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Abstract. This article is devoted to the use of Bayesian networks for analyzing 

the growth of gross domestic product (GDP) of Ukraine and offers a compara-

tive description of the use of various structural learning algorithms. A compara-

tive study of the behavior of the Noisy-MAX nodes and the General nodes in 

the design of the Bayesian network was carried out. It has been shown that 

Noisy-max nodes in comparison with General nodes provide a relatively high 

initial accuracy. General nodes require retesting. However, Noisy-MAX nodes 

entail an increase in time and computational cost. 
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1 Introduction  

Theories of economic growth evolve over time, dependent on the stage of economics, 

and the improvement of mathematical and statistical tools have had a significant im-

pact on the formulation of New Concepts.  

Joseph E. Stiglitz and Andrew Weiss [1] argue that the existence of financial re-

sources, not its value, is decisive in determining private investment, and therefore the 

economic growth of the country. Greenwald A.G. at al. [2] claimed that the exchange 

rate can also be impacted by economic development through the activation of invest-

ments. As suggested by Kenneth A. Froot and Jeremy C. Stein [3], devaluation en-

courages foreign investment, facilitating the acquisition of local assets by foreign 

companies at a much lower price.  

In determining the impact of external investment, indicators such as foreign direct 

investment in Ukraine and the average annual dollar rate are used. In determining the 

impact of domestic investment potential, we take into account the average propensity 
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to save and interest rates on attracted term deposits. The level of financial develop-

ment depends on loans in national and foreign currencies. The level of manufactura-

bility (or innovation) affects the profitability of the operating activities of industrial 

enterprises, the proportion of enterprises engaged in innovation, as well as the share 

of revenue of enterprises. 

The aim of the work is to compare the use of General and Noisy-MAX nodes in 

designing a model of a static Bayesian network for assessing Ukraine's economic 

growth of economic indicators. 

2 Problem Statement 

For a set of events ( ) , 1,...,iX i N that are related, and a set of learning data
(1) (2) ( )

1( ,..., ), { ... }N

n i i i ID d d d x x x   , is given. Here the subscript is the observation 

number, and the upper one is the variable number, n –is the number of observations, 

each observation consists of ( 2)N N   variables, and each j-th variable ( 1,..., )j N

has ( ) ( ) ( ){0,1,..., 1} ( 2)j j jA a a     conditions. Based on a given training sample, we 

need to build an acyclic graph connecting the event sets , 1,...,iX i N . Having a set 

of input indicators that interact with each other as shown in Fig. 1, it is necessary to 

carry out a study of the construction of Bayesian networks using the nodes General 

and Noisy-MAX in order to assess the possibility of economic growth of the country.   

 

 

Fig. 1. Conceptual model of a static BN for assessing a country's economic growth. 



We’ll get BN structure g G , which is represented by a set N of predecessors

(1) ( ),..., NP P , that is, for each vertex ( )1,..., , jj N P  it is a variety of parent vertices, 

such that ( ) (1) ( ) ( ){ ,..., } |{ }j N jP X X X . We have events ( ) , 1,...,iX i N  that are af-

fected by the uncertainties of a different nature. And also we have data describing 

these events.  

3 Review of the Literature 

When we have an increase in the amount of parents, we also will have the exponential 

growth of parameters. This is one of the main difficulties of Bayesian network mod-

els. By using Noisy-MAX nodes [4, 5], since they use multi-valued variables, we can 

solve the problem of increasing the dimension and, as a consequence, the problem of 

increasing computational complexity.  

This approach has proven itself in many real applications [6-8]. The main ad-

vantage of it is the small amount of parameters.  

This reduces the spatial and temporal complexity of the algorithms [9] for Bayesi-

an network models and improves the quality of distributions extracted from the data 

[10, 11]. The main and most important advantage of using Bayesian networks is their 

resistance to incomplete, inaccurate and noisy information. In these cases, the result 

will reflect the most likely outcome of events [12].  
The use of Bayesian networks for the synthesis, prediction, and analysis of uncer-

tainty is considered in [13], where they are one of the mathematical tools for eutroph-

ication models, risk counting and cost-based performance analysis. 

