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Abstract. In this work we propose a parallelization of the simplex method 

based on the technology of parallel programming OpenMP, which is used for 

solving linear programming problems. The advantages of this approach are to 

improve acceleration and efficiency. This, in turn, is important when processing 

large data. The obtained results of the parallel algorithm were compared with 

the conventional simplex method. Application of this method is important con-

sidering modern trends of multi-core architecture of processors. Also in this 

work was used such feature as multithreading. The proposed parallelization al-

gorithm is easily scaled to a different number of processor cores. Without loss 

of generality, the example of solving the problem of distribution of cars be-

tween the freight fronts of the railway station have been carried out a number of 

numerical experiments. Data analysis showed that with increasing the number 

of threads and cores achieve the maximum performance of a program that im-

plements a parallelization of the simplex method. These findings are depicted as 

bar charts.  

Keywords: OpenMP parallel computing technology, multithreading, finite dif-

ference, linear programming, simplex method, parallelization, multicore.  

1 Introduction 

Linear programming (LP) was developed because of economy problems, finding a 

way to find the best decisions while using limited resources. The development and 

complication of economic processes and computing stimulates extensive use of math-

ematical methods in management, contributes to the growth of the role of linear pro-

gramming as one of the important topics of applied mathematics [1-3]. 

According to American experts, about 75% of the total number of practical opti-

mization problems, relate to the objectives of LP. About a quarter of the machine time 

spent in recent years on carrying out scientific researches was allocated to the deci-

sion of tasks of LP and their numerical modifications. 

Copyright © 2020 for this paper by its authors. 
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

mailto:lesia.i.mochurad@lpnu.ua
mailto:nataliya.i.boyko@lpnu.ua
mailto:natalia.y.petryshyn@lpnu.ua
mailto:myroslava.potokii.kn.2016@lpnu.ua


 

The simplex method is generic and it can be used to solve a wide range of tasks:  

 maximum pairing (graph theory)); 

 maximum thread; 

 transportation problem; 

 a zero-sum game (a zero sum) 

Improving the efficiency of algorithms for solving linear programming problems has 

important practical significance. Industrial production resources in the economy, the 

tension forces in the hostilities – it is a complex of numerous interrelated processes. In 

the management of these totally different phenomena one can distinguish essential 

features of similarity.  When formulating optimization problems it turns out that prob-

lems with different content can be represented by the same type of mathematical 

models [4]. 

The linear programming model includes three main points: 

 a set of nonnegative variables characterizing the investigated process or phenome-

non; 

 relations that establish the relationship between variables (restrictions) and the 

requirements of the reflecting task; 

 criterion of optimality (goal function). 

In the problems of linear programming constraints are a system of linear inequalities 

and equations, expressing the condition of the material balance (ie, that the consump-

tion of any kind of raw material does not exceed the available stock of this raw mate-

rial, etc.).  The goal function also has a linear look. 

The aim of the work is to parallelize algorithm of the simplex method to achieve 

maximum acceleration and efficiency in the processing of large volumes of input 

data. 

Despite the fact that the simplex method is a very efficient algorithm that showed 

good results in solving linear programming problems, it is an algorithm with exponen-

tial complexity [4]. The reason for this is the combinatorial nature of the algorithm 

that sequentially traverses the vertices of the polyhedron of admissible solutions in the 

search for an optimal one. 

Parallelization of the simplex method is a very relevant and popular topic.  Avail-

able studies prove the effectiveness of a parallel algorithm, which allows you to in-

crease the accuracy of the result.  However, the implication of the simplex-method 

with modern trends in the development of computer technology becomes even more 

important, namely: a promising way in building computer systems based on multi-

core processors. 

2 Review of the Literature 

Nowadays, most tasks of linear programming are solved using algorithms which are 

based on the simplex method. Other known algorithms, including those with 

polynomial complexity, yield to the effectiveness of the simplex method in solving 

specific applications [5, 6]. 



The problem of linear programming is considered in the following canonical repre-

sentation: 
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This formulation is considered to be classic, and this way any linear programming 

problem can be compiled [7]. The canonical representation is convenient because in 

this case the values ib  match with the values of the Lagrange multipliers, which are 

calculated for the active constraints niix ,1,0   

The simplex method has one important advantage – when you increase the dimen-

sion of the problem, the computational costs are small, because at each step it calcu-

lates only one value of the objective function. 

