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Abstract. Continuous-time prediction of self reported musical emotions
is a challenging problem with many applications. However, there are rel-
atively few studies on design of Deep learning models for the above prob-
lem. Existing methods for the same problem has used LSTMs, with mod-
est success. In this work, we describe an attentive LSTM based approach
for emotion prediction from music clips. We postulate that attending to
specific regions in the past gives the model, a better chance of predicting
the emotions evoked by present notes. We validate our model through
extensive experimentation on the standard 1000 Songs for Emotional
Analysis of Music dataset, which is annotated with arousal and valence
values in continuous time. We find that the attentive models significantly
improve the prediction performance of arousal and valence over vanilla
LSTM, both in terms of R2 and Kendall-τ metrics.
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1 Introduction

Music is well known as an effective means of eliciting emotions in listeners [8].
Automatic determination of the perceived emotion in music has become a ma-
jor area of focus for the music information retrieval (MIR) community. It finds
varied applications in the domains of personalized and/or generalized music rec-
ommendations, organizing music databases, automatic music creation etc. Many
recent studies have used the Circumplex model of affect, proposed by Russel [11],
to denote music emotions. According to the dimensional Circumplex model [11],
emotion is mapped into a 2-D plane, spanned by two axes denoting arousal
and valence, as points given by the pair of values <arousal, valence>. Thus,
the problem of emotion recognition/prediction is turned into a two dimensional
regression problem [18]. Keeping this in mind, a number of publicly available
music clip datasets have been developed, which help to test novel methods for
music emotion prediction, [13]. It is understandable that the emotions related to
music are a time-continuous process, where the context of the sequential music
frames play an immense role on the related emotion. Relating this to the ma-
chine learning perspective, one can discern the need of context sensitive models
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like recurrent neural networks (RNNs) in music emotion prediction. RNNs can
access previous step activations using the hidden states, which remember rele-
vant information about a pertinent sequence, to predict current emotion. Long
Short-Term Memory (LSTMs) are such a type of RNNs, which have performed
well in several MIR tasks including music emotion regression [15].

In this study, we propose to use the attention mechanism with a deep RNN
structure composed of LSTMs, to predict the perceived emotion in each defined
time frame of music continuously. We use the well known ComPare 2013 [12]
set of features, extracted using the openSMILE tool [6] and the 1000 Songs for
Emotional Analysis of Music [13] dataset for evaluation in the present study, as
it has proved to produce significant results in many recent works [14].

2 Related Work

Current state-of-the-art methods for audio sentiment analysis are mostly based
on deep neural network. RNNs are a class of neural networks that are suited
for time series data. They use the outputs of network units at time t as input
to other units at time t + 1. This allows RNNs to store temporal information
present within the input data. Though in theory, RNNs can keep track of arbi-
trary long-term dependencies in the input sequences, practically they suffer from
the problem of vanishing gradients [10]. RNNs using Long Short Term Memory
(LSTM) [7] units partially solve this problem. LSTMs have been found to be
extremely useful to capture long-term context or dependencies in data [10] and
are now widely used to solve a large variety of problems, including MIR tasks.
Recently, Coutinho et. al. [2] and Weninger et. al. [15] used RNN-LSTM net-
works successfully to perform continuous time music mood regression. Weninger
et. al[15] reports performance by averaging predictions and achieving R2 of upto
0.70 and 0.50 for continuous time arousal and valence respectively. Another of
their works [17] also tries to improve on the performance by using a different as
cost function.

