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Abstract. The paper is devoted to the problem of hidden faults, which is inher-
ent in safety-related systems aimed at ensuring the functional safety of high-risk 
facilities to counter accidents. The problem of hidden faults is considered from 
the perspective of a resource-based approach as a problem of growth from a 
lower level of replication to the next level of diversification in the development 
of models, methods and means. Computer systems in critical applications have 
risen to the level of diversification in the division of the operating mode into 
normal and emergency, in the input data and structurally functional checkabil-
ity, which for digital components have become different in these modes. Digital 
components continue to be traditionally stamped based on matrix structures that 
reflect the level of replication. The lag of the components from the development 
of the system creates a problem of hidden faults which can be accumulated dur-
ing the normal mode and reduce the fault tolerance of the components and the 
functional safety of the system in emergency mode. We propose a method of 
counteracting hidden faults by raising components to the level of diversification 
in the promising field of FPGA designing. The proposed method uses the natu-
ral version redundancy inherent in the program code of the FPGA projects with 
LUT-oriented architecture. The method generates and selects versions of the 
program code, reducing many hidden faults of short circuits between neighbor-
ing inputs of LUT units. Possible hidden faults are eliminated by increasing the 
checkability of the FPGA project in normal mode and the trustworthiness of the 
results calculated in emergency mode.  
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1 Introduction and Related Works 

The most important direction in the development of information technologies is their 
improvement in the field of critical applications. This area, which is exceptional in 
nature, has already acquired a scale commensurate with the living space of mankind. 
Power grids and power plants, high-speed ground and air transport, hazardous chemi-
cal production, space technology and weapons are high-risk facilities [1, 2].  

Risk assessment includes two factors related to the probability of an accident and 
the cost of its consequences. The factor of emergency consequences has a tendency of 
constant growth, which is caused by development of objects of high risk in the direc-
tion of their complication and increase of capacity, as well as increase of their num-
ber, density of location and proximity to densely populated areas [3, 4]. 

Only reducing the probability of accidents can counteract the growth of this factor. 
This mission is devoted to information technology implemented in safety-related 
systems, which, according to international standards, are aimed at "ensuring func-
tional safety of both the system and the control object for preventing accidents and 
reducing the consequences if they occur" [5, 6]. 

The challenge in achieving functional safety “is to design the system in such a way 
as to prevent dangerous failures or to control them when they arise” [7]. This provi-
sion automatically includes hidden faults in the concept of "dangerous failures", as 
they pose a problem of their control for safety-related systems and their components 
[8, 9]. 

The fault control function is related to the development of the concept of check-
ability. At an early stage, this concept is known as testability or structural checkability 
of the digital circuit, characterizing it from the point of view of simplicity in the de-
velopment of tests for fault detection [10, 11]. 

The structural nature of testability is due to the fact that it is completely determined 
by the structure of the digital circuit. The next stage in the development of checkabil-
ity is related to on-line testing of digital circuits [12, 13], where checkability also 
shows dependence on input data, which characterizes it as structurally functional. The 
definition of self-testing circuits formulated in the theory of designing the totally self-
checking circuits is known [14, 15]. Self-testing circuits are evaluated in checkability 
taking into account input data [16, 17]. 

Safety-related systems make a significant contribution to the development of the 
concept of checkability of the digital components by diversifying the operating mode 
into normal and emergency. Inputs are also included in the diversification process and 
become different in these modes. Then the structurally functional checkability of the 
digital circuit is converted into a double-mode, which differs in normal and emer-
gency operation due to different input data. Such development of checkability con-
verts harmless hidden faults of conventional computers working only in one operating 
mode, into dangerous ones. Indeed, a fault hidden throughout the operating mode will 
have no effect on the functionality of a regular computer. A hidden fault becomes a 
problem for safety-related systems because such faults can be accumulated in normal 
mode without causing errors under conditions of insufficient structurally functional 
checkability of the circuit, i.e. lack of necessary input data. In the emergency mode, 
the checkability is enriched with new input data and creates conditions for the mani-
festation of accumulated faults in the form of errors [18, 19]. 