The task of LP is usually written in abbreviated form and is represented as follows: 

The task of linear programming is a wide range of control tasks to the functioning 

of economic systems. 

Linear programming problem closely related to the tasks of game theory, so to 

solve them it is possible to apply numeric methods of game theory 
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Fig. 1. Graph model of the simplex method.. 

The geometric meaning of simplex method consists of consecutive transition edges 

from one vertex of a polyhedron solution (basic plan) to another in the direction of the 



 

vertex X*, in which the objective function reaches the highest (lowest) value (see Fig. 

1). 

3 Statement of the Problem 

General task of linear programming (GLP), presented in any form of record, called a 

task in which you must determine the optimum (maximum or minimum) of the objec-

tive function: 

 nxncxcxcF  ...2211  (3) 

under the following restrictions: 
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here jcib
jia ,,  – some of the coefficients. 

We introduce the notation: 
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where b
C  - the vector of objective function coefficients at basic variables. 

Matrix А, that consists of elements ija , the dimension of nm   is called the ma-

trix of the problem, the column vector  is called the vector of free members (a vector 

of constraints in the problem), a row vector kc  – the coefficients of the objective 

function at variable kx , a column vector 
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 – the vector of unknowns (vari-

ables). 

In vector form, the problem (3)-(4) has the following form: 
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When you build simplexe table uses the value 0p  – the right part of the problem 

constraints. 

Without loss of generality, consider the problem of distribution of cars on the 

freight fronts of the railway station, which is usually solved by methods of linear pro-

gramming in multicriterial statement. 

4 Methods of Solving 

Let freight station arrives a certain number of cars that must be unloaded during the 

day on three cargo fronts. At various technical equipment the cost of railway on un-

loading is different. Let the different fronts they are respectively 9, 10 and 

16.s.u/weights. (standard unit) 

Find the maximum number of wagons can be unloaded by a cargo station during 

the day: 

 max31621019  xxxF   

There are also the following constraints for the problem: 
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Demonstrate a few of the implementation steps of the simplex method on this prob-

lem. 

The problem can be represented in the form of a Table. 1. 



 

Table 1. The input data 

Number of cargo 

front 

Expenses of each of the front Capacity of the fronts 

І 18 6 5 360 

ІІ 15 4 3 192 

ІІІ 12 8 3 180 

Fee 9 10 16  

The result of the first iteration of the simplex method on the given example, the fol-

lowing results are obtained: 

 

Fig. 2. The results of the first phase of the simplex method 

In Fig. 2 the value of the function equal to 0.0, however, there are negative values  , 

in particular, ,00.91   ,00.102   00.163  . You need to go to the next 

support plan with a list of vector values 
6,5,,4,3,2,1 pppppp . 

The results of the execution of the next iteration is shown in Fig. 3: 

 

Fig. 3. The results of the second iteration of the simplex method 

As can be seen from Fig. 3, the optimal value of the function increased 

)00,384( F , however, the target value has not been reached, because 00.22  . 

After the last iteration (see Fig. 4) the simplex method the optimal solution (see 

Fig. 5): 



 
Fig. 4. The results of the third iteration of the simplex method 

 

Fig. 5. The solution of the problem 

The optimal value function 00,400F . The values of the unknown 

,00,01 x 00,82 x , 00,203 x , 00,04 x , 00,05 x  and 00,966 x . Since 

all values 0 , the problem is solved. 

According to the obtained results, construct a table of time measurements of execu-

tion of a sequential algorithm with reference to the respective computer architecture. 

Table 2. Temporal measurements of the sequential execution of the algorithm on a 

Quad-core 

Number of cores Run time, sec 

1 3.713 

2 3.381 

4 2.572 

8 0.998 

Based on the analysis of the results of sequential algorithm execution (see Table. 2) 

we saw the need for parallelization of the simplex method when processing large 

volumes of input data. 

5 Parallelization of the Simplex Method 

To achieve the maximum performance was performed to parallelize the critical sec-

tions of the program. It is possible to reduce the computational time of the algorithm 



 

by performing multiple tasks simultaneously, and has also led to a decrease in the 

number of iterations, making the algorithm more effective for use in problems with a 

large amount of data [9, 13]. In particular, it was distributed one of the most important 

critical areas of the program – calculation of parameters with the arguments in the 

objective function. For this we used technology OpenMP is set of compiler directives, 

library procedures and environment variables intended for programming multi-

threaded applications on multiprocessor systems with shared memory in C, C++ [10]. 