In [14] BNs are presented as a decision support tool for politicians that can be 

used to formulate strategic recommendations to improve the innovative level of a 

country's economy. 

4 Materials and Methods 

4.1 Data 

As experimental data for assessing the economic growth of Ukraine, macroeconomic 

indicators were taken into account that the statistical capabilities and the modification 

of existing methods for studying the financial activity of an enterprise (Table 1).  

In our study, we use a set of statistical data that are interconnected (Fig. 1) consist-

ing of 14 indicators for the period 2005-2018.  

The matrix of indicators is divided into four blocks that most fully characterize the 

financial economic and business activity of enterprises, as well as the course of eco-

nomic processes in the country (Table 1). The resulting indicator Y is an integral indi-

cator of the level of economic growth of Ukraine. 



Table 1. Matrix of economic indicators. 

Indicators Appointment 

Y The level of economic growth (nominal GDP at actual prices) 

X1 Level of adaptability (or innovation) 

Х11 The share of enterprises engaged in innovation 

Х12 The share of the proceeds of innovation enterprises 

Х13 Profitability of operating activities of industrial enterprises, % 

Х2 The level of financial security (financial development), UAH 

Х21 National currency loans for a term of 5 years to residents (exclud-

ing deposit-taking corporations), average value, UAH million 

Х22 Foreign currency loans to residents (excluding deposit-taking cor-

porations) for a term of 5 years, average value, UAH million 

Х3 External investment, UAH 

Х31 Foreign direct investment in Ukraine 

Х32 Interest rates on term deposits attracted, % 

Х4 Internal investment potential, UAH 

Х41 Average propensity to save 

Х42 Average annual dollar rate, UAH 

4.2 Materials and Methods 

A Bayesian network (BN) is a pair <G, В>, in which the first component G is a di-

rected acyclic graph corresponding to random variables [14,15]. Each variable is in-

dependent of its parents in G. So, the graph is written as a set of independence condi-

tions. The set of parameters defining the network is the second component B. It con-

tains parameters 
| ( )

( | ( ))i i

i i

x pa X
Q P x pa X  for each possible xi value from Xi and 

( )ipa X  from ( )iPa X , where ( )iPa X denotes the set of parents of the variable  Xi in 

G . Each variable Xi is represented as a vertex. We use the notation to identify the 

parents ( )G iPa X  if we consider more than one graph.The total joint probability of 

BN is calculated by the formula
1

1( ,..., ) ( | ( ))N N i i

B i BP X X P X Pa X  .  

BN is a probabilistic model for representing probabilistic dependencies, as well as 

the absence of these dependencies. At the same time, the A→B relationship is causal, 

when event A causes B to occur, that is, when there is a mechanism whereby the val-

ue accepted by A affects the value adopted by B.  

Validation was proposed for the first time in 1977 in [16]. Validation of the net-

work that we design was carried out according to the algorithm for maximizing ex-

pectations. The algorithm finds local optimal estimates of the maximum likelihood of 

arguments. The concept of the algorithm is that if we knew the values of all nodes, 

then training would be simple at some step M. Therefore, at stage E, estimations of 

the expected likelihood value are made, including latent variables, as if we were able 

to observe them. In step M, the maximum likelihood values of the parameters are 

estimated using the maximization of the expected likelihood values obtained in step 



E. Then, the algorithm performs step E using the parameters obtained in step M again 

and so on. 

A whole series of such algorithms was developed, based on the algorithm of max-

imizing the expectation [17,18]. 

