger ver-
sion, BERT-large, with 340 millions parameters. We opt to
use BERT-base for exploration purposes. In our second set
of experiments, we test the BioBERT model that is retrained
using large-scale biomedical texts on the basis of the orig-
inal BERT model. BioBERT has only a cased version and
shares the same vocabulary as BERT-base cased (with size
of 28,996).

Hyperparameters. For both BERT-base and BioBERT
models, we set num of epochs=20, learning rate=2 ∗ 10−5,
training batch size=32, max sequence length=32. For cases
when using BiLSTM+CRF as task layers, we set bil-
stm layer size=128.

The above model options result in 6 NER models:

• BERTbase,uncased, Softmax: BERT base uncased pre-
trained model, softmax as NER task layer

• BERTbase,cased, Softmax: BERT base cased pre-
trained model, softmax as NER task layer

• BioBERT, Softmax: BioBERT pre-trained model
(cased), softmax as NER task layer

• BERTbase,uncased, BiLSTM + CRF : BERT pre-
trained uncased model, BiLSTM+CRF as NER task layer

• BERTbase,cased, BiLSTM + CRF : BERT base pre-
trained cased model, BiLSTM+CRF as NER task layer

• BioBERT, BiLSTM + CRF : BioBERT pre-trained
model (cased), BiLSTM+CRF as NER task layer

The layout of the BERT NER neural architecture is shown
in Figure 2.

Figure 3: Neural architecture of the BERT RE task (with
Softmax as the task layer).

RE Task
The RE task is also treated as a downstream task to the pre-
trained models. The original BERT paper did not include RE
task as one of their downstream tasks, whereas the BioBERT
study investigated it due to its importance in the biomedical
NLP domain(Lee et al. 2019). BioBERT handles relation ex-
traction as a classification task on the sentence or sequence
level. In particular, it assumes that each sentence contains at
most one relation and classifies whether a whole sentence,
instead of a particular pair of entities, contains a relation
of interest, e.g. Gene-disease relation. This approach is not
directly applicable to our data for 2 reasons: 1) our data
contain multiple types of relations, and 2) in our data set,
one sentence often contains multiple relations (52,470 rela-
tions/30,183 sentences = 1.7 relations/sentence on average).

We employ the following strategy for the RE task: In
training, we first scan through each sentence for entities us-
ing human annotations, and record the token positions of
each entities; if a sentence contains n (n > 1) pairs of enti-
ties with human annotated relation, we duplicate this sen-
tence n times so that each instance target represents one
pair of entities and their relation; In prediction, we use NER
pipeline results to locate entities, enumerate all legitimate
entity pairs, and duplicate sentences accordingly. Since we
record the token positions of each entity pair, we can get
BERT output vectors for them based on their position in-
formation, concatenate the two vectors and then feed it to a
softmax layer to classify their relation. The result can be one
of the 7 relations listed in Table 2 or ‘no relation’.

More specifically, the input fed to the BERT RE model
is sentence text along with positions of entity pairs. We do
not make use of entity type information for the following
reasons: 1) this end-to-end (i.e. tokens-to-relation) practice



makes the RE model more useful as a standalone tool that
does not require entity type; 2) when in prediction mode,
the errors in entity prediction could propagate to the RE task,
which we mitigate by including only the entity position in-
formation. Figure 3 shows the neural architecture of our RE
task.

For training purposes, we randomly generate negative
samples for the ‘no relation’ class as two entities can have
no relations with each other. We use two ways to obtain neg-
ative samples: one way is to randomly choose two unrelated
entities in a sentence, the other is to break an existing related
entity pair and establish a non-related pair between one of
the entities in the original pair and another unrelated entity
in the sentence.

Similar to the NER task, we experiment with 3 pre-trained
models with softmax as the task layer for all of them:

• BERTbase,uncased: BERT base pre-trained model, un-
cased

• BERTbase,cased: BERT base pre-trained model, cased
• BioBERT : BioBERT pre-trained model (cased)

Following hyperparameter configuration is used:
num of epochs=20, learning rate=2 ∗ 10−5, train-
ing batch size=32, max sequence length=32.

Results and Analysis
We implement the NER and RE tasks using Tensorflow
based on the BERT neural architecture and run experiments
on an AWS p2.xlarge GPU instance.