The problem of hidden faults has a long history known from unsuccessful attempts 
to detect these faults using imitation modes aimed at recreating emergency conditions. 
The activation of such modes often provides for the shutdown of emergency protec-
tions, which has become one of the causes of the Chernobyl disaster.  

In addition, history knows many examples of emergency consequences as a re-
sult of unauthorized activation of imitation modes because of human factor or due 
to the resulting fault [20, 21].  

The presence of imitation modes creating a real danger to functional safety can 
be explained by two reasons:  

 the high significance attached to hidden faults, which are feared more than 
emergency conditions created by imitation mode;  

 lack of confidence in the fault tolerance of the solutions used, on which 
functional safety of critical systems and control objects is built [22-24]. 

The resource-based approach, which explores the integration of the artificial 
world created by human into the natural one, refers to the problem of hidden faults 
as a growth challenge. This approach identifies three levels in the development of 
models, methods and means: replication, diversification and self-sufficiency as a 
development goal. It shows the transition of safety-related systems to diversifica-
tion and the backlog of their components, which continue to be stamped at a lower 
level of replication using matrix structures. Such classification of the problem of 
hidden faults determines the ways of its solution by raising the components to the 
system level [25, 26]. 

One of the most important directions in the development of digital components 
for critical systems is associated with FPGA designing. FPGA technologies are also 
a prime example of replication level dominance. FPGA chips contain Configurable 
Logic Blocks or Logical Elements, prepared iterative array multipliers, and chains 
for rapid carry propagation to add parallel codes, the libraries of IP-cores with ma-
trix structures [27, 28]. 

 However, FPGA refers to programmable hardware that raises stamped element 
matrices to the level of diversification by using the natural version redundancy in 
program code of FPGA projects with LUT-oriented architecture [29-31]. 

In this architecture, the computing process is organized using LUT units that are 
logic function generators. Their arguments arrive at the inputs of the LUT unit. The 
description of the logical function is stored in the memory of the LUT unit and writ-
ten to this memory in the process of programming the FPGA project as program 
code. In the case of four inputs A, B, C and D, the memory of the LUT unit con-
tains 24 = 16 bits [32, 33]. 

Versions of the program code are created for each pair of the LUT units where 
output of the first LUT unit is connected to the input of the second one. The signal 
between the LUT units may be transmitted by a direct or inverse value using one of 
two versions of the program code. The inverse value at the output of the first LUT 
unit of the pair is provided by inverting the bits of its memory and changing its 
program code accordingly. The obtained inversion at the input of the second LUT 
unit of the pair is compensated by changing the program code with replacement bits 
of the memory [34]. 

This form of redundancy has been used to increase the trustworthiness of the cal-
culated results by generating program code versions and selecting the best one from 



the position of masking the faults between neighboring LUT unit inputs of the 
FPGA project [35, 36]. 

The selection of the version with the best structurally function checkability of the 
LUT units of the FPGA project in the normal mode of the safety-related system or 
trustworthiness of the results calculated in the emergency mode is proposed in [37]. 

A disadvantage of both solutions using version redundancy of program code is 
simulation of calculations on all normal and emergency mode inputs for each combi-
nation of versions generated by the LUT units of the FPGA project. The number of 
program code versions is defined as 2Z, where Z is the number of first LUT units of 
all pairs. 

For example, in the case of Z = 30 and Z = 60, simulation of calculations per-
formed in the FPGA project is repeated for each input word of each mode more than 
109 and 1018 times, respectively. The number of inputs is defined as 2U, where U is the 
number of inputs of the simulated scheme of the FPGA project. For U = 20, the simu-
lation must be repeated 1015 and 1024 times. Such a large number of iterations signifi-
cantly limits the capabilities of the method in the processing of complex circuits. In 
addition, the choice of versions that increase the checkability of the FPGA project in 
normal mode or the trustworthiness of the results with the onset of emergency mode 
helps to reduce a set of the hidden faults, but in general is not the best solution. 

