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Abstract

In this short paper, a machine-learning algorithm is applied
to improve SAS (Small Angle Scattering) experimental anal-
ysis, which is commonly used in material science. In a SAS
experiment, a particle beam incidenting to a material sample
is scattered through the material sample. The distribution of
the scattered beam indicates information about the grain-size
distribution of the sample material; however, this distribution
needs to be inversely estimated. Therefore, a stochastic model
of the SAS experiment and EM (Expectation-Maximization)-
algorithm to estimate the grain-size distribution in the ma-
terial sample are proposed. While existing methods require
much manual effort, the proposed EM-algorithm works au-
tomatically. Six simulation-generated datasets and two actual
observed datasets were processed with the proposed method
for examination. The result show that the proposed EM-based
grain-size distribution estimation method is useful for auto-
matically analyzing SAS data.

Introduction
Materials Informatics (MI) is an information technology in-
tended for making material development faster that has been
researched eagerly in recent years(National Institute of Stan-
dards and Technology 2019). MI will help material science
researchers to discover new knowledge.

One such MI function is a data mining technique to find
very small features of experimental data automatically. Tra-
ditionally, material science researchers carefully inspect ex-
perimental data to find small features because they might in-
dicate new knowledge. The researchers however might take
a long time to find such features or miss them. Therefore,
automatic knowledge extraction from experimental data is
attracting attention of the researchers.

This study focuses on small-angle scattering (SAS) ex-
periments (Higgins and Benoı̂t 1994) (Asahara et al. 2019),
which are commonly conducted for observing microstruc-
tures of materials. There are various similar scattering ex-
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Figure 1: SAS Experiment

periments such as neutron-scattering, x-ray scattering, ion-
beam scattering, etc. Their difference lies just in the particles
to be scattered. The solution for the problem in SAS can be
expected to be applied for these experiments also. Thus, the
problem is crucial enough to need to be solved.

One of the SAS-experimental objectives is to esti-
mate microscale-grain-size distributions in material sam-
ples. Neutrons detected on a plane during a SAS experiment
make a pattern on the plane (called SAS pattern). Material
science researchers with special knowledges observe SAS
patterns carefully to find grain-size information about the
microstructure of the sample material.

Accordingly, a method to automatically estimate grain-
size distributions with SAS pattern data is presented in this
paper. Several existing estimation methods are based on
function optimization to fit the grain-size distribution to the
SAS pattern, which requires much effort by maerial science
researchers to adjust parameters. In contrast, our automatic
estimation method is free from such effort because of prob-
abilistic modeling of SAS experimental processes (that is,
knowledges of the experimental settings). A maximum like-
lihood approach based on the stochastic modeling can be
taken to estimate grain-size distribution without heuristic as-
sumptions. In this paper, an expectation-maximization (EM)
algorithm applicable to the estimation is shown and exam-
ined with simulation data and actual measurement data.

Problem settings
Small angle scattering
An experimental instrument setting of SAS is illustrated in
Figure 1. In the experiment, a particle beam incident upon
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Figure 2: SAS pattern analysis with graphs

the sample interacts with the microstructures therein. The di-
rections of the particles thus change due to the interactions.
The angle θ between a straight beam and the changed direc-
tion of the scattered beam depends on the interaction. Finally
detectors arranged on a plane detect the scattered beam. The
counts of detection events form a pattern, called SAS pat-
tern, on the plane. Thus, such microstructure causing the di-
rection changes is called a ”scattering body.”

The particle behavior during the scattering experiment is
modeled with a differential equation called the Schödinger
equation. The solution of the Schödinger equation is a com-
plex function called a wave function, of which the squared
absolute value corresponds to the probability of detection.
Because the distance L between the sample and the plane is
large enough, the coordinate values on the plane x = (x, y)
are approximately in proportion to |x| = L sin θ ' Lθ. The
probability density function (PDF) P (x) of detection corre-
sponds to the probability P (θ) that particle goes in the di-
rection of θ, which is related to the microscopic structures
called grains.

