CEUR-WS.org/Vol-2605/14 .pdf

Clone Detection vs. Pattern Mining: The Battle

Céline Deknop and Kim Mens
UCLouvain
Louvain-la-Neuve, Belgium
{kim.mens, celine.deknop }@Quclouvain.be

Simon Baars and Ana Oprescu
University of Amsterdam
Amsterdam, The Netherlands
a.m.oprescu@uva.nl and simon.mailadres@gmail.com

Abstract

In this paper we compare two approaches to
discover recurrent fragments in source code:
clone detection and frequent subtree min-
ing. We apply both approaches to a medium-
sized Java case and compare qualitatively and
quantitatively their results in terms of what
types of code fragments are detected, as well
as their size, relevance, coverage, and level of
detail. We conclude that both approaches are
complementary, while existing overlap may be
used for cross-validation of the approaches]

Index terms— clone detection, pattern mining,
frequent subtree mining, code clones, type 3 clones,
duplicate code.

1 The Battle

Recurrent code fragments are often considered as
symptoms of bad design [I]. They create implicit
dependencies, thus increasing maintenance efforts or
causing bugs in evolving software. Changing one oc-
currence of such a duplicated fragment may require

Copyright ©) by the paper’s authors. Use permitted under Cre-
ative Commons License Attribution 4.0 International (CC BY
4.0).
In: D. Di Nucci, C. De Roover (eds.): Proceedings of the 18th
Belgium-Netherlands Software Evolution Workshop, Brussels,
Belgium, 28-11-2019, published at http://ceur-ws.org
Copyright 2019 for this paper by its authors. Use permitted
under Creative Commons License Attribution 4.0 International
(CC BY 4.0).

Johan Fabry
Raincode Labs
Brussels, Belgium
johan@raincode.com

other occurrences to be changed as well [2]. Also, du-
plicated code has been shown to add up to 25% of
total system volume [3], which entails more code to be
maintained. Unfortunately, due to the “tyranny of the
dominant decomposition” [4], redundant crosscutting
code fragments cannot always be avoided. Neverthe-
less, it remains essential to discover them, in order to
better maintain, understand or evolve the software.

Several techniques have been proposed to detect
recurrent code fragments. This paper compares two
such approaches: clone detection and pattern min-
ing. Clone detection entails that fragments of code
are compared to each other line by line or statement
by statement, in order to find similar fragments, often
with certain groups of tokens being excluded from the
match. Pattern mining, in particular frequent subtree
mining, is the problem of finding all subtrees occurring
frequently in other trees, in our case abstract syntax
trees (ASTs), with a support that is above a given
threshold.

Since clone detection is more lightweight than pat-
tern mining, a relevant question is whether pattern
mining is worth the additional effort, by providing
alternative, richer or larger patterns, or whether it
is largely redundant with respect to clone detection.
To perform this comparison, we conduct a case study
where we compare the approaches from two angles:
to what extent do mined patterns correspond to de-
tected clones, and how well do clones match to mined
patterns?

For each direction we investigate what code frag-
ments are found by one approach that are not found
by the other. For those fragments found by both ap-
proaches we compare their coverage, size, and level of

detail. This analysis allows us to make interesting ob-
servations regarding the similarity and differences of
both approaches, and to draw conclusions regarding
the strengths of either approach.

2 The Arena

To compare both approaches, we apply them to a
medium-sized Java project: JHotDraw [5]. We se-
lected JHotDraw version 7.5.1, which is part of the
Qualitas Corpus [6], a curated collection of open-
source Java software systems meant to be used for
empirical studies of code artefacts [7]. JHotDraw is
a two-dimensional graphics framework for structured
drawing editors. It consists of 428 files and is known to
make good use of design patterns [§]. Previous stud-
ies have used earlier versions of JHotDraw to look for
recurrent code regularities [9), [I0]. All this makes us
confident that it is an interesting case on which to con-
duct our comparison.