NER Results
We follow the practice in the SemEval-2013’s Drug-Drug
Interactions task and evaluate NER performance by 3 match-
ing standards: strict, exact, and partial (Segura-Bedmar,
Martı́nez, and Herrero-Zazo 2013). The strict matching eval-
uates both boundary and entity type of entity phrases; the
exact matching evaluates the exact boundary regardless of
entity type; and the partial matching measures the partial
boundary of entities regardless of entity type (thus the most
lenient). We calculate precision(P)/recall(R)/f1-score(F) for
the three evaluation types, and additionally, we also report
macro average P/R/F results. The results are shown in Table
3.

In our experiments, fine-tuning the pre-trained BioBERT
model achieves slightly better performance than its BERT
counterparts. For example, BioBERT, Softmax has f1-
score of 70.61, better than BERTbase,uncased, Softmax’s
69.80 and BERTbase,cased, Softmax’s 69.68. Simi-
larly, BioBERT,BiLSTM + CRF holds a higher f1-
score than BERTbase,uncased, BiLSTM + CRF and
BERTbase,cased, BiLSTM + CRF for all the four eval-
uation types.

When comparing the cased and uncased strategies, we
notice that the uncased pre-trained models outperform
the cased ones with the same neural architecture: e.g.
BERTbase,uncased, BiLSTM + CRF achieves f1-score
of 70.28 for the strict evaluation type, higher than the f1-
score of 69.89 from BERTbase,cased, BiLSTM + CRF .

Table 3: NER task results: Precision(P), Recall(R), F1
Score(F).

NER Model Type P R F

BERTbase,uncased,
Softmax

strict 67.76 71.98 69.80
exact 71.02 75.44 73.16
partial 75.28 79.96 77.55
macro 62.65 66.83 64.63

BERTbase,cased,
Softmax

strict 67.82 71.66 69.68
exact 71.19 75.22 73.15
partial 75.41 79.68 77.49
macro 63.04 66.37 64.63

BioBERT,
Softmax

strict 68.73 72.60 70.61
exact 71.87 75.91 73.83
partial 75.99 80.26 78.06
macro 62.97 67.27 65.03

BERTbase,uncased,
BiLSTM + CRF

strict 68.59 72.06 70.28
exact 71.85 75.49 73.62
partial 76.10 79.95 77.98
macro 63.43 66.45 64.88

BERTbase,cased,
BiLSTM + CRF

strict 68.09 71.80 69.89
exact 71.34 75.22 73.23
partial 75.55 79.67 77.56
macro 62.68 66.41 64.45

BioBERT,
BiLSTM + CRF

strict 69.12 72.47 70.76
exact 72.35 75.85 74.06
partial 76.55 80.25 78.36
macro 63.79 67.44 65.54

This finding suggests that applying lowercase to prepro-
cessing actually enhances performance slightly, which is
counter-intuitive for NER tasks as the entities are often case-
sensitive. Meanwhile, we also find that the two BioBERT
models, which are cased, perform better than their peer mod-
els of the same neural architecture. But since BioBERT only
offers the cased option, we cannot discern the relative contri-
bution from being cased in the BioBERT pre-trained model.

From Table 3, it is not surprising that for a given model,
the partial evaluation usually holds the highest score, fol-
lowed by exact, strict, and macro. Another observation is
that when we loosen evaluation type from strict to exact, i.e.
focusing on entity boundary without penalizing entity type
errors, the performance is improved but still remains in the
73.15-74.06 range, suggesting that the experimented BERT
based models fail identify entity boundary very precisely,
which can be of interest for future investigation.

In our experiments with simple Softmax as the task layer,
we observe more boundary detection errors. This in fact
is the motivation for us to add the BiLSTM+CRF lay-
ers as the NER task layer. However, the results show that
given the same pre-trained model configuration, it is de-
batable that BiLSTM+CRF could consistently improve per-
formance. For example, BioBERT,BiLSTM + CRF
slightly outperforms BioBERT, Softmax in strict match-
ing precision and f1-score, but BioBERT, Softmax beats
BioBERT,BiLSTM + CRF in strict matching recall.

We also find that the recall score is consistently higher
than the precision score for all models at all evaluation stan-



dards, indicating that the models tend to have more false pos-
itive predictions than false negative predictions. The macro
scores show lower performance than strict/exact/partial be-
cause it simply averages the performance of different entity
types and some small-sample entity types have lower perfor-
mance due to lack of training data.