As the simplest setting, imagine a case in which the grains
are balls. Intensity I(r, q) of SAS pattern scattered by balls
of radius r is in proportion to the following I(r, q)

I(r, q) ∝ I(r, q) = 1

r3

(
sin qr

q3
− r cos qr

q2

)2

. (1)

The q in the formula indicates a quantity called ”wave num-
ber,” which is the frequency of the wave function multiplied
by 2π. The frequency of the wave function is three dimen-
sional because it is derived with the Fourier transformation
of the wave function in three dimensional space. The scatter-
ing angle θ depends on the frequency, so the size of q = q
along the vertical vector to incident beam (”q = (qx, qy)”
in Fig 1) appears in the formula. Therefore a q indicates a
location x on the detection plane, derived from distance be-
tween the incident beam center and the location. That is, we
can obtain actual SAS intensity corresponding into I(r, q)
by converting x to q.

This formula is feasible in the case of a uniform grain size
r. However actual grain sizes vary. The SAS pattern by mul-
tiple grain sizes is the weighted sum of I(r, q) over r and the
weight is the grain-size distribution of the material, because

the solutions of the Schödinger equation can be added to-
gether, accordingly scattering pattern S(q) with a scattering
body that is derived as

S(q) ∝
∫
f(r)I(r, q)dr, (2)

where the grain-size distribution is denoted as f(r).

Expert-knowledge-based analysis
To estimate grain-size distribution, S(q), which is the inte-
gration of f(r)I(r, q), should be decomposed to the sum-
mation of I(r, q); however this is difficult. Thus, material
science researchers have tried to guess f(r) with clues from
small features latent in the plot of I(r, q) as shown in Fig. 2.
The figure presents a log-log plot of a SAS pattern and it’s
domain is separated into three parts (a), (b) and (c). In (a),
that is q → 0, the power series of a trigonometric function
with q

I(r, q) ' 1

r3

(
qr

q3
− r

q2
(1− 1

2
(qr)2)

)2

=
r

4
(3)

S(q) is independent from q. Thus, it converges to a constant
value. In (b), corresponding to I(r, q) under q → ∞, is ap-
proximated as

I(r, q) ' 1

r3

(
r cos qr

q2

)2

. (4)

Therefore, S(q) is derived as

S(q) ' 1

q4

∫
r2f(r) cos2 qrdr. (5)

This behaves as the Fourier transform of r2f(r) with decay-
ing in the fourth power of q.

(c) is intermediate between (a) and (b). I(r, q) in the do-
main is the following.

I(r, q) = 1

q6
(sin qr − qr cos qr)2 . (6)

I(r, q) is always non-negative and I(r, q) = 0 when
sin qr − qr cos qr = 0. Therefore I(r, q) = 0 leads to
sin qr/ cos qr = tan qr = qr. Figure 3 plots each side of
this equation. The horizontal axis x of the graph indicates qr.
The blue curve represents y = tanx and the orange line rep-
resents y = x. Their intersections, indicated by the circles
in the figure, correspond to points satisfying tan qr = qr,
that is, I(r, q) = 0. Therefore, the zero points appear peri-
odically. Additionally local maximum points, which satisfy
sinx = 0, exist between the zero points. Thus I(r, q) oscil-
lates and it’s frequency depends on r. S(q), which is the sum
of the I(r, q), involves the oscillations of various phases, so
the oscillations are gradually canceled by q becoming larger.
Hence, only the oscillation at the small-q domain is readable.

The material science researchers accordingly look for the
oscillation at the (c) domain because it gives implicit hints
to understand f(r). Therefore, f(r) can be estimated only
roughly. If f(r) were estimated directly, the SAS experiment
could give much more information of the sample. Conse-
quently, a method to directly estimate f(r) is highly needed.
Thus, a machine-learning-based method is proposed in this
paper.
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Figure 4: Indirect Fourier Transform (IFT)

Related works
One practicable method is parametric function fitting. Pa-
rameters of the function can be adjusted to fit to the obtained
SAS pattern because their relationship is known (Joachim
and Ingo 2018). However, for this approach, the form of
f(r) is required. The true f(r) is generally unknown in ac-
tual situations. Material scientists therefore should assume
many kinds of function forms to find the best estimation.
Until the best estimation is achieved, many trials will be re-
quired, leading to a long calculation time.