3 The fighters

We now explain both approaches, their corresponding
tools and used configuration, and provide some raw
data and statistics on their results when applying them
to JHotDraw.

3.1 Clone Detection

Code cloning is an active field of study: many detec-
tion techniques and tools were proposed [I1]. Different
clone types allow a different granularity of variance be-
tween cloned fragments [12].
Type 1 clones allow variance in structure and whites-
pace only.
Type 2 clones allow variance in identifier names.
Type 3 clones allow complete statements to vary.
We identify two wuseful concepts regarding code
clones [12]:
Clone instance: A single cloned fragment.
Clone class: A set of similar clone instances, referred
to hereafter as a clone.
We detect clones using our CloneRefactor tooﬂ This
tool supports several clone type definitions, but for
this study we only considered type 3 clones. We used
the following detection settings for our comparison:
Minimum number of lines cloned: 3
Minimum clone class size: 5

With these settings we detected 136 clone classes
each having 9.2 instances on average. Each of these
instances span 6.8 lines on average. This makes up
for a total of 8.559 out of 39.403 lines cloned (i.e.,
21.7% of the system is cloned). About half of these

I Available on GitHub: https://github.com/SimonBaars/
CloneRefactor

clones are found in method bodies, other clones were
found in constructors or exceed the boundaries of a
single method. Detecting these results in the analysed
JHotDraw system took 38.7 seconds on a Macbook Air
(this is relatively fast compared to pattern mining).

3.2 Pattern mining

Our pattern mining tool is based on an extension of
the existing FREQT tree mining algorithm [13]. As
input it takes an abstract syntax tree (AST) repre-
sentation of the source code, meaning that a mined
pattern is an AST fragment that occurs frequently in
the codebase. One of FREQT’s limitations is that it
tends to find too many patterns to be practical, and
that many of them remain quite small. In order to be
useful for mining code fragments in large codebases,
we adapted the original FREQT algorithm with some
dedicated constraints and with an additional step to
try to grow the patterns found as large as possible [14].
More specifically, we use maximal frequent subtree
mining to ensure that a condensed representation of
large patterns is found, and we add the following ad-
ditional constraints to the mining process:

CO minimum support: for the experiment presented
here, we used a value of 5;

C1 maximum size of the pattern: 4;

C2 minimum size of the pattern: 2;

C3 limit the set of labels allowed to occur in the root
of patterns: Type Declaration and Blocks;

C4 forbid some labels to occur in patterns: Javadoc,
annotations;

C5 limit the number of siblings in a pattern that can
have the same label: 10;

C6 all leaf nodes in a pattern must have a label that
can occur as a leaf node in the AST;

C7 discovered patterns may not miss any mandatory
labels.

The threshold values of the different constraints
above were determined experimentally by applying the
tool on several Java cases and manually analysing the
quality of the patterns mined. Since mining is quite
computationally intensive, in order for our mining al-
gorithm to finish within reasonable memory and time
bounds, we have to split the codebase on which we
work into separate folds, and run the miner on one
fold at a timeEI For JHotDraw, we created 4 folds,
and found 156 patterns in total for the configuration
above. The size of the AST fragments of the mined
patterns varied between 15 and 207 nodes, with an
average size of 36. The mining took 33 minutes on a
middle grade tower PC. We noticed, not surprisingly,

2This does imply that some patterns that occur across folds
may not be found, if their frequency within a single fold does
not surpass the minimum support threshold. The less and larger
the folds, the less this problem occurs.

https://github.com/SimonBaars/CloneRefactor
https://github.com/SimonBaars/CloneRefactor

that the bigger the pattern size, the more interesting
it tends to be.

4 The Fight

We now describe how we compared both approaches
and then report on the results of our comparison.

4.1 Methodology

We compared the results of both approaches through
(1) manual comparison: the pattern mining team ex-
haustively went over all clones to look for possible
matching patterns and (2) automated comparison: the
clone detection team formalized an automated method
to compare clones and patterns.

