
Increasing Web-Design Effectiveness Based on 

Backendless Architecture  

Kostiantyn Morozov[0000-0002-6299-4181], Ievgen Sidenko[0000-0001-6496-2469],                           

Galyna Kondratenko[0000-0002-8446-5096], Yuriy Kondratenko[0000-0001-7736-883X] 

Intelligent Information Systems Department, Petro Mohyla Black Sea National University,  

68th Desantnykiv Str., 10, Mykolaiv, 54003, Ukraine, 

morozovknstn@gmail.com, ievgen.sidenko@chmnu.edu.ua, 

halyna.kondratenko@chmnu.edu.ua, yuriy.kondratenko@chmnu.edu.ua  

 

Abstract. This paper discusses web-system design and development tech-

niques. For examples would be taken existing methods, approaches and prod-

ucts for the development and design of web systems, such as: monolithic and 

multi-layer architecture, microservice architecture, serverless architecture, BaaS 

(Backend as a service) approach. Based on the analysis of these approaches, a 

new approach will be developed, called DADO (direct approach to data obtain-

ing), on the basis of which the backendless architecture will be created, which is 

designed to save architects and developers of web systems from many problems 

and additional costs that lead to other approaches. 

Keywords: web-system, client-server, monolithic architecture, multi-layer ar-

chitecture, microservice architecture, serverless architecture, BaaS, DADO, 

backendless. 

1 Introduction 

Nowadays, the problem of proper and effective design is becoming more important 

than the problem of effective development or support of any web system [1]. This is 

largely due to the global spread of web applications or applications that somehow 

work in conjunction in web applications. The load on web systems is growing every 

day, in an ever-changing world, sudden changes in customer specifications are be-

coming the norm [2]. 

With the global spread of the Internet and access to any information virtually in the 

world, specialties that can be studied without graduating specialized educational insti-

tutions have begun to flourish. One such specialty is software development. This en-

tails the saturation of the market with many diverse specialists. Thus, finding high-

quality personnel for developer positions is not a big problem. Using various patterns, 

libraries and frameworks also helps development. However, the initial design of any 

system is not an easy task, the understanding of which comes with experience and 

can’t be taught through university classes or video tutorials. That is why the design 

Copyright © 2020 for this paper by its authors. 
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

mailto:ievgen.sidenko@chmnu.edu.ua
mailto:halyna.kondratenko@chmnu.edu.ua


task is the most important for any system, in large part because changing the system 

settings during its development can be costly or not possible at all [3-5]. 

In this work, the popular approaches used in web design and development will be 

reviewed, their main advantages and disadvantages will be singled out, as well as 

cases of use will be described. Based on them, with the study of the development of 

ideas for designing systems, an own approach will be developed, devoid of most of 

the shortcomings listed in the paper. 

2 Related Works and Problem Statement 

Within the terms of the work, the following types of systems engineering approaches 

will be reviewed: monolithic architecture, multi-layer architecture, microservice ar-

chitecture, serverless architecture and Backend as a Service approach [6]. 

Monolithic architecture is an approach built on the client-server architectural mod-

el (Fig. 1) [7] and based on the idea of the indivisibility of server software. The so-

called "monolith" is a single software unit that ensures the operation of the entire 

system without containing any subsystems or separate components. 

 

Fig. 1. Typical client-server architectural model [3, 8] 

Within the boundaries of this architectural approach, all requests that go to the server 

(whether requests to a page or asynchronous) will inapplicably fall into one block and 

will be processed in one data stream. Typically, such an architecture is characterized 

by the presence of a single database (with the ability to use backup) and monolith not 

breaking into logical parts or subsystems for separation of duties. 

The advantages of this approach are as follows [3]: 

1. Due to the absence of need of dividing a single block into smaller parts, the time 

required to develop the system is reduced; 



 

2. A system designed using a monolithic architecture does not require additional 

measures for servicing, that is, it does not require many servers or additional soft-

ware. Such a system can be hosted in a single docker container on one computer 

and use one single build machine and not require a lot of resources. 