We offer a method to counter hidden faults of the FPGA project taking into ac-
count the peculiarities of this kind of faults. The method allows maximum use of ver-
sion redundancy of program code to reduce many possible hidden faults. Section 2 
contains the main provisions of the proposed method. Section 3 describes the case 
study of the method using the FPGA project on example of the iterative array multi-
plier. 

2 Main Provisions of the Suggested Method  

The proposed method uses the synergy of several types of natural version redun-
dancy. First of all, the method takes into account the natural version redundancy of 
safety-related systems, which is evident in their designing for operation in two essen-
tially different modes: normal and emergency. 

In addition, the method uses version redundancy of hidden fault elimination solu-
tions. They pose a danger to fault tolerant decisions while meeting two conditions: 
accumulation of faults during normal mode and their manifestation in the form of 
errors in emergency mode. Therefore, the hidden fault is eliminated if at least one of 
the above conditions is excluded. Thus, the resistance to hidden faults can be achieved 
with the use of two versions of the solution, which consists in improving the check-
ability of LUT units and the trustworthiness of the results calculated on them, respec-
tively.   

The fault of the short circuit between the two neighboring inputs of the LUT unit 
also demonstrates natural version redundancy. It consists of two fault states: its mask-
ing or error manifestation in the case of the same signal values at the neighboring 
inputs of the LUT unit and otherwise, respectively. Fault masking increases the trust-



worthiness of the calculated results, and its manifestation in the form of error im-
proves the checkability of the LUT unit. 

Versions of the program code allow to control the input of the second LUT unit. 
They are assigned to this input directed or inverse value. Change version manages the 
state of the fault, showing it or masking for improving checkability of the LUT unit or 
the trustworthiness of the results. These improvements can be achieved concurrently, 
assigning them to different modes: normal and emergency, respectively. 

The method generates and considers all versions of the program code that can be 
created for the second LUT unit of each pair. For example, if only two of the four 
LUT unit inputs connected to the outputs of the previous LUT units, then these LUT 
units will form two pairs and 4 versions. 

The method distinguishes between three sets MN, ME and MN&E of bits in the 
memory of each LUT unit: bits addressable in the normal, emergency, and in both 
modes, respectively. Faults which cause errors in bits of both MN and MN&E sets are 
not hidden, as can be detected in the normal mode. Therefore, the fault of the short 
circuit may be hidden, but if they cause errors only in bits of the ME set and do not 
contain errors in bits, addressed in the normal mode. 

The fault circuit between neighboring inputs of the LUT unit maintains proper ac-
cess to its memory bits for identical values of these inputs and indicates the remaining 
bits in the values corresponding to zero values of the signals.  

Examples of the effect of the short circuit faults on accessing the memory of the 
LUT unit are shown in Fig. 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Examples of LUT unit memory: numbers (a) and values (b) of bits and  
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memory in cases of shorts between A and B (c), B and C (d), C and D (e) inputs 
 
The numbering of the LUT unit bits and the correct values of bits of memory, 

which is programmed with the ABBA16 code, shown in Fig. 1, a and b. The memory 
of the LUT unit for cases of shorting inputs A and B, B and C, C and D is shown in 
Fig. 1, c, d, e, respectively. 

Shorting the A and B inputs copies the values of bits BA 00 column into the mem-
ory array columns BA 01 and BA 10. BA 11 column bits retain their value. Shorting 
the B and C inputs copies the value of bits located at the intersection of column BA 
00 and BA 01 with lines DC 00 and DC 10 into bits at the intersection of column BA 
00 and BA 10 with a DC 01 and DC 11 lines as well as into bits at the intersection of 
column BA 10 and BA 11 with lines DC 00 and DC 10. The bits located at the inter-
section of columns BA 10 and BA 11 with lines DC 01 and DC 11 retain their values. 
Shorting the C and D inputs copies the values of bits of the DC 00 line into lines DC 
01 and DC 10. Bits of the DC 11 lines retain their values. Erroneous bit values are 
highlighted in yellow. 