To avoid such difficulty, a function having a more general
formula should be used. One technique using such function
is Indirect Fourier Transform (IFT) (Otto 1977). For IFT,
summation of multiple stepwise functions θn(x) is used as
the general function. The stepwise function θn(r) returns 1
when rn < r < rn+1, and 0 otherwise, where the domain
of the function is separated into N small partitions rn < r <
rn+1 (1, · · ·n, · · ·N ). Formula (2) is

S(q) '
∑
n

an

∫
θn(r)I(r, q)dr, (7)

Under this assumption, the integral is decomposed into def-
inite integrations in rn < r < rn+1. Because the definite
integrals can be carried out analytically, S(q) is described
as a linear combination of an. After minimizing the differ-
ence between the linear combination of an and SAS pat-
tern, the grain-size distribution f(r) is obtained as the sum
of anθn(r).

The resolution of the grain-size distribution is determined
by θn in IFT as shown above. Therefore, the range of θn
should be small to improve the resolution of grain size. Al-
though many ans thus have to be determined for high resolu-
tion results, the SAS pattern must be highly accurate because

f(r)

r

Select r randomly

Incident
particle

determine
a grain

Scattering inside the sample

Change
direction Detected

I(q, r)

q

Select q randomly

Figure 5: Probabilistic solution of scattering problems

the difference of a SAS pattern from S(q) cannot be aver-
aged enough in esthe timation of many ans. Accordingly
the higher resolution setting makes estimation error larger.
A technique to avoid this problem is to add regularization
terms to suppress over fitting. However, the regularization
terms is required to adjust manually. To automate regular-
ization, complicated methods to determine the regularization
terms have been proposed, but they are not common yet.

In this paper, an approach in which machine-learning al-
gorithms are applied is taken against the problem. Specifi-
cally, the SAS-experimental process is modeled as a stochas-
tic process with latent variables. After that, a likelihood
function derived from the stochastic process is maximized
to fit the SAS pattern. As the result, the grain-size distri-
bution is obtained as the optimal model parameter of the
stochastic process. No assumption is required for the method
if a non-parametric model (that is, a very general stochastic
model such as a Gaussian mixture) is applied for the SAS-
experimental process. Generally an EM algorithm is applied
to non-parametric models. Similarly a method using a non-
parametric model and EM algorithm is proposed.

Such techniques are used in astrophysics (William 1972)
(Leon 1974), bioinformatics (Lustig et al. 2008) (Lustig,
Donoho, and Pauly 2007) and compressed sensing (Donoho
2006). However this kind of approach is not common in scat-
tering experiments. Therefore, in this paper, algorithms suit-
able for SAS are proposed and examined using simulation
and actual data.

Stochastic process of SAS
Approach
The process consists of dispersion and observation, which
are modeled with two different probabilistic models. shown
in Fig. 5.

At the first dispersion step, the incident beam interacts
with grains. In Fig. 5, ”determine a grain” represents the
process. It can be interpreted as a stochastic process in which
particles of the incident beam choose a scattering body in the
sample material. The probability density function is conse-
quently assumed in proportion to f(r). That is, the disper-
sion step of N particles is modeled as a N -times iteration of
random sampling from f(r).

The second observation step, in which the incident beam
changes its direction and arrives at a point on the detec-
tor plane, is also modeled as a random sampling process,
shown as ”change direction” in Fig. 5. The scattered parti-



cles choose a scattering angle randomly and are detected as a
SAS pattern. This angle choice is stochastic due to the prin-
ciple of quantum physics. Thus the probability distribution
function is in proportion to I(r, q) defined in (3).

The entire process of SAS is modeled as the combination
of these two stochastic processes. In the entire process, the
size of the scattering body interacting with each particle is
unobservable. When both latent variables and model param-
eters are unknown, that Bayes statistics works. The probabil-
ity that q is chosen after determining r is described as a pos-
terior P (q|r) in Bayes statistics. Note that P (q|r) ∝ I(r, q)
and the function to be estimated is P (r|q) because only q
is determined by the SAS pattern. These can be easily con-
nected with Bayes theorem:

P (r|q) = P (q|r)P (r)
P (q)

. (8)

This formula includes two new parts (P (r) and P (q))
though they do not cause problems. P (r) is a prior about
grain choosing. It can be set uniformly when no information
about grain size is given. Moreover, P (q) is a prior about the
wavenumber. Being independent from grain-size, P (q) will
be canceled with a normalization constant of P (r|q). Con-
sequently, P (r|q) equals P (q|r), which is in proportion to
I(q, r), except the normalization constant.

