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Abstract

Network embeddings are a popular new method for encapsu-
lating the complexity of networks in a reduced feature space.
However, embeddings obfuscates the complexity of networks
and make explainability of such models difficult. We propose
Vec2Struc, a new method aimed at providing more explain-
able representations of network models. This approach exam-
ines nodes similar to one another in the generated embedding
space and highlights common structures among them. This
method provides a means to explore embeddings distribution-
ally and visually, leading towards more transparent and inter-
pretable AI systems utilizing state-of-the-art structural-based
node embeddings.

Introduction
Networks have long been used in analysing complex sys-
tems with entity-to-entity relationships. For example, biolo-
gists have used networks to represent Protein-to-Protein in-
teractions whereas social scientist’s usage has been in under-
standing of friendship or community relationships (Goyal
and Ferrara 2018). A growing consensus on the lack of com-
mon metrics and modeling of networks has led to a more
representative approach in building condensed vectorized
representations of network properties.

Network (or Node) embeddings are an approach that pro-
vide scalable learning within networks. Typically, networks
are very rich in information and the size of them explored by
researchers has increased into the billions of nodes. Through
embeddings, a reduced feature space can be created to en-
capsulate both network and node information. With this re-
duced space comes more scalable and generalizable methods
without needing to reduce the amount of information being
stored in the network (Goyal and Ferrara 2018).

There are many variants to embedding approaches (Goyal
and Ferrara 2018; Ribeiro, Saverese, and Figueiredo 2017),
but there remains to be a method for assessing what these
embeddings represent as they are an ambiguation of the orig-
inal network, thus leaving the question how can researchers
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determine the real-world representation of the node asso-
ciations in such an ambiguous space? There is a need to
map the embedding space to real-world representations if
we are to better understand models that rely on network em-
beddings.

This short paper proposes Vec2Struc, an algorithmic ap-
proach for discovering common structures or topologies be-
tween nodes in an embedded space. While this is not a uni-
versal approach for network embeddings (more on that be-
low), this provides a first step toward interpreting network
embeddings, paving the way for such state-of-the-art tech-
niques to be more usable within AI systems that are depen-
dent on explainability.

Network/Node Embeddings
Network embeddings are formally defined from (Goyal and
Ferrara 2018):

Given a network G = (V,E), a network embedding is a
mapping f : vi → yi ∈ Rd;∀i ∈ [n] such that d � |V | and
the function f preserves some proximity measure defined on
network G

Embeddings have been oriented to two different vector-
ized representations. 1) a representation of a network as a
whole (referred to as network or graph embedding) and 2) a
representation of node properties within a network (referred
to as node embeddings). This work focuses on the node level
representation and hence forth in this paper when referring
to network embeddings this is the prospective taken.

(Goyal and Ferrara 2018) categorize embedding methods
into taxonomy of three categories: Factorization, Random
Walk, and Deep Learning. But these methods miss the im-
portance of the local structures surrounding nodes. Under-
standing local structure properties is vital for analyzing com-
plex networks as they showcase higher level properties be-
yond the one-to-one interactions commonly examined.

Additional methods have been implemented in which
the structural identity of a node’s neighbor is considered
(Ribeiro, Saverese, and Figueiredo 2017). Struc2Vec, pro-
posed by (Ribeiro, Saverese, and Figueiredo 2017), con-
structs a structural context for nodes through a multi-layer
network which encodes structural similarities within the
embeddings. Previous network embedding methods tend to
encapsulate information around node distances, however
Struc2Vec is noted to be distance agnostic and can embed



structural information between nodes very far apart in the
network (Ribeiro, Saverese, and Figueiredo 2017). While
other types of structural based embeddings exist (Goyal and
Ferrara 2018), this work utilizes Struc2Vec embeddings.

Need for Explainable AI
The need for such complex methods to be explainable is ar-
gued by (Weld and Bansal 2019) that most computer-based
produced behavior is actually alien to humans and can fail in
many unexpected ways. People can’t trust nor control com-
plex systems that lack the ability to verify why they pro-
duced a specific output. The authors propose multiple crite-
rion for which an AI system to reach such an ability:

1. It is clear what factors caused the system’s action, allow-
ing users to predict how changes to the situation would
have led to alternative behaviors

2. Permits effective control of the AI by enabling interaction

To approach such a system, they propose the need to en-
sure that the underlying reasoning is interpretable (Weld and
Bansal 2019).

Vec2Struc fulfills the first criterion proposed by (Weld and
Bansal 2019) through visual representations of the network
topologies. This allows for high-level heuristic evaluation
of the embedded space, highlighting the factors for which
nodes are associated in structural-based embeddings.