The method performs the following steps: 
Step 1: Determination of all second LUT units of the circuit and for each of them 

the set of all versions of program code. 
Step 2. Simulation of calculations executed in FPGA project for all of the input 

data, i.e., U times, with determination of the MNE = MN  MN&E and ME bit sets in 
memory for each second LUT unit of the pair. 

Step 3. Determination of the MNE and ME sets of bits in the memory for each ver-
sion of each second LUT unit of the pair. 

Step 4. Determination of all possible faults of the short circuit between neighboring 
inputs of each second LUT unit of the pair for cases where at least one of these inputs 
is connected to the output of the previous LUT unit. 

Step 5. Determination of the program codes in the view, distorted under the influ-
ence of any faults. These program codes are generated for each version of each sec-
ond LUT unit of pairs and compared with the correct program code versions. The 
erroneous bits detected in the sets MNE and ME, form the sets MNE ER and ME ER, re-
spectively. 

Step 6. The FPGA project program code is generated using versions containing the 
minimum number of bits in ME ER sets with MNE ER = . 

Step 7: The resulting program code is compared with the initial and least success-
ful in the number of bits in the ME ER sets with MNE ER =  to evaluate the capabilities 
of the method. 

The method improves the checkability of the FPGA project in the normal mode, 
and thus eliminates the hidden faults by choosing versions with sets of MNE ER ≠ . In 
case MNE ER = , the method selects the versions with the lowest number of bits in the 
ME ER set to reduce the set of hidden faults that manifest themselves in an emergency 
mode. 

Reducing many hidden faults, performed in both modes, aimed at improving the 
trustworthiness of the results calculated in the emergency mode. From this position, 
the trustworthiness of the FPGA project results with respect to hidden faults of the 
short circuit between neighboring inputs of LUT units can be estimated taking into 



account erroneous memory bits addressed only in emergency mode in the case of 
MNE ER = . 

The trustworthiness of the result read from the output of the LUT unit can be esti-
mated as TLUT = (1 –  (AE ER / (3AE ER)) КNE ER)×100%, where AE ER and AE are the 
number of bits in the ME ER sets for all three types of short circuit and in the ME set, 
respectively, КNE ER = 1 if MNE ER = , and КNE ER = 0 otherwise.  

The trustworthiness of the FPGA project results can be estimated by the arithmetic 
average of the TLUT values calculated for all LUT units. 

The contribution that is made to the trustworthiness by the checkability of the LUT 
units in the normal mode can be estimated similarly taking into account the error 
memory bits of the ME ER set in the case of MNE ER ≠ . 

Comparison of the best solution with the initial project and the least successful ver-
sion of the program code shows the effectiveness of the method in the specific exam-
ple of FPGA design and the potential of the method, respectively. 

3 Case Study of the Proposed Method 

Experimental verification of the method was carried out using CAD Quartus Prime 
18.1 Lite Edition on the example of a study of a 4-bit iterative array multiplier 
implemented in Intel Max 10 FPGA 10M50DAF672I7G [38, 39]. The digital circuit 
of the obtained FPGA project contains 8 inputs which are supplied with 4-bit 
operands, 30 LUT units with four inputs for performing the multiplication operation, 
and 8 product outputs. The digital circuit simulation was carried out using the 
program implementation of the method. The program was developed in the free 
Delphi 10 Seattle demo version [40].  

As initial data, the program uses a description of a digital circuit with an indication 
of the connections of its inputs or outputs of previous LUT units to the inputs of each 
next LUT unit and the outputs of the circuit. In addition, the number of digital circuit 
inputs, the number of LUT units and their program codes are indicated.  

The program presents the results of examining the digital circuit on the main panel, 
which is shown in Fig. 2. 