GeNIe 2.4 Academic Bayesian Network Design Software implements three 

dicretization methods [19,20]:  

Uniform Widths - a method with uniform width (discretization on the same width 

of classes), which makes the width of the sampling intervals the same, 

Uniform Counts - the method of unit graphs (discretization on the same number of 

points inside the classes), which determine the number of values in each of the sam-

pling registers, 

Hierarchical - hierarchical method (hierarchical discretization), which is an uncon-

trolled method of discretization associated with clustering. 

We will successively apply each discretization method to the experimental data set 

and carry out their comparative study on two types of General and Noisy-MAX 

nodes. 

4.3  Noisy-MAX Nodes 

The Noisy-MAX node consists of a child node, Y, taking on    possible values that 

can be labeled from 0 tо   -1, and N parents, Pa(Y) = {X1,…, XN}, which represent 

the causes of Y. Each Xi has a certain zero value, so that Xi = 0 represents the absence 

of Xi. Two basic axioms define the Noisy-MAX [11]: 

1. When all the causes are absent, the effect is absent: 

  0 0 1|
i

i
P Y X


  

 

(1) 

2. The degree reached by Y, is the maximum of the degrees produced by the X, if 

they were acting independently: 

   0
,

| | X ,
j j i

i i j

i

P Y y x P Y y x X


  
    

 

(2) 

where x represents a certain configuration of the parents of Y, x = (x1,…, xN).  

5 Experiments and Results 

When developing the BN, the GeNIe 2.4 Academic software environment was used. 

As can be seen from Fig. 1, the network contains 4 key nodes: 

 X1 - the level of manufacturability (innovation), 

 X2 - the  level of financial security (financial development), UAH 

 X3 - external investment, UAH, 

 X4 - domestic investment potential, UAH. 

It should be noted that due to the specifics of the Bayesian networks, all the conclu-

sions of this model regarding the information sought are probabilistic in nature and 



are presented in the form of a ranked list (according to the values of the probability of 

fidelity of a particular conclusion).  

Data taken from 2005 to 2018. The dynamics of changes in the initial indicators for 

the observed period are presented in table 2. All nodes have five states: s1, s2, s3, s4, 

s5. For example, for the node X1 (as shown in Fig. 2), the intervals of state discretiza-

tion will be as follows: 

 s1_below_85879; 

 s2_85879_114478; 

 s3_114478_150998; 

 s4_150998_218982; 

 s5_218982_up 

The resulting static BN of the country's economic growth is presented in Fig. We 

perform parameterization and validation on the General nodes. The initial accuracy of 

the result was 42%, while the overall accuracy of the network was 48.8%. After con-

ducting a sensitivity analysis, the overall accuracy of the network remained almost 

unchanged at 47.56%. However, the accuracy of the result increased from 42% to 

64%. At the next stage of the study, we changed the type of all nodes to Noisy – 

MAX with five states s1-s5, and the resulting node Y. The network remains the same, 

the data file also does not change. We carry out parametric learning, primary valida-

tion. 

 

Fig. 2. Static BN of the country's economic growth. 



The initial overall accuracy of the network when using Noisy – MAX nodes was im-

mediately quite high and amounted to 55.4%, and the accuracy of the opposite result 

was very low and amounted to 46%.  

After a sensitivity analysis, the overall accuracy of the network remained almost 

unchanged (increased by 2% - from 47% to 57.11%), but the accuracy of the result 

increased by 14% to 60% compared to the initial 46%. A comparison of the results is 

shown in table 2: 

Table 2. Comparison of results after primary and re-validation. 

 

Further, at the second stage of the study, we will apply each discretization method in 

the experimental data set and compare the results. In the beginning, we apply discreti-

zation using the Uniform Weights method. We need to discretize the existing data set 

and also generate a 100-line file for GeNie. We repeat all the steps first for the Gen-

eral nodes and then for the Noisy nodes: structural learning, parametric learning, vali-

dation, sensitivity analysis, and re-validation. 