Method
The summary of Vec2Struc is as follows: with an embedding
representation generated, the nodes similar to each other
need to be gathered. As a pair-wise comparison is exhaustive
and computationally heavy, a filter is needed to find which
pairs are best to compare neighborhoods. Then with these
pairs, find if any common structure exists between them and
measure the frequency of such structures to associate them
with each embedding. The procedure of Vec2Struc is shown
in Fig. 1 and is conducted in four stages.

1. Node Embedding Generation
Embeddings are generated using an approach oriented to-
ward representing the structural information of a node’s
neighborhood. While any structural based embedding
should work theoretically, we only tested this with
Struc2Vec (Ribeiro, Saverese, and Figueiredo 2017).

2. Cluster Modeling on Embedded Space +
Pair-wise Filtering
Once embeddings are generated, a similarity heuristic is
used to find those pairs worth comparing. This can be done
through clustering nodes using the embeddings. A Gaussian
Mixture model was used in our experiment with the number
of clusters chosen through minimizing the Bayesian Infor-
mation Criterion of the number of clusters. Thus nodes have
been binned into groups for which pair-wise comparison can
be made more efficiently.

However, even with the clusters there is still a potential for
the pair-wise search space to be too large. We conducted fur-
ther filtering through only examining pairs of nodes within

Figure 1: Vec2Struc Procedure.

a cluster that are above a similarity threshold. Using cosine
similarity, we found pairs of nodes that are above a similarity
of 0.9, providing a reduced search space of node pairs.

3. Ego Structure Extraction of Similar Pairs in
Clusters
Next, using the pairs of nodes that are most similar in their
clusters, pair-wise comparisons were conducted on their lo-
cal neighbor networks. The problem of examining two sep-
arate networks and finding common structures has been de-
fined as the Maximum Common Edge Subgraph problem
and has been found to be an NP-Hard problem (Bahiense et
al. 2012). Hence the need for a reduced space as algorithmic
complexity of this problem makes the runtime of current so-
lutions potentially intractable given a large enough network.
To further assist with this performance issue, we only exam-
ine 2-hop ego networks centered on nodes of interest before
conducting the maximum common subgraph search.

Maximum Common Subgraphs To tackle finding com-
mon subgraphs, we incorporated the algorithm SailMCS
provided by (Larsen et al. 2016). This a heuristic algorithm
using a combination of iterative local search and a perturba-
tion strategy. This algorithm is parallelized and handled the
ego-network sizes we found efficiently enough to make this



Cluster 1 Tot. Structs 979
Struc ID Freq. Total %

Fan + Tri 84 8.58%
Fan 45 4.59%
Single Match 24 2.45%
Path 15 1.53%
Fan + Path 3 0.30%
No Match 808 82.53%

Table 1: Distribution of found structures within Cluster 1.

Cluster 2 Tot. Structs 1026
Struc ID Freq. Total %

Fan 126 12.28%
Node bt. Fan 49 4.77%
Single Match 44 4.28%
Fan + Path 24 2.34%
Fan + Tri 19 1.85%
Path 19 1.85%
Fan + Path + Tri 4 0.38%
No Match 741 72.22%

Table 2: Distribution of found structures within Cluster 2.

method tractable. Examples of common subgraphs found
can be seen within Fig. 2.

4. Frequency Distribution of Structures per Cluster
With the extracted substructures found, we bring this in-
formation back to the cluster level by examining the dis-
tribution of structures across clusters. Through equivalence
checks between each common subgraph (using a graph iso-
morphism algorithm (Cordella et al. 2001)), we count how
often they occur in each cluster. This distributional represen-
tation is used to describe the clusters visually through find-
ing the boundaries of the clusters in the embedded space.

To test this method, we implemented it on a network built
from a network simulator on financial transactions called
AMLSim by (Weber et al. 2018). AMLSim works well for
a testing environment as we were able to specify network
size and density as well as incorporate specific substructures
within the network. We built a network of ∼10,000 nodes
with an average degree of 23.25.

Results
Using the AMLSim built network, we found 4 clusters us-
ing Struct2Vec embeddings as an input to a Gaussian Mix-
ture Model. Examining the two dominant clusters (Cluster
1 contains 53% of nodes and Cluster 2 contains 38% of
nodes), we explored a subset of structures within each clus-
ter. We examined around 1000 structures for each cluster, as
the number of possible pair-wise comparisons in each clus-
ter, even after filtering, was high (25 million possible pair-
wise comparison were possible within Cluster 1). While ex-
amining these, many can be considered similar but still vary
in the number of nodes and edges, which would cause the

strict isomorphic checks within step 3 to fail as the exact
number of nodes and edges is needed for these checks to re-
turn true. This was a good indication that isomorphic meth-
ods are too strict.