Though RNN-LSTMs are useful, it must be acknowledged that the difficulty
of successfully capturing the context increases with length of input sequence
[9]. This may become problematic for the neural network in case of longer input
sequences like those in music. Here, inter-(musical)event relationships might play
a bigger role in eliciting emotions than the actual sequence of (musical) events.
Change in the order of the musical notes or other events might change the
emotions considerably, much like context sensitive languages. To address this
issue, Bahdanau et. al. [1] proposed the attention model, for the encoder-decoder
architecture for neural machine translation. According to the attention model, to
compute each output, the model will attend on those parts of the input sequence,
which are more relevant for that particular output, by assigning higher weights
to the associated encoder-side hidden states, using an alignment model. Though
this model was originally proposed for the purpose of encoder-decoder based
neural machine translation [1], it finds application in many different problems.
Early works include use of LSTM in finding temporal structure in music [3],
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music composition and generation [4] by Eck et. al. Recently, Coutinho et. al.
[2] and Weninger et. al. [14], [15], [17] used RNN-LSTM networks successfully
to perform continuous time music mood regression.

Most of the MIR tasks utilizing deep RNN-LSTM structures need consider-
able amount of training data to produce good results. In the domain of music
emotion recognition, one such widely used dataset is the 1000 Songs for Emo-
tional Analysis of Music [13]. In the present work we use this dataset for evalu-
ation. The openSMILE [6] toolkit is used to extract the ComParE [12] feature
set for training.

3 Methodology

3.1 Dataset and Acoustic Features Used

In the present work, we use the 1000 Songs for Emotional Analysis of Mu-
sic dataset [13] for all experiments. Of the thousand clips,the dataset provides
arousal and valence annotations for only 744 clips, which are used as ground
truth values. Among these, 10% of the clips were assigned to the test set and the
remaining formed the training set. We also use a set of purely acoustic affective
features, given by the baseline feature set of the 2013 Computational Paralin-
guistics Evaluation (ComParE) tasks [12]. It has been shown by Weninger et.
al. [14] that this set performs well in assessing emotion in terms of arousal and
valence. The feature set contains 6670 features. These features are calculated by
applying statistical functions to the contours of low-level descriptors (LLDs) of
respective fixed length segments or time frames of the music audio signal, or the
whole song. The statistical functionals include mean, moments etc. The LLDs
include auditory weighted frequency bands, their sum, spectral measures such as
centroid, roll-of point, skewness, sharpness, and spectral flux, MFCCs etc. The
complete set of the LLDs, functionals and their detailed analysis can be found
in [16], [5]. In the present work, we use TUM’s open-source openSMILE feature
extractor [6], to extract these features at non-overlapping intervals of 500 ms, for
each music clip. The feature values for the datset were observed to be of different
ranges. Thus, before performing multivariate regression, standard normalization
was performed on the feature set. The features of the last 30 seconds of each
clip from the dataset are used for this work. So, each clip is characterised by 61
feature vectors, each of size 6670. The arousal and valence annotations for each
500 ms time frame provided by the dataset [13] are used as the ground truth
values.

3.2 LSTM-RNN

The key component of an LSTM is the cell state C, through which the relevant
context/dependency information between the elements in the input sequence
flows, with careful regulations by the forget gate (f), input gate (i) and the
output gate (o). Intuitively, it can be understood that the forget gate (equation1)
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decides which information is irrelevant and can be thrown away from the cell
state.

ft = σ(Wf · [ht−1, xt] + bf ) (1)

Next, the input gate (equation2) regulates what new information needs to be
stored in the cell state, with the help of a vector of new candidate values
(equation3).

it = σ(Wi · [ht−1, xt] + bi) (2)

C̃t = tanh(WC · [ht−1, xt] + bC) (3)

Thus, an update to the cell state is performed (equation4).