4.1.1 Manual comparison

Per clone class we manually investigated E|

e the overlap and coverage (in #classes, #LOC,
#occurrences/ class) when (at least) one pattern
matches it;

e if there was a matching pattern, we also looked
for similar patterns occurring multiple times;

e the relevance/usefulness/richness of the pattern
for a software developer (this is a subjective cri-
terion), in terms of a rating -/0/+.

4.1.2 Automated comparison

Using a scriptﬂ we find for each pattern the clone class
that is the most similar and vice versa. These results
help analysing to what extent one approach is redun-
dant over the other: if a large percentage of clones
closely resembles most patterns (or vice versa) this
would be the case.

In the automated comparison we first determine the
locations of all 156 patterns and 136 clones. These lo-
cations consist of the file and range of each instance
in a pattern/clone. For clones, this range is simply
the begin and end line of a code fragment that exists
elsewhere. To simplify the comparison, we chose to
compare on a line-level and not take into account the
begin and end column of ranges. For patterns, each
separate AST node that belongs to the pattern (high-
lighted in orange in Fig. |3 has its own range (line and
columns). For simplicity, we consider the range of a
pattern instance to be the begin line of the first AST

3You can find the full manual analysis here: https:
//github.com/CelineDknp/CloneVSPatternAnalysis/blob/
master/CloneVSPatternAnalysis.txt

“*Source code available at https://github.com/SimonBaars/
CloneRefactor/tree/master/src/main/java/com/simonbaars/
clonerefactor/scripts/intimals

node in the pattern and the end line that of the last
AST node in the pattern.

To compare the patterns and clones at these loca-
tions we define a similarity metric for clones and pat-
terns. For each pattern, we search for the clone with
the highest similarity and vice versa by comparing each
clone instance of each clone class to each pattern in-
stance of each pattern. We then use the following for-
mula to determine the similarity percentage between
a clone instance and pattern instance:

2« match(p;, ¢;)
size(p;) + size(c;)

similarity(p;, c;) = (1)
where p; is a pattern instance, ¢; is a clone instance,
match is the function that yields the number of match-
ing lines between two instances and size is the function
that yields the number of lines in a code fragment. If
a pattern and a clone do not intersect, the result of
match will be 0, meaning no similarity at all. Given a
clone instance, we compute the instance similarity by
seeking the pattern instance that maximizes the sim-
ilarity function (so we find the pattern instance most
similar to a clone instance):

instanceSim(p, ¢;) = max({similarity(p;,c;) | p; € p})

(2)
where p is a set of pattern instances. Next, we cal-
culate the similarity at the clone class level by sum-
ming the instance similarities of all instances in a clone

class:
¢ € c})

(3)
where ¢ is a clone class. We compute which of the
C=136 clone classes is most similar to a pattern p
as the maximum similarity across all clone classes:

instanceSim(p, ¢;)

classSim(p,c) = sum({ * size(cq)

size(p) + size(c)

collectionSim(p, C) = maz({classSim(p,c) | c € C})

(4)
Finally, we collect per pattern the most similar clone
class:

overallSim(P,C) = {collectionSim(p,C) | p € P}
()
where P is the set of all 156 identified patterns. Using
this method, we can find which pattern is most simi-
lar to a clone and vice versa (by using the respective
symmetric relations).

4.2 Results of the manual analysis

4.2.1 Clone instances with no matching pat-
tern

The first thing the pattern team noticed when explor-
ing the clones was that out of 90 clones for which
there was no matching pattern, 42 occurred in less

https://github.com/CelineDknp/CloneVSPatternAnalysis/blob/master/CloneVSPatternAnalysis.txt
https://github.com/CelineDknp/CloneVSPatternAnalysis/blob/master/CloneVSPatternAnalysis.txt
https://github.com/CelineDknp/CloneVSPatternAnalysis/blob/master/CloneVSPatternAnalysis.txt
https://github.com/SimonBaars/CloneRefactor/tree/master/src/main/java/com/simonbaars/clonerefactor/scripts/intimals
https://github.com/SimonBaars/CloneRefactor/tree/master/src/main/java/com/simonbaars/clonerefactor/scripts/intimals
https://github.com/SimonBaars/CloneRefactor/tree/master/src/main/java/com/simonbaars/clonerefactor/scripts/intimals