This modeling is straightforward from a machine-
learning-based viewpoint. However from the quantum-
mechanics-based viewpoint, the incidenting particles are
dealt with as a wave. Consequently, in the proposed ap-
proach, the model is simplified because of the aspect change
from wave-like aspect to a particle-like one.

One-particle model
The formula about the scattering process of one particle
should be precisely discussed as detailed above. The first
process is to decide the grain causing scattering. The grain
size r is continuous in domain 0 < r < R. However, as
mentioned above, it is separated into the L small partitions
labeled by 0 · · ·L−1. Assuming that the representative grain
size in each partition is set as the center of the partition
denoted as r0, · · · rL (that is rn+1 = rn + R/L), we can
write the grain size frequency as f(r0), · · · f(rL−1). As the
stochastic process, a particle randomly chooses a grain size
for scattering with probability P (ri) ∝ f(ri). Accordingly,

P (rl) =
f(rl)∑
m f(rm)

. (9)

In the second process, the scattering angle is decided.
Similarly the wavenumber domain 0 < q < Q is also sepa-
rated into the K small partitions labeled by 0 · · ·K − 1 and
the center of the partitions are denoted as qk. The probabil-
ity that the scattered particle is detected at the qk detector
is therefore described as P (qk|rl), which is in proportion to
I(rl, qk). Although some particles will go outside of the de-
tection plain, they are regarded as outside of the population
distribution to be modeled. Consequently,

P (qk|rl) =
I(rl, qk)∑
m I(rl, qk)

. (10)
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Figure 6: Marginalization of grain size

Algorithm 1: Estimation of grain size
Input: SAS pattern intensity nk ≥ 0, wavenumber qk ≥ 0
(k = 0, 1, · · · ,K)
resolution of grain size rl ≥ 0 where (l = 0, 1, · · · , L)

Output: {πl}
N ⇐

∑
k nk, {ηl,k} ⇐ { I(rl,qk)∑

m I(rl,qk)
}, {πl} ⇐ 1/L

repeat
{πl} ⇐

∑
k
nk

N
πlηl,k∑
j πjηj,k

until convergence

For simplicity, P (rl) ≡ πl, P (qk|rl) ≡ ηl,k hereafter. The
probability that a particle is scattered at rl and detected in the
kth partition is derived as πiηl,k. To estimate the grain size
distribution likelihood, we thus need P ({π0, · · ·πL}|qk).

The grain-size partition in which the particle is actually
scattered is unobservable directly. Therefore, rl should be
marginalized as follows:

P (π0, · · ·πL|qk) =
P (qk|π0, · · ·πL)P (π0, · · ·πL)

P (qk)

∝
∑
l

P (qk|rl)P (rl|π0, · · ·πL)

=
∑
l

πiηl,k, (11)

where priors P (qk) and P (π0, · · ·πL) are regarded as con-
stant parameters. Figure 6 illustrates this calculation. Even
after a particle is detected at q2, their possible paths are non-
unique. Therefore the likelihood of the scatting process in-
volves the sum of the all paths.

N-particles model
Although the likelihood of the 1-detection event is for-

mulated as above, an actual SAS pattern includes many
detection events. Because the SAS pattern is a set of
counts of detection events, it is denoted as K integers:
{n0, · · ·nK}. With the total number N of the events,
N =

∑
k nk. {π0, · · · , πL} maximizing the total likelihood

P (n0, · · ·nK |π0, · · · , πL) is required, indicating the grain-
size distribution.

For simplicity of the calculation, the following logarith-
mic likelihood is to be maximized by {πk}.

lnP (π0, · · · , πL|n0, · · ·nK)

= lnN ! +
∑
k

nk ln
∑
l

πlηl,k −
∑
k

lnnk! (12)



However, because the πks are probabilities of the random
choice, they are restricted as

∑
πk = 1. Therefore, the max-

imization is carried out under the constraint with the La-
grange multiplier method.