Ct = ft ∗ Ct−1 + it ∗ C̃t (4)

Finally, the output gate (equation5) decides the output of the network (equation6),
based on a filtered version of the cell state.

ot = σ(Wo · [ht−1, xt] + bo) (5)

ht = ot ∗ tanh(Ct) (6)

In the above equations, xt and ht denote the input and output at time t. Each
W and b denote the associated weights and biases of each of the gates. The
LSTM gates use the sigmoid function as the activation function. Though RNN-
LSTMs (equation 7) provide a great way to carry relevant information from one
step to the next through the cell state, the difficulty increases with length of
input sequence. Basically, the neural network has to compress all the necessary
information of an input sequence into a single fixed length vector, the last hidden
state (equation 8). This may become problematic for the neural network in case
of longer input sequences.

ht = f(xt, ht−1) (7)

c = q(h1, h2, . . . , hT ) = hT (8)

3.3 Attention Mechanism

To address this issue, Bahdanau et. al. [1] proposed the attention model, for
the encoder-decoder architecture for neural machine translation. Let xi and yi
denote the ith input and output of the model; hi and si are the hidden states of
the encoder and decoder associated with ith input and output respectively, each
annotation hi contains information about the whole input sequence with strong
focus on the parts surrounding the ith input. ci is the unique context vector
associated with the ith input; g() is a function of yi−1, si and ci. According to
the attention model [1], to compute each output (equation 9), a distinct context
vector (equation 11) is used, which is a function of all the hidden states at the
encoder side and not just the last one. Here, equation 10 is a modified form of
equation 7.

p(yi|y1, y2, . . . , yi−1,x) = g(yi−1, si, ci) (9)
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si = f(si−1, yi, ci) (10)

ci =

Tx∑
j=1

αijhj (11)

Each time, the context vector ci is calculated as a weighted sum of all the
hidden states (equation 12). The idea being, for each output, the context vector
will attend on those parts of the input sequence, which are more relevant for
that particular output, by assigning higher weights to the associated encoder-
side hidden states, using an alignment model. In equation 13, eij is the score of
how well inputs around position j and the output at position i align or match.

αij =
exp(eij)∑Tx

k=1 exp(eik)
(12)

eij = a(si−1, hj) (13)

We use a modified form of attention, as the problem we are tackling is music
mood regression and not machine translation, thus there is no need for a decoder
side architecture. The encoder encodes the input into a set of hidden states and
the attention is applied on them to produce target arousal and valence values.
Generally, the encoder in neural machine translation reads the input sequence
x = (x1, x2, . . . , xT ) – which is a sequence of vectors – and produces the hidden
states (h1, h2, . . . , hT ), using some RNN approach like in equation 7. In case
LSTM is used, equation 7 takes the specific form of equation 6. In most cases, the
whole set of hidden states (h1, h2, . . . , hT ) are available to compute the context
vector for the translation. So, all the hidden states are used for the context vector
, either with attention (equation 11) or without (equation 8). This also makes
sense for natural language processing, as the translation of an input xt might
depend on any input xi, where both i < t or i > t are possible.

But, when we listen to music, the emotion associated with the music at tth

second is seldom influenced by the music following it. Rather, it might be argued,
that the associated emotions at the tth second will be more dependent on any
music preceding it. Let the output be y = (y1, y2, . . . , yT ). For the tth output,
yt, it will be a function of a) the present hidden state ht, b) the previous output
yt−1, c) the unique context vector ct.

p(yt|y1, y2, . . . , yt−1,x) = g1(ht, yt−1, ct) (14)

The unique context vector ct depends on the sequence of annotations (h1, h2, . . . , ht−1),
and is computed as a weighted sum of these annotations hj . So, the model is
attending to each hj , corresponding to each of the inputs.

ct =

t−1∑
j=1

αtjhj (15)

As in Bahdanau et. al.’s [1] work, referring to our equations 12 and 13, for each
output yt, we calculate the alignment between the corresponding ht−1 and each