Next, we apply discretization using the Uniform Counts method. We need to re-

discretize the existing data set and also generate a 100-line file for GeNie. We repeat 

all the steps first for the General nodes and then for the Noisy nodes: structural learn-

ing, parametric learning, validation, sensitivity analysis, and re-validation. 

Finally, we discretize the available data using the Hirerical sampling method. A 

comparison of the accuracy of the three methods is given in table 3. 

Table 2. Comparison of accuracy after changing the discretization method. 

 Method  

Uniform Counts 

Method  

Uniform Weigths 

Method 

Hirerical 

 Overall 

network 

accura-

cy,% 

Accura-

cy of the  

result , 

% 

Overall 

network 

accura-

cy,% 

Accura-

cy of the 

result , 

% 

Overall 

network 

accura-

cy,% 

Accuracy 

of the 

result , 

% 

General nodes 40,0 64,3 44,3 42,9 47,6 64,0 

Noisy-MAX nodes 31,4 28,6 45,7 50,0 57,1 60,0 

 Initial accuracy Accuracy after a sensitivity  

analysis 

 Overall 

network 

accuracy,% 

Accuracy of 

the result ,% 

Overall 

network 

accuracy,% 

Accuracy of 

the result ,% 

General nodes 48,8 42,0 47,6 64,0 

Noisy-MAX  nodes 55,4 46,0 57,1 60,0 



6 Discussion 

Based on the obtained experimental results, it is clear that the use of General nodes 

requires the use of sensitivity analysis procedures, repeated parameterization, and 

repeated validation since it significantly increases the resulting accuracy (in our case, 

by 10% - from 47% to 57%).  

With Noisy-MAX nodes, the required resulting accuracy is achieved immediately 

after the initial validation, with a very small difference of 4%. This suggests that for a 

network with this type of nodes there is no need for sensitivity analysis and re-

validation (Fig. 3). 

 

 

Fig. 3. The obtained experimental results. 

After the successive application of the three discretization methods, the following 

conclusions can be drawn: 

1. If you compare by the accuracy of the result, then the General nodes are better than 

Noisy-MAX in Uniform Counts by 35.7% (General = 64.3% and Noisy-MAX = 

28.6%) and Hirerical (General = 64% and Noisy-MAX = 60%), but worse than 

Uniform Weights by 7% (General = 42.9% and Noisy-MAX = 50%). It is shown 

on fig. 4: 
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Fig. 4. The result accuracy of the three discretization methods. 

2. If we compare in terms of the overall accuracy of the network, then Noisy-MAX 

nodes are vice versa better than General nodes in Uniform Weights by 2% (Gen-

eral = 44.3% and Noisy-MAX = 45.7%) and Hirerical by 9% ( General = 47.6% 

and Noisy-MAX = 57.1%), but worse in Uniform Counts by 9% (General = 40% 

and Noisy-MAX = 31.4%). This is shown in Figure 5. 

 

Fig. 5. The network accuracy of the three discretization methods 

7 Conclusion 

When comparing the use of General and Noisy-MAX nodes in designing a model of a 

static Bayesian network for assessing Ukraine’s economic growth, we can conclude 

the following. When using the Hirerical discretization method, high rates of overall 



network accuracy and result accuracy are observed both with General nodes (64%) 

and Noisy-MAX nodes (60%), therefore both types of nodes work equally well with 

this method (table 3). As can be seen from the table 3, the Uniform Weigths 

dicretization method is poorly applicable for General nodes (accuracy below 50%), 

the Uniform Count sampling method is not applicable for Noisy-MAX nodes (accura-

cy below 40%). 

Noisy-MAX nodes, compared to General nodes, provide relatively high initial ac-

curacy. General nodes require sensitivity analysis, re-parameterization, and re-

validation procedures. 

In our future research, we will apply the proposed model to the design of a dynam-

ic BN to assess general trends in increasing levels of economic growth at different 

time periods. 
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