∂

∂πl
lnP (π0, · · · , πL|n0, · · ·nK)

=
∂

∂πl

∑
k

nk ln
∑
l

πlηl,k − β = 0, (13)

where β is the Lagrange multiplier. This leads to the follow-
ing L equations,

∂

∂πj

∑
k

nk ln
∑
l

πlηl,k − β

=
∑
k

nk
ηj,k∑
l πlηl,k

− β = 0. (14)

After π is multiplied to both sides of the equations and the
equations are summed,∑

k

nk

∑
j πjηj,k∑
l πlηl,k

− β
∑
j

πj = 0

β =
∑
k

nk = N. (15)

Therefore the equation∑
k

nk
ηj,k∑
l πlηl,k

= N (16)

should be solved to obtain {πl}.
To solve this problem, an iteration algorithm called an

EM-algorithm (Bishop 2006) is generally applied (Zhang
1993)(Demoment 1989) (Nagata, Sugita, and Okada 2012).
Because (10)(11) leads to

πjηj,k∑
l πlηl,k

=
P (qk|rl)P (rl)

P (qk)
= P (rl|qk), (17)

this part represents the probability that a particle detected at
qk is scattered at rl. Therefore, the expectation value ml of
the number of such particles is ml =

∑
k nkP (rl|qk) when

nk particles are detected at qk. According to P (rl) = πl,
additionally,∑

k

nk
ηj,k∑
l πlηl,k

=
mj

πj
= N. (18)

The equation can be separated into the equation to lead πls
and that to lead mls:

πl =
ml

N
ml =

∑
k

nk
πlηl,k∑
j πjηj,k

(19)

Consequently, E-step to obtain the expectation value ml and
M-step to obtain {πl} with the maximal likelihood are itera-
tively carried out to derive the solution of the equation (16).
Algorithm 1 lists the procedures.

EXPERIMENTS
Experimental settings
Two different types of experiments were executed to evalu-
ate whether the proposed algorithm automatically estimates
grain-size distribution consistent with SAS pattern. In the
first experiment (Experiment 1), simulation-generated data
were processed because we can compare the results with
ground truth. In the second experiment (Experiment 2), ac-
tual SAS pattern data with naive samples were processed to
assess the actual feasibility of the proposed algorithm.

The two types of data were processed with the proposed
algorithm, and IFT for comparison. For the proposed algo-
rithm, 10,000 iterations of the EM algorithm were carried
out instead of checking convergence. That is because the
processing time is limited in an experiment but is unlim-
ited until convergence. The processing time is expected to
be limited when the iterations are limited.

The IFT executed in the experiments involves the L1 and
L2 regularization. The weight parameters of the regulariza-
tion terms are tuned for IFT to return reasonable estimation
result. This tuning is carried out twice, that is, for Experi-
ments 1 and 2, because the best setting depends on the total
event number of the SAS pattern.

Experiment 1: simulation data
In Experiment 1, six types of grain-size distributions were
defined. Each pattern is one Gamma distribution or the sum
of two Gamma distributions having the most frequent point
around 10nm. The grain-size distribution is discretized by
0.2 nm, and its domain is set from 0 to 20 nm (i.e., 100
values), corresponding to f(r) in (2). The S(q) was cal-
culated by evaluating integration of (2). Because S(q) in-
dicates the probability of the detection, by multiplying the
detection event number to S(q), the most probable SAS pat-
terns can be generated. The q of SAS pattern is also discrete
and its domain is from 0.1nm−1 to 5nm−1. For the experi-
ment, the detection event number was set as 10,000, and the
SAS patterns of the grain-size distributions were generated
and named Patterns 1-6.

Figures 7 and 8 show the results. In both figures, (a) plots
the SAS pattern by log-log plot, (b) plots the grain-size dis-
tribution estimated by the proposed method, and (c) plots
the grain-size distribution estimated by IFT for comparison.
The blue lines in (b) and (c) plot the truth, i.e. the origi-
nal grain-size distribution. In (b), all estimation results are
highly similar to ground truth. In contrast, in (c), estimation
results are generally inaccurate.

The grain-size distribution of Pattern 1 has a small peak at
the foot of a large peak. The two peaks should be separately
estimated. The ML results are so accurate that the small peak
appears clearly, whereas the small peak in the IFT results is
difficult to recognize.