However, there are obvious disadvantages in this approach [8, 9]: 

1. Due to the lack of dividing the server into subsystems, system support can become 

very complicated over time. Since such software is usually distributed as a single 

assembly, the code base tends to become much cluttered, becoming less and less 

supportable and testable. Also, frequent changes in technical requirements can lead 

to the fact that the system is redone by force for the necessary needs; 

2. In this regard, the scalability of the system becomes extremely low, and often such 

a system ceases to withstand the increasing load; 

3. Since the entire system consists of one large module, a failure in the operation of 

this module can lead either to a slowdown or to the complete inoperability of the 

entire system, thereby the fault tolerance of the monolith is extremely low. 

Based on the points listed above, we can conclude that this architectural model is 

suitable for projects in which the development speed prevails over scalability and 

scalability, or which does not have big plans for expansion, but should be developed 

in an extremely short time. 

Next, a layered architecture will be reviewed. It is a development of the idea of 

monolithic architecture, except that there are so-called layers - subsystems that exist 

on the principle of separation of responsibilities and usually fulfill three main roles [3, 

10]: 

─ data layer is a layer whose purpose, based on the name, is data manipulation, usu-

ally directly through a database or cloud storage. Such layers are characterized by a 

clear division of objects and classes by roles (client classes, manager classes), as 

well as the frequent use of various design patterns (repository, unit of work, date 

transfer object); 

─ business layer (or business logic layer) is the main layer of the system that imple-

ments the technical requirements of the customer. It is this layer that is responsible 

for how to manage the data that came from the data layer, how to process and 

combine them, what to convert to, and in what form to give to the client; 

─ presentation layer is a layer responsible for transferring data to the client. Usually it 

is a layer that carries out the final manipulations with the data that came from the 

business layer, makes decisions about how and in what form to combine them, 

what users with what rights they can be shown to, under what conditions to show 

certain data and so on. Examples of a presentation layer are controllers from ASP 

.NET Mvc. 

However, the number of layers does not limit with these three layers. The designer’s 

task is to determine the most optimal number of layers and the tasks that these layers 

will perform. For example, you can have several business layers that will be divided 

according to the principle of separation of responsibilities or will be designed for 



different clients (desktop application, web or mobile). Sometimes instead of layers 

there may be separate services located on different machines. Then this is called ser-

vice-oriented architecture [2, 3]. 

In comparison with monolithic architecture, multilayer has undeniable advantage 

[10, 11]: 

1. The code base ceases to be closely connected with one assembly, acquiring flexi-

bility: now instead of one large module there are at least three smaller ones, the 

number of coupling inside which is less than in one large one. This means that 

making changes to such submodules becomes much easier: now changes in one 

place of the system will affect much less than other places in this system. In this 

connection, the support of a multilayer system is much simpler than monolithic. 

However, there are disadvantages [3, 11]: 

1. The fragmentation of one large module by the principle of separation of responsi-

bilities can lead to duplication of code, since the transfer of data between layers 

may require the same objects, or, when using the so-called data transfer object, the 

code base can significantly increase; 

2. However, there is a more serious problem: due to the fact that the boundaries, for 

example, between data manipulation logic and business logic, or business logic and 

presentation logic, is often blurred, serious problems can arise in the logical con-

struction of the system, as a result of which the presentation layer may execute a 

lot of business logic, or the data layer will begin to process data where it is not 

needed. This, in turn, can lead to support problems, changes in system structure 

and scalability. 

As a conclusion, it can be said that a multilayer architecture is suitable in many cases 

when a project can have a big load, and when there are plans for its long-term sup-

port. 

Next comes the microservice architecture [7, 9, 12, 13]. It is the next round in the 

evolution of multi-layering, combining service-oriented and partitioning the system 

into subsystems. Microservices are atomic assembly services, united by the principle 

of business requirements or the logic of the tasks performed, which communicate with 

each other remotely and can work autonomously from the rest. Each such micro-

service has its own database, which stores data coming to other services using asyn-

chronous communication channels, such as RabbitMQ, EventGrid or Kafka. 