To showcase similar structures, we manually examined
the commonly found structures and categorized them. Tables
1 and 2 show the frequency in which each category of struc-
ture was found. The primary category found was what we
refer to as a Fan (shown within Fig. 2a), which is a central
node acting as the only connection between the surround-
ing neighborhood. Iterations of the Fan structure was seen
in many other types, Fan+Triangle (shown in Fig. 2b) has
the inclusion of a triangle clique between two nodes and the
central node. The number of triangles present were domi-
nantly one, but some structures were found to have up to 3.

The next primary structure was a node acting as a bridge
between two Fans, referred to as Node Between Fan (shown
in 2c). These highlight a more complex structure as a bridge
node is the primary connection between two neighborhoods.
Lastly, we found a fair amount of path structures which were
only a continuous sequence of nodes with those in the mid-
dle of the path having exactly 2 edges. Fans were found to
have paths extending outside of the central node, which are
classified separately from the Fans shown in Fig. 2a.

The most common structures overall tended to have a Fan
structure, which isn’t surprising given that this is a com-
mon pattern made from random connections within AML-
Sim (Weber et al. 2018). Cluster 1 has a higher frequency
of Fans with a Triangle, indicating more nuanced relation-
ships. As Cluster 2’s second most frequent structure was a
node acting as a bridge between two fans (shown within Fig.
2c) which wasn’t present within Cluster 1, indicating nodes
in Cluster 2 may be acting as neighbor connectors.

While unique structures were found across each cluster,
many of the them were unable to find a match (82.53%
within Cluster 1 and 72.22% within Cluster 2). However,
after conducting a visual inspection, many of the structures
matched similar high level categorization as the categories
already reported within each Cluster. Due to the high amount
of no matches we were unable to categorize them into the
found types. This further indicates a need for a less strict
checks on isomorphism and allow for more higher level sim-
ilarity measures of substructures to automate this process.

There were structural types found within the no match cat-
egory that were too complex and unique to match any other.
Fig. 3 shows an interesting structure as it shows a higher
connected pair of Fans as there exist multiple bridges in-
stead of the more common one bridge within Fig 2c. Again
highlighting the need for better similarity measures.

Discussion
This work presents Vec2Struc, a new method pushing
more interpretable representations of state-of-the-art net-
work models. As embeddings have continued to highlight
their potential for graphical representations in a more com-
pact space (Goyal and Ferrara 2018), this method provides
a step forward in being able to explain the associations of
nodes. This is through addressing the first criterion men-
tioned by (Weld and Bansal 2019) by bringing forward the



(a) Fan Structures commonly found across
both clusters.

(b) Fan + Triangle structures more often found
within cluster 1.

(c) Node between Fan structures commonly
found within cluster 2.

Figure 2: Examples of commonly found structures across the dominant two clusters.

Figure 3: Structures within Cluster 2 containing multiple
bridges.

structural factors influencing decisions made using embed-
dings with visualizations of such structures. Visualizations
have been a common representation of other prediction ex-
planations (Ribeiro, Singh, and Guestrin 2016) as well as
a common representation of networks. Applications of this
work can be within the areas mentioned above in the Intro-
duction of discovering new Protein-to-Protein interactions
as well as social network structures, but directly this can
be applied along with AMLSim to be used in financial net-
works for the discovery of new criminal financial activities
in money laundering (Weber et al. 2018).

While this work showcases a test case of this method, it
still contains many limits in its ability. First being the com-
putational complexity of the algorithm and the main bot-
tleneck being the Maximum Common Subgraph discovery
procedure, which is an NP-Hard problem (Bahiense et al.
2012). To work around this, filter techniques were used to
only examine the most common pairs, hence the typically
assumptions of clustering apply (Clusters within the embed-
ded space are not guaranteed to be separable and goodness
of fit measures are needed to audit the cluster model’s per-
formance), as well as the thresholds of our similarity check
need to be further examined within each space as to what
threshold is appropriate. Another issue lies within our ex-
periment, as we needed to conduct further sampling (1000
common subgraphs found per cluster) to allow for a reason-
able runtime of SailMCS.

Future work could expand on this experiment through
exploring higher frequency of specific structures of inter-
est, as well as explore other network types as this is un-
clear of its performance given global network properties,

(i.e how does density of the network affect runtime?). Real-
world networks need to be explored, as the most common
type of structure found (Fan shown in Fig. 2a) is easily
produced from random edge generation. Lastly, additional
work is needed in understanding the dynamics of embed-
dings through these visualizations to reach the second crite-
rion proposed by (Weld and Bansal 2019).
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