6 S. Chaki et al.

Table 1: Summary of best results obtained across different models

Network Name
T = Topology Arousal Valence

#L L1 Size L2 Size Attn R2
A τA MAEA R2

V τV MAEV

LSTM NAT 700 1 700 - - 0.70 0.21 0.13 0.39 0.10 0.15
LSTM NAT 1024 1 1024 - - 0.73 0.12 0.12 0.32 0.05 0.15

LSTM NAT 700 128 2 700 128 - 0.69 0.20 0.12 0.11 0.11 0.16

LSTM AT 300 1 300 - Y 0.75 0.15 0.13 0.44 0.05 0.17
LSTM AT 400 1 400 - Y 0.75 0.07 0.13 0.53 0.05 0.16

LSTM AT 300 128 2 300 128 Y 0.71 0.16 0.13 0.51 0.04 0.16

of hj , where 1 ≤ j ≤ (t− 2). So, the alignment model, when attending to hj , is
given by

etj = a(ht−1, hj) (16)

Each of these scores etj are used to calculate the attention weights for each hj
as below

αtj =
exp(etj)∑t−1
k=1 exp(etk)

(17)

4 Experimental Setup

4.1 Training and Evaluation

10-fold cross validation was used on the training and test sets. Evaluation mea-
sures are computed and reported on the entire test set and not by averaging
across folds. We compare the proposed attention approach to the more tradi-
tional LSTM-RNN approach, which has provided good results in the past [15].
Both use same input features, standardized to zero mean and unit variance.
Neural networks with one or two hidden layers were used for the experiments.
The number of LSTM units (linear activation) used in each case varied from 32
to 1024. For the attention networks, the attention layer is added after the hid-
den layers, using sigmoid attention activation. Root Mean Square Propagation
(RMSProp) optimization with 10 sequences per weight update is used for train-
ing. Training is done for maximum 30 epochs. An early stopping strategy is also
used, making use of a validation set from each fold’s training set. If validation
error shows no improvement over 10−4 after 5 epochs, processing is stopped.
Mean squared error (MSE) is used to calculate loss. Sequences are presented
in random order during training. All hyper-parameters not explicitly mentioned
here are left to their default values as in Tensorflow 1.14.

4.2 Models Used

The networks used for the current work are assigned names depending on whether
they apply attention (AT) or not (NAT), followed by the layer sizes. For exam-
ple, for an LSTM, no attention network with 1 layer of 128 hidden units, the
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Table 2: Effect of different network topologies on LSTM NAT regression models

Network Name
T = Topology Arousal Valence

#L L1 Size L2 Size Attn R2
A τA MAEA R2

V τV MAEV

LSTM NAT 128 1 128 - - 0.56 0.11 0.13 0.20 0.11 0.15
LSTM NAT 300 1 300 - - 0.57 0.16 0.12 0.22 0.12 0.16
LSTM NAT 400 1 400 - - 0.60 0.14 0.11 0.29 0.08 0.16
LSTM NAT 512 1 512 - - 0.62 0.19 0.14 0.20 0.09 0.17
LSTM NAT 700 1 700 - - 0.70 0.21 0.13 0.39 0.10 0.15
LSTM NAT 1024 1 1024 - - 0.73 0.12 0.12 0.32 0.05 0.15

LSTM NAT 700 128 2 700 128 - 0.69 0.20 0.12 0.11 0.11 0.16
LSTM NAT 700 400 2 700 400 - 0.68 0.14 0.11 0.28 0.09 0.16

Table 3: Effect of different network topologies on LSTM AT regression models

Network Name
T = Topology Arousal Valence

#L L1 Size L2 Size Attn R2
A τA MAEA R2

V τV MAEV

LSTM AT 32 1 32 - Y 0.57 0.14 0.13 0.21 0.06 0.18
LSTM AT 64 1 64 - Y 0.63 0.14 0.14 0.22 0.09 0.18
LSTM AT 128 1 128 - Y 0.69 0.13 0.13 0.48 0.06 0.16
LSTM AT 300 1 300 - Y 0.75 0.15 0.13 0.44 0.05 0.17
LSTM AT 400 1 400 - Y 0.75 0.07 0.13 0.53 0.05 0.16