The following briefly describes how the microservice system works. The client 

(browser, mobile or desktop application) makes a request for any of the micro-

services. If the client only requests data without changes being made, the service only 

gives the necessary data (usually in JSON format). However, if a client sends a re-

quest to add, delete or modify data, the following happens: the data changes in the 

database of the service for which the request occurred, then an event is sent through 

asynchronous communication channels that are tracked by several (or not a single) 

microservices that perform certain manipulations with data in its database. For exam-

ple, the Users service received a request to delete a user with id "12345", the service 



 

sent an event that the Gifts service received. Now the Gifts service knows that the 

user has been deleted, and the next gift request for this user will return a 404 re-

sponse. This principle of operation provides two of the most important features of 

microservices: fault tolerance and data integrity. 

The advantages of microservices are as follows [9]: 

1. Since microservices are quite atomic and independent, the number of connections 

between them is minimal, which greatly simplifies making changes to the system; 

2. Since services are usually independent of each other, failure of one (or even sever-

al) of them may not affect the operation of the system as a whole; 

3. Microservices scale well due to easy integration with various load balancers or 

proxies. 

However, this approach has its drawbacks [12]: 

1. The workflow described above is a recommendation from Microsoft [7]. Its im-

plementation will require much more resources than for the development of a 

monolithic or multi-layer application [9]; 

2. Consequently, the cost of servicing microservices is increasing. Now, in addition to 

the need to service one large server, there is a need to service several small ones, as 

well as host a separate database for each of them; 

3. Since microservices are loosely coupled to each other, testing them together can 

cause significant difficulties, especially if they use asynchronous messaging, which 

often may not be tested at local developer machine at all. 

In the end, microservices are well suited for complex projects that are designed for a 

large audience, or that work in conjunction with many types of clients (mobile, 

browsers, computer games). Also, due to its high fault tolerance, they can be used for 

surveillance systems, medical software, or for highly loaded sites. 

The result of the development of microservices is a serverless architecture [5, 14-

16]. Its essence is that instead of services, even more atomic entities appear, the so-

called lambda functions that communicate with each other usually through simple 

HTTP requests and do not require a separate database or separate machines for host-

ing them. 

The benefits of this approach are as follows [14, 15]: 

1. Simplicity in development since there is no need to develop and support large sys-

tems, development and support, therefore, are greatly simplified and accelerated; 

2. Easy maintenance and deployment - lambda functions do not need dedicated serv-

ers to work, as serverless service providers do this. 

But serverless has also disadvantages [5, 16]: 

1. Since serverless computing services are provided by third parties, the project cost 

will increase due to the costs of these services; 

2. The performance of lambda functions is lower than in the approaches considered 

above. This is because functions do not exist as a software entity until a request is 



made to it. With each request, a function is created and destroyed at its end. This 

slows down the operation of a full-weighted system. 

In conclusion, it worth stating that serverless architecture can hardly make up the 

backbone of an entire system, but it is well suited as an architecture for a subsystem. 

For example, lambda functions in production go well with microservices. 

The last in this paper will be the BaaS technology (architecture) [17-20]. Its es-

sence is that the company provides a ready-made server solution for use. This very 

solution may have the necessary minimum functionality that developers need: user 

management, push notifications, multimedia streaming, and so on. 

A clear advantage of using this technology is that there is no need to write your 

own server part, since in fact the finished system will be at the disposal of developers. 

However, this approach has obvious disadvantages [3, 17]: 

1. Usually the services for using this server are paid, which again increases the cost of 

the project; 

2. The impossibility of making changes to the server code and database is one of the 

most serious problems of baas, since any deviation of requirements from the ser-

vices of the company providing the service can seriously harm the whole project. 

Some companies allow developers to implement their own code, but this contra-

dicts the "backend as a service" approach; in addition, it is simply impossible to 

test such a code [18]; 

3. In addition, the inability to manually deploy the server and change its configuration 

depending on the load. If there is a need for scaling, this service will have addi-

tional costs. 

This approach is suitable for small projects that will have limited functionality and 

will not have plans for expansion. Usually as an addition to some other product, 

which takes all the attention of the customer [2]. 

At the end of the section, intermediate results on the considered approaches can be 

conducted and the main task can be formulated. So, the solutions were considered: 

monolithic architecture, multi-layer architecture, microservice architecture, serverless 

architecture and BaaS. These approaches have typical advantage-disadvantage pairs. 

So, monolithic architecture is easy to develop and relatively cheap to maintain, but 

difficult to scale and maintain. Microservices and serverless, by contrast, are easy to 

maintain, but are paid and in some cases are difficult to implement and maintain [5]. 