Advantages of OpenMP [11,12]: 

─ Thanks to the idea of "incremental paralleling", OpenMP best suits the developers 

seeking to quickly parallel their calculating programs with large parallel loops. The 

developer does not create a new parallel program but just consecutively adds text 

of a program OpenMP directives. 

─ At the same time, OpenMP is a flexible mechanism that gives the developer great 

control over the behavior of the parallel program. 

─  It is assumed that the OpenMP program on a uniprocessor platform can be used as 

a sequential program, i.e. there is no need to support serial and parallel versions. 

The OpenMP directives are simply ignored by a sequential compiler, and OpenMP 

procedure call can be inlined stub (stubs), the text of which is given in the specifi-

cations [14]. 

─ One of the advantages of OpenMP developers find support for the so-called "or-

phan" (separated) directives, that is directives of synchronizing and distributing 

work that may not enter directly into the lexical context of the parallel region [15]. 

In this work the parallelization of the critical sections of the algorithm, in particular: 

─ The scalar product of the vector b
C and iP  to expedite plan check for optimality: 

#pragma omp parallel for 

    for (int i = 0; i < numberOfVariables; i++) { 

      double sum = 0; 

      for (int j = 0; j < numberOfRestrictions; j++) { 

      sum += functionCoefs[currentBasis[j]] * restrictionCoefs[j*numberOfVariables + i]; 

      } 

      currentDeltas[i] = sum - functionCoefs[i]; 

      if (currentDeltas[i] < 0) { 

        negativeDeltaPresent = true; 

      } 

    } 

  } 

#pragma omp parallel for 

      for (int i = 0; i < numberOfRestrictions; i++) { 

      currentFunctionValue += functionCoefs[currentBasis[i]] * restrictionVals[i]; 

      } 

─ The process of determining  , which in the absolute value takes the maximum 

value: 

#pragma omp parallel for 

      for (int i = 0; i < numberOfVariables; i++) { 



        if (i != maxVal_num && abs(currentDeltas[i]) == abs(currentDeltas[maxVal_num])) { 

          equalDeltas.push_back(i); 

      } 

} 

#pragma omp parallel for 

      for (int i = 0; i < numberOfVariables; i++) { 

        if (abs(currentDeltas[i]) > abs(currentDeltas[max])) { 

          max = i; 

          } 

      } 

#pragma omp parallel for 

        for (int i = 0; i < (int)equalDeltas.size(); i++) { 

          if (functionCoefs[equalDeltas[i]] > functionCoefs[equalDeltas[validMax]]) { 

            validMax = equalDeltas[i]; 

            } 

        } 

─ The construction of the next simplex table and determining all of its coefficients 

according to the new basis: 

#pragma omp parallel for 

      for (int i = 1; i < numberOfRestrictions; i++) { 

        if (restrictionCoefs[i*numberOfVariables + absMaxDelta] > 0 && 

          allDivisions[i] < allDivisions[minDivVal]) { 

          minDivVal = i; 

        } 

      } 

#pragma omp parallel for 

      for (int i = 0; i < numberOfRestrictions; i++) { 

        if (i == minDivVal) { 

          currentBasis[i] = absMaxDelta; 

          break; 

        } 

      } 

The form was created to process the input data (see Fig. 6.). This form accepts input 

parameters of three cargo fronts and performs data processing after clicking the "Cal-

culate" button. 



 

 

Fig. 6. Data input/output form 

Form was created to simplify the user experience with the program, and was made 

using Windows Forms technology. This is a smart client technology for the .NET 

Framework platform, a collection of managed libraries that simplify the execution of 

common tasks, such as reading and writing in a file system. While using the Visual 

Studio development environment intelligent Windows Forms applications can be 

created that display information, request input from users and allow to interact with 

remote computers in the network. 

In Windows Forms form is a visual surface on which information to the user is 

displayed. Usually the Windows Forms application is build by dragging control ele-

ments onto a form and writing code to respond to user actions such as mouse clicks or 

keystrokes. A control element is a separate element of the user interface that can be 

used to display or enter data. 