LSTM AT 300 128 2 300 128 Y 0.71 0.16 0.13 0.51 0.04 0.16
LSTM AT 400 128 2 400 128 Y 0.70 0.10 0.12 0.47 0.08 0.17

name is LSTM NAT 128. For an LSTM, attention network with 2 layers of 700
and 128 hidden units each, the name is LSTM AT 700 128. Thus, all networks
belonging to each proposed model class are assigned the suffixes a) LSTM, no
attention is LSTM NAT, b) LSTM with attention is LSTM AT. We replicate one
of the best models proposed in Weninger et.al’s work [15], with a single layer
LSTM-RNN, though using the whole dataset [13] and entire feature set [12]. We
get comparable results for layer size of 400 units. This is named LSTM NAT 400
and used as a baseline in this work.

4.3 Evaluation metrics

The metrics used for reporting the results are Coefficient of determination (R2),
average Kendall’s τ per song (τ)and mean absolute error (MAE). The determi-
nation coefficient (R2) is a key output of regression analysis, which provides a
measure of how well observed outcomes are replicated by the model, based on the
proportion of total variation of outcomes explained by the model. Best possible
score is 1.0. It can also be negative. If a data set has n values marked (y1 . . . yn),
and each associated with a predicted value (f1 . . . fn). So, R2 is defined as

R2 ≡ 1− SSres

SStot
(18)
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(a) Clip 2 - Arousal Comparison (b) Clip 2 - Valence Comparison

Fig. 1: Comparison of Arousal and Valence Predictions with the ground truth
and baseline models for Clip 2

(a) Clip 584 - Arousal Comparison (b) Clip 584 - Valence Comparison

Fig. 2: Comparison of Arousal and Valence Predictions with the ground truth
and baseline models for Clip 584

where, SSres =
∑

i (yi − fi)2 and SStot =
∑

i (yi − y)
2
, given y = 1

n

∑n
i=1 yi.

Kendall’s τ per song (τ) is a measure of how well the emotional profile of each
song is captured by the regressor, as opposed to overall correlation. It measures
the correspondence between two rankings. Values close to 1 indicate strong agree-
ment, values close to -1 indicate strong disagreement. It is defined as

τ =
P −Q√

(P +Q+ T ) ∗ (P +Q+ U)
(19)

where, P is the number of concordant pairs, Q the number of discordant pairs, T
the number of ties only in target set (y1 . . . yn), and U the number of ties only in
predicted set (f1 . . . fn). The mean absolute error (MAE) is given for reference.
In the next section, we report the results of applying the proposed model for
dynamic music emotion regression.
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5 Experimental Results

5.1 Comparison of methods for emotion prediction

In the current work, we use four main types of LSTM-RNN models, which are

– No Attention (LSTM NAT)
• Single Layer: Eg. LSTM NAT 128
• Double Layer: Eg. LSTM NAT 700 128

– With Attention (LSTM AT)
• Single Layer: Eg. LSTM AT 128
• Double Layer: Eg. LSTM AT 400 128

In the first set of experiments, the performances of different models using
different network topologies are compared. The best results obtained from each
of these models are summarized in table 1.

In the case of LSTM NAT networks, separate models for arousal and va-
lence are trained using the LSTM-RNN architecture. Performances of networks
having one hidden layer with 128, 300, 400, 512, 700, 1024 units and two hid-
den layers with (700, 128) and (700, 400) units are calculated. Table 2 reports
the results for regression without attention, using different network topologies.
For the single-layer topologies, a clear trend can be seen for arousal. With the
increase in layer size (L1 Size), R2

A increases. τA increases till L1 Size = 700,
but decreases for L1 Size = 1024. The metrics for valence does not follow a clear
trend. It can be seen that LSTM NAT 700 performs best in terms of all the eval-
uation metrics considered, for both arousal and valence, giving R2

A = 0.70, τA
= 0.21, R2

V = 0.39, and τV = 0.10. Though, LSTM NAT 1024 performs better
for arousal (R2

A = 0.73), its performance dips for valence (R2
V = 0.39). τ is also

reduced for both arousal and valence. The two-layer topologies of this model,
LSTM NAT 700 128 and LSTM NAT 700 400 perform comparable to the best
single layer network LSTM NAT 700 and LSTM NAT 1024 for arousal, both in
terms of R2

A and τA. The performance for valence decreases in the 2-layer topolo-
gies. Thus, increasing layer size might help improve performance for arousal, but
not for valence. Also, increasing the number of hidden layers might be unable
to produce any significant improvement in performance for both arousal and
valence.