The main task will be to create an approach that will be easy to develop and sup-

port, will not require special means of maintenance, and will also not have a high 

cost. It is also worth considering scalability, fault tolerance and the ability to with-

stand high loads. In addition, it is worth considering that the world of web develop-

ment is growing extremely fast, and any lack of approach to system design may simp-

ly disappear over time. 



 

3 Concepts of Backendless Architecture 

In this section, we will consider a solution developed based on previously discussed 

methods and approaches to design of web systems. 

The architecture, called backendless (or DADO, Direct Approach to Data Obtain-

ing) [21-23], is based, as you might guess from the name, based on the complete re-

moval of the server side as an intermediary between the client and the data (database, 

Redis cache, blob storage) or other data sources. This achieves several effects at once: 

firstly, the development speed increases markedly, since the development and support 

of the server side are completely removed from the development cycle. Secondly, 

productivity is growing: the server, as an additional layer between the client and the 

data, delays the execution of each request and, therefore, slows down the operation of 

the whole system. 

To implement this approach, a TypeScript language framework was developed that 

will deal with all queries to the database using a special API, which is very similar to 

the ordinal JavaScript code that many developers not acquainted with data base tech-

nologies are used to (Fig. 2).  

 

Fig. 2. TypeScript language framework 

The above code performs a backendless request to the local database named ‘test’ and 

gets all users that are 18 y.o. or older. In the end, developer executes the query that 

can be any long. 

In the center of backendless are the so-called backendless requests, which are made 

from the client application (Angular, Reactjs, Vuejs) and go directly to the data source 

(this work takes as a basis work with the database). Thus, the business logic, unique 

to the server, is divided into a client and a database management system. This leads to 

an increase in the role of stored procedures or similar structures for a database. A side 

effect may be an increase in the size of the client application due to the removal of 

some part of the business logic there. 

Summarizing, the advantages of this approach over those considered earlier are as 

follows: 

1. Accelerate development - removing from the development cycle such a large part 

as the server leads to a significant acceleration of the entire development; 



2. Reducing the cost of the project - all the approaches discussed earlier have their 

own costs for servicing the machines that run the server subsystem. backendless, in 

turn, is not only a completely free approach, it can also help save money by speed-

ing up development and the absence of the need for a large number of developers 

to implement it; 

3. Increased productivity - as mentioned earlier, removing the server from the data 

stream will significantly speed up the system as a whole; 

4. Simplification of development and support - the absence of a server should facili-

tate development, since there will be no need for complex system design. 

However, there are drawbacks to the approach: 

1. The need for a separate client subsystem - such a subsystem can be an application 

that uses client rendering (Fig. 3) [24], such as Angular or ReactJS. Its essence lies 

in the fact that navigation on the site and other changes on the pages are made en-

tirely on the client side, and all server requests are AJAX requests. As opposed to 

client rendering, there is server rendering (Fig. 4) [25]; 

 

Fig. 3. Scheme of client rendering [3] 

 



 

2. Putting business logic on the client side - the principle of separation of responsi-

bilities states that each class or component should be responsible for only one func-

tion or be strictly separated from the rest logically. The client-server model fully 

fulfills this requirement, where the client is responsible for displaying data, and the 

server is responsible for receiving and processing it. However, in some cases, this 

principle can be neglected, since usually the concepts of business logic are rather 

vague, and the display of data in a certain way can also be considered business log-

ic. A more significant flaw in bringing logic to the client is to increase the size of 

the client application, which may be unacceptable for certain users who, for exam-

ple, have weak Internet. In this case, the competent design of the client subsystem 

comes to the fore. 

 

Fig. 4. Scheme of server rendering [3] 

This paper examines the backendless architecture for working with the MongoDB 

database as part of a DADO approach to data access. The following is a comparative 

analysis of each of the considered architectures with backendless (Table 1). Table 1 

shows qualitative comparisons of architectures by criteria, since these estimates are 

difficult to quantify, because much depends on the project. This simplifies the evalua-

tion process, and also avoids linking the assessment to specific project decisions. So, 

for example, it is quite difficult to quantify architectures by criterion “Speed of devel-

opment”, because projects can be different in scale, number of developers, their level, 

etc. Therefore, the estimates in this table are generalized. 