50%
40%

43%
40%

30%

20%
10% 10%

o o, o %L %o. %
10% S % 6% o P

0% [| [| [| —
0 0-10 10-20 20-30 30-40 40-50

= Clone — Pattern
Pattern — Clone

10% % 1%
%. 5% 6%) 5% . 4%
[0% 0%
50-60 60-70 70-80 80-90 90-100 100

Figure 1: Percentage of clones/patterns that have a certain percentage of instances intersecting with each other.
The x-axis shows the percentage of clones or patterns. The y-axis shows the percentage of instances that intersect

with each other.

50%
43%
40%
40%

30%

0 5 17%
20% 14, 16% % v
10% l . . 8% 7% 8%
0% (|
0 0-10 10-20 20-30 30-40

40-50

m Clone — Pattern

Pattern — Clone

4% 4%

1% 1% 1% 1% 19 1% oo % 1%
50-60 60-70 70-80 80-90 90-100

Figure 2: Distribution of similarity percentages for all clones and patterns. The x-axis shows the percentage of
clones or patterns. The y-axis shows the similarity as defined in Sec.

than five different code files. For example, the fol-
lowing code snippet occurs exactly 6 times in the
JMDIDesktopPane file, but was not found as a pattern
by the miner.

try {
((JInternalFrame)allFrames[i])
.setMaximum(false);
} catch (PropertyVetoException e) {
e.printStackTrace();

}

We quickly realised that this behavior is caused by
the CO constraint (minimum support), which considers
patterns occurring in at least five different code files
rather than having five different occurrences. This is
a result of the way the miner was configured to have a
manageable amount of patterns, and concluded that it
might not have been the best fit for this comparison.
For future comparisons with code clone detection tools
that often find multiple clone instances in a given file,
we will need to change the configuration to avoid this
issue.

A second reason why some clones are not matched
by patterns, results from the fact that for the mining
process to finish correctly, we need to divide the code
base into smaller folds. But if there is a clone that
spans over 5 files but that are not all in the same fold,
the pattern may still be discarded because it would
not have a high enough support value for either fold.
We found 13 clones that did not match a pattern for
this reason. (The mining team knew this limitation

of their approach and is investigating how to improve
their algorithm to work on larger data sets to avoid this
problem.) The following code snippet is an example
of such a code clone, repeated exactly 9 times in 6
different files, of which 1 file in fold 1, 2 files in fold
2 and 3 files in fold 4. So it was not discovered as a
pattern in either of those folds.

protected void generateLookupTables() {
radials = new float[w * h];
angulars = new float[w * h];
alphas = new int[w * h];
float radius = getRadius();
float blend = (radius + 2f) / radius - 1f;
//clone ends here

The 35 other clones for which there was no matching
pattern are either too small to fit the constraints of
the miner, or cannot really be considered as a pattern.
For example, some clones consist of the end of one
function along with the start of another one, like in
the following snippet.

//Start of function not in clone
isClampRGB = b;
}

public boolean isClampRGBValues() {
return isClampRGB;
//End of function not in clone

4.2.2 Matching clone instances and patterns

When analysing clone instances that did match mined
patterns, the pattern mining team observed that we
tend to have two types of matches.

A first type is where the pattern is broader, so that
it includes multiple clones. For example, Fig. |3| shows
pattern 46 of fold 4, which actually matches 4 different
clone classes, one for each case block.

97

Figure 3: Pattern 46 of fold 4

A second type of match is when we have multiple
patterns for a single clone class. In such cases, the
clone usually corresponds to a specific part of multiple
patterns that are similar, or to related patterns across
folds. For example, the following code snippet occurs
in our patterns 60, 78, 111 and 115 of fold 4.