The performances of of LSTM AT networks, using different network topolo-
gies are presented in table 3. Performances of networks having one hidden layer
with 32, 64, 128, 300, 400 units and two hidden layers with (300, 128) and
(400, 128) units are calculated. A clear trend for performances of arousal and
valence predictions are observed in this case. For arousal, among the single-
layer topologies, best performance is recorded for the networks LSTM AT 300
and LSTM AT 400, for R2. It can be seen that addition of the attention mech-
anism improves the performance according to both metrics. For both arousal
and valence, the best performances among all the models used is recorded for
LSTM AT 400, with R2

A = 0.75 and R2
V = 0.53. Henceforth, for all comparison

purposes, we use this model as the best proposed model of this study. Increase in
number of layers produce comparable performance for both arousal and valence
and no significant change is observed.
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(a) Arousal Best Prediction -
LSTM AT 400

(b) Valence Best Prediction -
LSTM AT 400

(c) Arousal Baseline Prediction -
LSTM NAT 400

(d) Valence Baseline Prediction -
LSTM NAT 400

Fig. 3: Arousal and Valence Error histograms over validation set using the pro-
posed best methods and the baseline method

5.2 Comparison of fine-grained emotion prediction

In the second set of experiments, the best models for arousal and valence pre-
dictions, as obtained in the previous section, are used for fine-grained (per 500
ms) emotion prediction of some music clips. For arousal and valence predictions,
we use the LSTM AT 400 model (table 1). We choose two clips from the 1000
Songs for Emotional Analysis of Music [13] dataset, with clip ids 2 and 584 re-
spectively. Clip 2 is of the genre Blues and negative valence (gloomy). Clip 584
is of the Folk genre, and significantly upbeat and positive valence (happy). We
compare the predicted values with a) The ground truth values as provided by
the 1000 Songs for Emotional Analysis of Music dataset [13], and b) the base-
line model [15], as represented by LSTM NAT 400. Figures 1(a) and 2(a) denote
the time varying arousal predictions, and figures 1(b) and 2(b)denote the time
varying predictions for valence. In case of clip 2, 1(a) shows that the arousal pre-
diction errors are lower for the proposed model initially, for the first 20 seconds.
In the last 10 seconds, the errors of the proposed model and the baseline model
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are comparable. But for valence prediction, the errors of the proposed model are
significantly lower, as seen in figure 1(b). For clip 584, figure 2(a) shows that
the arousal prediction errors are lower across the entire clip for the proposed
model, thus matching the ground truth more. For valence prediction, as seen in
figure 2(b) the errors of the proposed attention model are significantly low for
the entire clip.

5.3 Cross analysis of errors

In the third set of experiments, we use the best proposed model LSTM AT 400
and the baseline model LSTM NAT 400 on the validation set, to group the clips
into error bins for arousal and valence prediction. These are shown as histograms
in figure 3. Comparing figures 3(a) and 3(c), it can be seen that, for the proposed
model, the number of clips with higher values of errors are less, in case of arousal.
In case of valence, for the proposed model, almost all the clips are grouped into
the error bins ≤ 0.05 (figure 3(b). Whereas for the baseline model, a significant
number of clips across bins are present.

6 Conclusion

We demonstrate that the state of the art models for continuous-time emotion
prediction perform modestly, thus emphasizing the need for further research in
this area. We have proposed an attentive LSTM based model which improves
the state of the art performance significantly, on standard benchmark dataset
with standard metrics.
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