Table 1. Comparative analysis of each of the considered architectures with backendless 

Criteria 

Architectures 

Easy to  

development 

Level of 

maintenance 

Level of  

support 

Speed of 

development 

Monolithic architecture High High Low High 

Layered architecture Medium High Medium High 

Microservice architecture Low Low High Medium 

Serverless architecture Medium High High High 

BaaS architecture High High Low High 

Backendless architecture High High High High 

Criteria 

Architectures 

Flexibility to change           

technical requirements 

Development 

price 

Development 

prospects 

Monolithic architecture Low Low None 

Layered architecture Medium Low None 

Microservice architecture High Medium Medium 

Serverless architecture High High Low 

BaaS architecture Low High Medium 

Backendless architecture Medium Low High 

Summing up, backendless architecture can be useful for startups, where often budget 

expenses can be more important than system memory costs. Also, for small or educa-

tional projects that do not have much coverage. Due to its weak development, 

backendless will not be able to withstand heavy loads or provide large projects with 

all the necessary functionality (statistics, caching, etc.). 

4 Conclusions 

This work presented such principles of designing web systems as monolithic architec-

ture, multi-layer architecture, microservice architecture, serverless architecture and 

BaaS technology. The strengths and weaknesses of each of them were analyzed, use 

cases were deduced. It was also analyzed what reasons can stop developers from us-

ing one or another approach. 

As a result, a new approach to the development and design of web systems was 

developed, which was called the backendless architecture, or the DADO approach, 

which says about the complete rejection of the intermediate steps in working with 

data, which speeds up the application, makes it easier and less confusing to overall, 

and also allows developers to manipulate the database directly, without using special-

ized query languages. 

References 

1. Henderson-Sellers, B., Lowe, D., Haire, B.: OPEN Process Support for Web Development. 

Annals of Software Engineering 13, 163-201 (2002). DOI: 10.1023/A:1016549527480. 



 

2. Kautz, K., Madsen, S.: Web Development. In: Linger, H. et al. (eds) Constructing the In-

frastructure for the Knowledge Economy, pp. 495-505. Springer, Boston, MA (2004). 

DOI: 10.1007/978-1-4757-4852-9_37. 

3. Zambon, G., Sekler, M.: Beginning JSP, JSF, and Tomcat Web Development. Apress, 

New York (2007). DOI: 10.1007/978-1-4302-0465-7. 

4. Putrady, E.: Practical Web Development with Haskell. Apress, Berkeley (2018). DOI: 

10.1007/978-1-4842-3739-7. 

5. Layka, V.: Learn Java for Web Development. Apress, Berkeley (2014). DOI: 10.1007/978-

1-4302-5984-8. 

6. Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R., Merson, P., Nord, R., 

Stafford, J.: Documenting Software Architectures: Views and Beyond. Addison-Wesley 

Professional, Boston (2010). ISBN: 978-0-13-248861-7. 

7. Villamizar, M., Garcés, O., Ochoa, L. et al.: Cost comparison of running web applications 

in the cloud using monolithic, microservice, and AWS Lambda architectures. SOCA 11, 

233-247 (2017). DOI: 10.1007/s11761-017-0208-y. 

8. Oquendo, F., Leite, J., Batista, T.: Client Server Architectural Style. In: Software Architec-

ture in Action. Undergraduate Topics in Computer Science, pp. 179-187. Springer, Cham 

(2016). DOI: 10.1007/978-3-319-44339-3_14. 

9. Saransig, A., Tapia, F.: Performance Analysis of Monolithic and Micro Service Architec-

tures – Containers Technology. In: Mejia, J., Muñoz, M., Rocha, Á., Peña, A., Pérez-

Cisneros, M. (eds) Trends and Applications in Software Engineering. CIMPS 2018. Ad-

vances in Intelligent Systems and Computing, vol. 865, pp. 270-279. Springer, Cham 

(2018). DOI: 10.1007/978-3-030-01171-0_25. 

10. Liu, L., Özsu, M. (eds): Layered Architecture. In: Encyclopedia of Database Systems. 

Springer, Boston, MA (2009). DOI: 10.1007/978-0-387-39940-9_2941. 