@0verride
public void transform(AffineTransform tx) {
Point2D.Double anchor = getStartPoint();
Point2D.Double lead = getEndPoint();
setBounds (
(Point2D.Double) tx.transform(anchor,
anchor),
(Point2D.Double) tx.transform(lead,
lead));

Finally, using our rating of how relevant a devel-
oper considers a pattern, we observed that out of a
total of 46 clones that where matched by a pattern,
41 were considered interesting, leading us to conclude
that many of the results found by both methods can
be considered as useful to developers.

4.3 Results of the automated analysis

Using the automated analysis method described in
Section we collected interesting statistical data
on the similarity of the clones and patterns found by
both tools.

When looking into the percentage of clones and pat-
terns that intersect each other (see Fig. 7 we observe
that 40% of clones do not match any patternsﬂ For
11% of the clones, all clone instances intersect with the
pattern instances. 43% of the patterns do not intersect
with any clones. For 4% of the patterns, all pattern
instances intersect with the clone instances.

When manually inspecting the 11% of clone classes
of which all instances intersect with patterns, we find
that most of the clone instances in the clone classes
are contained within a pattern. Patterns are often
larger because they allow more variance in a fragment
of code. Because of that, patterns often capture ad-
ditional information surrounding a clone. This is why
there is a large difference between clone to pattern and
pattern to clone at 100% intersecting instances (see
Fig. .

Fig. |2 shows how many clones and patterns are sim-
ilar to each other. The same percentages of clones/-
patterns that do not intersect can be found here as 0%
similar. However, here we see the categories gradually
decreasing towards 100% (no clone/pattern combina-
tion is actually 100% similar). By far, most clone/-
pattern combinations are less than 50% similar: 92%
of clones and 96% of patterns. This leaves only 8%
of clones and 4% of patterns with a similarity higher
than 50%.

5 The outcome

Before presenting our analysis of these results, we em-
phasize that this experiment was only an initial com-
parison between the two approaches. Further valida-
tion on other case studies, with improved settings, and
by researchers other than the original tool creators, are
required. Nevertheless, the results obtained already
allowed us to reach some interesting insights.

5.1 Manual inspection

In cases where both approaches found similar code
fragments, the overlap was not always complete.
Sometimes one approach (often code cloning) found
more fragments than the other, or (typically pattern
mining) found larger or richer code fragments. Com-
bining both approaches to complement each other’s
results would be an interesting research direction.

5This percentage would very likely become significantly
larger if we would resolve the issue we encountered with the
CO0 constraint; requiring the patterns to occur in different code
files.

5.2 Automated comparison

The results of the automated comparison show that,
although most clones share some relation with some
patterns, there are only very few clones where this re-
lation is particularly strong. Often, patterns are found
in completely different parts than where clones are
found, or they briefly intersect instead of matching
completely.

This shows that clone detection does, for the largest
part, find different results than pattern mining. This
indicates that both approaches are not redundant over
one another, instead complementing each other.

6 Conclusion

As recurrent code fragments are often considered
symptoms of bad design, several detection techniques
have been proposed. Comparative studies across
emerging techniques could shed further light into the
trade-offs between time complexity and quality of re-
sults. We set out to compare two such approaches:
clone detection and pattern mining, since clone detec-
tion seems more lightweight and a relevant question is
whether pattern mining is worth the additional effort.
Our automated comparison method involves several
levels of data aggregation and is symmetric with re-
spect to the comparison direction: patterns to clone
classes and vice versa.

Our findings indicate that the two approaches are
rather complementary. About half of the clones/pat-
terns share no relation with each other. In the cases
that clone detection and pattern mining are not 100%
similar but do intersect, often the pattern is larger
than the clone. This is because patterns allow for more
structural variance in recurrent fragments than clone
detection. The main reason that sometimes clones are
larger than patterns is that patterns seem constrained
to a single subtree, whereas clones can span several
methods and even exceed class boundaries if they are
all similar.