The main panel is invoked by pressing the «Start» key and allows to complete the 
program on «Exit» command. The main panel allows to view the values of the 
memory bits for all LUT units operating at different threshold values S, dividing the 
input data of the normal and emergency modes. 

The values of the factors smaller than the S threshold refer to the normal mode, and 
the rest to emergency one. The "S: 2 - 9" key determines 8 threshold values from 2 to 
9. Each press of this key shifts the range of S values by one to the maximum: "S: 8 - 
15" and then the value "S: 2 - 9". The "LUT # 22" key specifies the number 22 of the 
considered LUT unit. Clicking on this key allows to proceed to the LUT unit with the 
following number. The largest number is replaced by the first. Bits addressable in the 
normal and in emergency mode only, colored in green and yellow, respectively. Blue 
color indicates addressing in both modes.  

The lower part of the panel shows the results of the proposed method for each 
value of the S threshold. Line "V" shows the decimal number of the best version of 



the program code. The binary code dcba2 of the version number determines the 
inverted inputs of the second LUT unit by the unit values of the corresponding bits. 

 

 
 

Fig. 2. The main panel of the program implementation  
of the suggested method 

 
For example, version 13 = 11012 means inverting inputs D, C and A. Number 

0 = 00002 indicates the preservation of the source program code [41]. 
The next three lines «V.I», «V.B» and «V.W» evaluate the trustworthiness of the 

calculated results to the initial, the best and the least successful version of the program 
code for FPGA project, respectively. The numerator includes the trustworthiness of 
the results calculated in the FPGA project, and the denominator contains the 
contribution that is made to the trustworthiness of the checkability of the LUT units in 
normal mode. The last line in the numerator and denominator shows the gain in the 



trustworthiness of the best solution compared to the initial project and the least 
successful version of the program code, respectively.  

Diagrams of the dependence in trustworthiness of the results on the S threshold for 
the best, initial and least successful solution are shown in Fig. 3. 
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Fig. 3. Diagrams of the dependence in trustworthiness of the results  
on the S threshold for the best, initial and least successful solution 

 
Diagrams show a tendency to increase trustworthiness of the results with an 

increase in the S threshold. 
Therefore, it is important that the greatest gain in the best solution obtained by the 

proposed method is achieved for small threshold values that are typical for circuits 
operating in normal mode at a noise level. For S = 2 and S = 3, the trustworthiness of 
the results increases relative to the initial program code from 59% to 84% and from 
64% to 87%, i.e. by 25% and 23%, respectively. 

4 Conclusions 

FPGA designing, which is a promising direction in the development of digital 
components for safety-related systems, opens up new possibilities for solving the 
hidden fault problem inherent in such systems. The programmability of FPGA 
projects allows to solve this problem as a growth challenge by raising the components 
to the level of diversification, where critical systems are located in operating modes, 
input data and digital circuit checkability.  



The proposed method uses the version redundancy in the program code of FPGA 
projects with a LUT-oriented architecture to reduce the set of hidden faults in the 
short circuit of neighboring inputs of the LUT units. 

Such faults distort the addressing of the memory bits of the LUT units. Memory 
bits read at the wrong address may have erroneous values that reduce the 
trustworthiness of the calculated results. 

A hidden fault is dangerous with errors that are not detected in normal mode and 
distort the results in emergency one. 

The method reduces the number of hidden faults in two ways. The first way is to 
search for each LUT unit the program code versions, showing a failure in the normal 
mode. The second way applies to LUT units for which there are no such version, and 
chooses the version with the least amount of erroneous values in bits, addressed only 
in emergency mode.  

The advantage of the proposed method is its low complexity, limited not by the set 
of all versions of the FPGA project program code, but by the set of LUT units with 
mutually independent examination of their program codes. 

Further research is planned in the direction of expanding the circle of problems 
which can be identified and solved as a growth challenge in relation to safety-related 
systems and their components based on the development and practical application of 
the concepts of checkability and natural version redundancy, in particular in FPGA 
designing. 
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