Overall, BioBERT,BiLSTM + CRF produces the
best precision and f1-scores for all the four evaluation types
whereas BioBERT, Softmax holds the highest recalls.
These results suggest that fine-tuning BioBERT lends itself
better to the NER tasks in the clinical trial domain, which
seems intuitive. But for task layer, the choice between Soft-
max and BiLSTM+CRF does not significantly affect the per-
formance.

RE Results
RE evaluation results are shown in Table 4, in which we re-
port micro/macro/weighted precision(P), recall(R), and f1-
score(F).

Table 4: RE task results: Precision(P), Recall(R), F1
Score(F).

RE Model Type P R F

BERTbase,uncased

micro 78.10 79.49 78.79
macro 76.43 76.22 76.24
weighted 78.03 79.49 78.72

BERTbase,cased

micro 73.61 75.33 74.46
macro 69.56 68.63 68.80
weighted 73.41 75.33 74.27

BioBERT
micro 74.37 74.83 74.60
macro 70.30 68.34 69.08
weighted 74.17 74.83 74.44

From the above performance chart, we find
that BERTbase,uncased has the highest f1-scores,
whereas BERTbase,cased has the lowest. Comparing
BERTbase,cased and BioBERT indicates that BioBERT
can help with performance slightly, at least for this cased
scenario. On the other hand, BERTbase,uncased noticeably
improves over its cased peer, BERTbase,cased, by a 4.33
percentage margin. Therefore, just like the NER task, the
RE task is also case insensitive, probably because uncased
situations reduce vocabulary variations in processing. We
also observe that recall and precision are close to each other
with precision slightly higher for the macro evaluation, but
on the contrary, precision is slightly higher than recall for
micro and weighted. These observations suggest that the
model has higher precision score than recall score in classes
with less samples, such as ‘is located’ and ‘is negated’
(in Table 1). And when doing macro evaluation, the
contribution from the smaller classes becomes more visible.

Overall, the BERTbase,uncased model prevails - it out-
performs the other two models on each evaluation type and
measures. For example, it has f1-score of 78.79 for mi-
cro, compared to BERTbase,cased’s 74.46 and BioBERT ’s
74.60. These results indicate again that the lowercasing pre-
processing helps the NLP tasks even in the clinical trial

domain where many terms are represented in capital let-
ters. Secondly, BioBERT beating BERTbase,cased with a
small margin may suggest that although pre-training in the
biomedical domain could bring in some benefit, it is still not
specific enough for clinical trials. Since there is no uncased
BioBERT pre-trained model available, it is unclear whether
training on biomedical corpus with lowercasing preprocess-
ing could synergistically improve the performance. Con-
sidering the big improvement from BERTbase,cased to
BERTbase,uncased, we believe the uncased scenario of cur-
rent BioBERT model is worth future investigation.

Error Analysis
We present and inspect NER prediction results from one of
the models (BERTbase,uncased, Softmax) in a Brat server,
an open source tool that can help visualize annotation results
using color bars (Stenetorp et al. 2012). We overlay human
and prediction annotations together in Brat to facilitate the
comparison.

The NER errors can be broadly categorized into bound-
ary errors and entity type errors, as reflected by the four
evaluation types. For boundary errors, one pattern is that
BERT tends to mis-annotate some words inside a multi-word
phrase. For example, as shown in Figure 4, “at least a 3
month” is one temporal constraint entity, but the NER model
only captures “at”+“3 month” while misses the words in the
middle (“least a”). This reflects a potential problem with
BERT NER models: although it can assign entity classes
relatively well, lack of structure enforcement on its output
layer may possibly cause the inconsistent label within a full
phrase.

Figure 4: An example of the NER engine mis-annotating to-
kens within a phrase.

In some cases, the NER model captures longer enti-
ties than the human annotator. For example, the model
annotates “[cardiac mechanical assist device]|Device”;
whereas the gold standard annotates the same phrase as
“[cardiac]|AnatomicLocation” + “[mechanical assist de-
vice]|Device”. In some other cases, the situation reverses
and the NER model chunks one entity in the gold stan-
dard into multiple ones. For example, “[non-steroidal
anti-inflammatory drugs]|Drug” is chunked into a Quali-
fier/Modifier and a drug: “[non-steroidal]|Qualifier/Modifier
[anti-inflammatory drugs]|Drug”. The boundary merging
and chunking issues, as illustrated by these two examples,
occur frequently with the Qualifier/Modifier class as it is ar-
guable that a complex term can be annotated by one whole
entity or as a Qualifier/Modifier plus an entity.