Acknowledgments

Part of this work was conducted in the context of
an industry-university research project, funded by the
Belgian Innoviris TeamUp project INTiMALS (2017-
TEAM-UP-7).

References

[1] Martin Fowler. Refactoring: Improving the design
of existing code. Addison-Wesley, second edition,
2018.

[2] Jan-Peter Ostberg and Stefan Wagner. On auto-

matically collectable metrics for software main-
tainability evaluation. In Proceedings of the

2014 Joint Conference of the International Work-
shop on Software Measurement and the Interna-
tional Conference on Software Process and Prod-
uct Measurement, pages 32-37. IEEE Computer
Society, 2014.

Magiel Bruntink, Arie Van Deursen, Remco
Van Engelen, and Tom Tourwé. On the use of
clone detection for identifying crosscutting con-
cern code. IEEFE Transactions on Software Engi-
neering, 31(10):804-818, 2005.

Peri Tarr, Harold Ossher, William Harrison, and
Stanley M. Sutton. N degrees of separation:
Multi-dimensional separation of concerns. In
Proceedings of the 1999 International Conference
on Software Engineering, pages 107-119. IEEE,
1999.

Erich Gamma and Thomas Eggenschwiler. Jhot-
draw, 2004.

2013.
31-

Corpus,
accessed

Ewan Tempero. Qualitas
[http://qualitascorpus.com/;
October-2019].

Jolita Savolskyte. Review of the jhotdraw frame-
work, 2004. Technical University Hamburg-
Harburg.

Henrik Beerbak Christensen. Frameworks:
Putting design patterns into perspective. In
Proceedings of the 9th Annual SIGCSE Confer-
ence on Innovation and Technology in Computer
Science Education, ITiCSE ’04, pages 142-145.
ACM, 2004.

Andy Kellens, Kim Mens, and Paolo Tonella.
A survey of automated code-level aspect mining
techniques. In Awais Rashid and Mehmet Aksit,
editors, Transactions on Aspect-Oriented Soft-
ware Development IV, pages 143-162. Springer,
2007.

Angela Lozano, Andy Kellens, Kim Mens, and
Gabriela Arevalo. Mining source code for struc-
tural regularities. In Proceedings of the 2010
17th Working Conference on Reverse Engineer-
ing, pages 22-31. IEEE Computer Society, 2010.

Jeffrey Svajlenko and Chanchal K Roy. Evaluat-
ing modern clone detection tools. In 2014 IEEE
International Conference on Software Mainte-
nance and Evolution, pages 321-330. IEEE, 2014.

Chanchal Kumar Roy and James R Cordy. A sur-
vey on software clone detection research. Queen’s
School of Computing TR, 541(115):64-68, 2007.

[13] Tatsuya Asai, Kenji Abe, Shinji Kawasoe, Hiroki
Arimura, Hiroshi Sakamoto, and Arikawa Setsuo.
Efficient substructure discovery from large semi-
structured data. IEICE Transactions on Infor-
mation and Systems, 04 2002.

[14] Hoang Son Pham, Siegfried Nijssen, Kim Mens,
Dario Di Nucci, Tim Molderez, Coen De Roover,

Johan Fabry, and Vadim Zaytsev. Mining pat-
terns in source code using tree mining algorithms.
In Petra Kralj Novak, Tomislav Smuc, and Saso
Dzeroski, editors, Discovery Science, pages 471—
480, Cham, 2019. Springer International Publish-
ing.

	The Battle
	The Arena
	The fighters
	Clone Detection
	Pattern mining

	The Fight
	Methodology
	Manual comparison
	Automated comparison

	Results of the manual analysis
	Clone instances with no matching pattern
	Matching clone instances and patterns

	Results of the automated analysis

	The outcome
	Manual inspection
	Automated comparison

	Conclusion