11. Datta, U., Lewis, L.: A Layered Architecture for Capacity Planning in Hybrid Networks. 

In: Lazar, A., Saracco, R., Stadler, R. (eds) Integrated Network Management. Springer, 

Boston, MA (1997). DOI: 10.1007/978-0-387-35180-3_71. 

12. Torre, C., Wagner, B., Rousos, M.: .NET Microservices: Architecture for Containerized 

.NET Applications. Redmond, Washington (2019). 

13. Solesvik, M., Kondratenko, Y.: Architecture for Collaborative Digital Simulation for the 

Polar Regions. In: Kharchenko, V., Kondratenko, Y., Kacprzyk, J. (eds) Green IT Engi-

neering: Social, Business and Industrial Applications. Studies in Systems, Decision and 

Control, vol. 171, pp. 517-531. Springer, Cham (2019). DOI: 10.1007/978-3-030-00253-

4_22. 

14. Vemula, R.: Integrating Serverless Architecture. Apress, Berkeley, CA (2019) DOI: 

10.1007/978-1-4842-4489-0. 

15. Kondratenko, Y., Kozlov, O., Gerasin, O., Topalov, A., Korobko, O.: Automation of Con-

trol Processes in Specialized Pyrolysis Complexes Based on Web SCADA Systems. In: 

9th Int. Conf. IDAACS. vol. 1, pp. 107-112 (2017). DOI: 10.1109/IDAACS.2017.8095059 

16. Baldini, I. et al.: Serverless Computing: Current Trends and Open Problems. In: 

Chaudhary, S., Somani, G., Buyya, R. (eds) Research Advances in Cloud Computing, pp. 

1-20. Springer, Singapore (2017). DOI: 10.1007/978-981-10-5026-8_1. 

17. Kim, C.: A Study of Utilizing Backend as a Service (BaaS) Space for Mobile Applications. 

In: Lee, R. (eds) Computer and Information Science. ICIS 2019. Studies in Computational 

Intelligence, vol. 849, pp. 225-236. Springer, Cham (2020). 

18. Gropengießer, F., Sattler, K.: Database Backend as a Service: Automatic Generation, De-

ployment, and Management of Database Backends for Mobile Applications. Datenbank 

Spektrum 14, 85-95 (2014). DOI: 10.1007/s13222-014-0157-y. 



19. Kushneryk P., Kondratenko Y., Sidenko I.: Intelligent dialogue system based on deep 

learning technology. In: 15th International Conference on ICT in Education, Research, and 

Industrial Applications: PhD Symposium (ICTERI 2019: PhD Symposium), vol. 2403, pp. 

53-62, Kherson, Ukraine (2019). 

20. Shurbin, O., Kondratenko, G., Sidenko, I., Kondratenko, Y.: Computerized System for 

Cooperation Model’s Selection based on Intelligent Fuzzy Technique. In: 1st International 

Workshop on Information-Communication Technologies & Embedded Systems, vol. 2516, 

pp. 206-217, Mykolaiv, Ukraine (2019). 

21. Backendless REST API Documentation. [Online]. Available: 

https://backendless.com/docs/rest/doc.html. 

22. Piller, M.: Backendless Pro is Now Available With Docker Architecture (2018). [Online]. 

Available: https://backendless.com/the-on-premise-version-is-now-available-with-docker-

architecture/. 

23. Backendless SDK for .NET API Documentation. [Online]. Available: 

https://backendless.com/docs/dotnet/. 

24. Breux, G.: Client-side vs. Server-side vs. Pre-rendering for Web Apps (2020). [Online]. 

Available: https://www.toptal.com/front-end/client-side-vs-server-side-pre-rendering. 

25. Quax, P., Liesenborgs, J., Barzan, A. et al.: Remote rendering solutions using web tech-

nologies. Multimed Tools Appl 75, 4383-4410 (2016). DOI: 10.1007/s11042-015-2481-0. 

https://backendless.com/docs/rest/doc.html
https://backendless.com/the-on-premise-version-is-now-available-with-docker-architecture/
https://backendless.com/the-on-premise-version-is-now-available-with-docker-architecture/
https://backendless.com/docs/dotnet/
https://www.toptal.com/front-end/client-side-vs-server-side-pre-rendering