When a user performs any action with a form or one of its control elements, an 

event is created.  The application responds to these events using code and processes 

events when they occur.  If an existing control does not meet the needs, in Windows 

Forms, you can create custom controls using the User Control class.  

6 Numerical Experiments 

After carrying out a  numerical experiments, it has been shown that with a fairly small 

input data, the parallel implementation of the simplex method algorithm stops to work 

efficiently.  It was found that when entering data less than 102, the results of parallel 

processing of data are not significantly different from the results obtained with the 

sequential execution of the program (see Fig. 7). 



 

Fig. 7. The result of a program with rather small input data 

Further, on Fig. 8 shows the result of parallelizing the algorithm of the simplex meth-

od to solve the problem of distributing of cars between the freight fronts of the rail-

way station when processing large amounts of data. 

 

Fig. 8. The result of the program 

Table 3 shows the time schedules for the parallel execution of the program. As you 

can see, the parallelization of the simplex method several times speeds up the pro-

gram while processing large data. 

Table 3. Time measurements of parallel algorithm execution on a four core CPU 

Number core Execution time, s 

1 3.623 

2 3.004 

4 1.547 

8 0.580 



 

In this case, the values of the acceleration and efficiency of the parallel algorithm on 

the quad core processor are shown in Table 4. Fig. 9 shows a graph of execution time 

(in seconds) depending on the number of threads on quad core processor. 

Table 4. Acceleration and efficiency ratios 

Number of flow Acceleration factor Efficiency ratios 

1 1.0249268 1.0249268 

2 1.1254993 0.56274966 

4 1.6625727 0.415643175 

8 1.72068968 0.21508620 

 

Fig. 9. Graph of execution time depending on the number of threads 

Fig. 10-11 shows comparisons` graphs of the acceleration and efficiency of parallel 

execution for two and four - core processor. 

 

Fig. 10. Comparison of acceleration indexes 



 

Fig. 11. Comparison of performance  

7 Analysis of the Results 

The effectiveness of the simplex method depends on the following factors: 

1. Numbers of iterations; 

2. Machine time. 

As a result of numerical experiments, the obtained results showed that the machine 

time is proportional to 
2

m . The number of constraints has a greater impact on com-

puting efficiency than on the number of variables, therefore, it was concluded that 

when forming a linear programming problem we should aim to reduce the number of 

constraints. 

The software product developed in the work calculates the solution without losing 

data and presents the results as integers.  The program interface is easy to use to enter 

task data.  However, the single-core processor can not be achieved even with the par-

allel execution of the program.  Also, it was investigated that with a sharp contrast 

input data for freight fronts there is an incorrect paralleling and failures in the imple-

mentation of the algorithm. 



 

 

Fig. 12.  Performance results on a single core processor 

 

Fig. 13.  Performance results on a dual-core processor 

 

Fig. 14.  Performance results on an eight-core processor 



Data analysis (see Fig. 12-14) shows that with the increasing the number of threads 

and cores the maximum productivity of the program is reached. For a small number of 

threads on a single core processor, the algorithm is performed relatively long with 

other processors, and there are possible minor differences in starting with the same 

large enough input parameters. 

8 Conclusion 

The linear programming problem and the method of its solution that are described in 

the work - is only a separate example of a huge number of linear programming tasks.  

Linear programming is the most commonly used method of optimization. Linear 

programming is one of the main parts of that section of modern mathematics, which is 

called mathematical programming. 

Simlex method is a typical example of iterative computations used in solving most 

of the optimization tasks. For computer realization of the simplex method a method of 

using artificial variables is developed, which allows to find the initial basic solution of 

the problem.  

The main task of this work was to develop a program for solving a linear pro-

gramming problems with a sufficiently large dimensionality and the ratio of the num-

ber of variables to the number of constraints. According to the results of numerical 

experiments, we can conclude high efficiency of the parallelized algorithm of the 

simplex method based on the OpenMP parallel programming technology. After paral-

lelizing critical sections of the algorithm to speed up the program,  it is noted that the 

acceleration factor  increases with the increase in the number of cores, which means it 

directly depends on the architecture of the computer. This approach is aimed at sup-

porting the latest developments of multi-core processors. However, the total amount 

of computations can be improved by some optimizations of the implemented algo-

rithm, which are goals for further work. 
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