The grain-size distribution of Pattern 2 also has a small
peak, but it is located on the opposite side to that in Pattern
1. The IFT results do not accurately estimate the small peak,
whereas the ML results do.

The grain-size distribution of Pattern 3 has only one peak.
The IFT results of this pattern are similar to those of Pat-
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Figure 7: Results of Exp. 1 Pattern 1, 2, 3

tern 2. Both Patterns 2 and 3 have a large peak at a small
grain size. The small grain size corresponds to a large wave
number due to I(q, r). The features are very small as shown
in Fig. 7 (a) because the S(q) in the high-q area decays q−4.
Function-fitting-based techniques such as IFT cannot handle
such small components, whereas stochastic techniques such
as the proposed method take into account small probabili-
ties.

One large peak in the intermediate grain-size is shown in
Pattern 4. Pattern 4 is so simple that the estimation is easy.
Indeed, both the ML and IFT results are very accurate. How-
ever, the ML results are more accurate the IFT results.

Two comparable peaks appear closely in Pattern 5. Be-
cause the IFT results do not detect these two peaks, one peak
instead appears between them. In contrast, ML results detect
both peaks accurately.

Three peaks are shown in Pattern 6. Similar to Pattern 5,
the IFT results did not extract the three peaks, whereas the
ML results did.

The SAS patterns of (a) input are quite similar for hu-
mans. Therefore, material scientists have to make an effort
to obtain their difference, which reflects radical changes in
the grain-size distribution. According to the results, the pro-
posed method is helpful and reliable. This shows that the
SAS experiment can become more useful for observing mi-
crostructures of materials.

Figure 9 plots processing time of the pattern estimation.
For this experiment, a computer loading Intel(R) Core(TM)
i3-4150 CPU 3.50GHz and 11 GB RAM and Cent OS. The

implementation is based on Python 3.6.5 and numpy library
(Oliphant 2006) is used to improve efficiency of the process.

The proposed method takes around 1.2 seconds, which
is much shorter than the experimental time of SAS ( for
neutron scattering, around 20 minutes). In comparison, IFT
takes around 6.0 seconds, 5 times as long as the proposed
method. IFT is not much slower; however, this difference
can became important if material science researchers have to
conduct many iterations during trial-and-error experiments.
This shows the proposed method is quite useful for SAS data
analysis.

According to the results, the proposed method enables the
grain-size distribution to be estimated accurately. IFT makes
large errors when the grain size is small, whereas the pro-
posed method works well for such cases. In actual situa-
tions, we cannot know whether the grain size of a sample
is low (i.e., IFT applicable) or not. Therefore, IFT requires
much effort by material scientist but the proposed method
does not. This shows that the proposed method is suitable
for automatically processing SAS patterns.

Experiment 2: actual measurements
In Experiment 2, SAS patterns of neutrons with a
polystyrene ball (radius 18 nm) sample and a silica ball (ra-
dius 25 nm) sample were examined. Figure 10 shows the
results ((a), (b) and (c) are the same as in Experiment 1).
The SAS pattern are more noisy than those of Experiment 1.

The most frequent radius of (b) and (c) is around the sam-
ple true radius. This shows that both the proposed method
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Figure 9: Comparison of processing time

and IFT can be used. The difference between the ML re-
sults and IFT results is that small peaks appear at the integer-
multiplied true radius. This is considered to be because clus-
ters of the multiple balls are detected.

The results show the proposed method is feasible for ac-
tual SAS pattern analysis. Moreover small material-inside
behaviors might be observable. Thus this implies that the
proposed method will extract information leading to new
knowledge.

Conclusion and Future Works
An expectation-maximization (EM)-based grain-size distri-
bution estimation method was proposed for the automati-
cally analyzing small angle scattering (SAS) patterns. Ex-
perimental results showed that the proposed method can ac-

curately estimate the original grain-size distribution from
SAS patterns. Moreover, the proposed method does not re-
quire parameter tuning to obtain good results, whereas the
existing method ( Indirect Fourier Transform ) does.

The stochastic model that is the base of the proposed
method does not assume priors. However, with priors, the es-
timation might be made more accurate and detection events
required to estimate the grain-size might be made fewer. In
addition, non-ball scattering bodies should be taken into ac-
count. Such extensions are possible future works.
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