For the entity type error, we observe a few cases, such
as “urinalysis—Procedure type” is predicted as an Observa-
tion entity, and “gastrointestinal motility—Condition type”



is predicted as Drug. The type errors occur less frequently
than boundary errors according to our manual inspection.

For the RE task, we manually screen the predictions from
the BERTbase,uncased, Softmax model against the gold
standards. We first observe that the NER boundary errors
can propagate to the RE task. Note that we only use named
entity positions but not types in the RE task, and there-
fore only NER boundary errors can affect the RE perfor-
mance. For example, “Transient neurologic deficits”, an-
notated as one Condition entity in the gold standard, is
split into “Transient—Qualifier/Modifier” and “neurologic
deficits—Condition”, thus causing the RE task to predict a
‘modified by’ relation between the two entities which actu-
ally does not exist in the gold standard. Another major cat-
egory of RE classification error is that a number of actual
relations misclassified as ’no relation’, while misclassifica-
tion between other classes is much less frequent.

Conclusion and Future Work
In this study, we focus on extracting clinically relevant terms
and relations from protocol eligibility criteria by applying
pre-trained transformer deep learning NLP models for NER
and RE tasks. We experiment with several configurations of
the pre-trained BERT models and report our results and find-
ings.

Our results demonstrated the effectiveness of NLP mod-
els in processing clinical trial protocols. Despite of the fact
that the processed texts are unique with specific clinical and
medical terms and logical relations, BERT and BioBERT
models returned acceptable performances. We also find that
in general, BioBERT, which is pre-trained on biomedical
corpus, outperforms BERT, which is pre-trained on general
domain corpus. This agrees with the general understanding
of the importance of domain-specific training for achieving
higher model performance in domain-specific tasks.

A surprising finding is that even though the clinical trial
domain largely contains capitalized terminologies, lower-
casing preprocessing improves the performances of both
NER and RE tasks. Our hypothesis is that maintaining less
token variation (i.e. lowercasing has less variation) is more
important than maintaining casing for these tasks.

It is also worth noting that there are rooms to improve
the quality of our gold standard. Due to the complex nature
of the protocols that cover many different sub-domains in
biomedical and clinical sciences such as therapeutic areas,
even human experts can easily make mistakes or be inconsis-
tent. In fact, we found many cases that the model predictions
are in fact correct, although different from the gold standard.
To address this annotation quality issue, we employed an it-
erative annotating pipeline that asks human experts to verify
the pre-annotated documents by the NLP models. We antic-
ipat that this practice can help partly address this issue.

We believe that the model performance can be fur-
ther improved. To do that, we can further explore in sev-
eral directions. The first approach is to train a biomed-
ical BERT model using a domain-specific vocabulary
from scratch. BERT model handles tokens by splitting
them into subwords using a predefined subword vocab-
ulary. For example, ’myocarditis’ and ’pericarditis’, two

heart conditions sharing the same suffix ’carditis’, are
however represented as ’my’+’##oca’+’##rdi’+’##tis’ and
’per’+’##ica’+’##rdi’+’##tis’ respectively. This way of to-
kenization does not represent the suffix in a biomedically
meaningful way due to the lack of biomedical subwords in
the vocabulary. We assume subwords generated from the
biomedical domain reflecting word root patterns can fur-
ther enhance the word representation for BERT models and
thus improve downstream task performance. We can train a
BERT model from scratch using a biomedical corpus and a
biomedical subword vocabulary.

The second strategy is to deploy multi-task co-training:
since NER and RE tasks are dependent on each other,
namely, knowing one task’s output can facilitate the other
task’s, and therefore joint learning on them is expected to
improve performances for both.

Our third strategy for future improvement is to reduce un-
necessary relations currently predicted from the RE model.
Our current greedy prediction pipeline enumerates all pos-
sible entity pairs that results in an unnecessarily large test-
ing base set. One way to address this issue is to consider
dependency parsing information, which can be used to in-
dicate whether two terms has dependency relations to prune
unnecessary entity pairs.

The extracted information from the NER and RE tasks
has the great potential of assisting drug development busi-
ness especially for study feasibility analysis. The derived in-
formation is the basis for a local knowledge graph for the
protocols and a global graph when merging with external
structured information such as drug ontologies. In conclu-
sion, this is our first step towards a greater mission to apply
deep learning to business cases in drug development, and
the subsequent analysis based on the derived graph can even
further enhance our contribution and insights to this research
area.
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