
Towards a Formal Framework for Multimodeling in
Software Engineering

Rick Salay

Supervisors: John Mylopoulos, Steve Easterbrook
University of Toronto

{rsalay, jm, sme}@cs.toronto.edu

Technical Problem

In Software Engineering, we typically model systems using multiple “partial”
models of different types. There are several reasons for this. Firstly, different views of
the software are best captured using a modeling language most appropriate for that
view. Secondly, the complexity of a model for a piece of software requires that it be
decomposed into smaller parts and descriptions at different levels of abstraction.
Thirdly, the widely accepted principle of “separation of concerns” requires that
different models be created to address different purposes. Finally, different models
can express the viewpoints of different stakeholders. Furthermore, the use of multiple
models is typically supported by the development process - most contemporary
modeling paradigms (e.g. UML) and development processes mandate the use of
multiple views and require some form of iteration in which a series of progressively
more detailed models are created.

Although the use of multiple models is necessary for all of the reasons listed
above, it raises the problem of how to effectively work with such a set of interrelated
models – i.e. how to comprehend, create, check, extend, change or otherwise
manipulate them in meaningful ways to achieve certain modeling objectives. Thus,
tools are clearly required to assist with this and such tools should be based on a
suitable formalism. My research objective is to define such a formalism and illustrate
its use in example tools.

Research Claim and Approach

A key observation that motivates my work is that the relations between models are
seldom just generic “mappings” but instead usually realize an incremental modeling
step of some kind. Thus, we have steps like translations, projections, refactorings,
refinements, decompositions, merges, the taking of sub-models or aspects, etc. In
each case, the relation contains the details of how the elements of the component

2 Rick Salay

models in the step are related1 . These details constitute the syntactic and semantic
aspects of a relation while the modeling step enacted by it is its “pragmatic” aspect.

In order to provide tool support for modeling with many models, a formalism is
required that treats model relations and sets of interrelated models, including their
pragmatic aspects, as first class entities that can be typed, characterized using
metamodels, reasoned about and manipulated using operators. To achieve this I
propose an approach with two key facets. Firstly, a set of interrelated models can be
viewed as a kind of hierarchical model – a multimodel. Secondly, relations types can
be classified using meta-types corresponding to the typical modeling steps that arise
in software engineering. Together, these provide a unified framework in which to
express modeling scenarios within software engineering. We now elaborate these
facets further.

 A metamodel can be used to define a relation type between model types by
showing what element types are found in an instance of the relation type and how
these are used to relate the elements of the related models. If we then define a
hierarchical metamodel as consisting of metamodels for a set of model types and
relation types between them (and possibly additional constraints), then an instance of
this is a set of models and relations between them that conform to the metamodels.
We call such a set, a multimodel, and this kind of metamodel defines a multimodel
type. More generally, we can define an order hierarchy of models – elements such as
“class”, “component” and “state” are considered 0th order models, models such as
class diagrams and statecharts that consist of these elements and their relations are 1st
order models, models consisting of 1st order models and their relations are 2nd order
models, etc. Relations have a more complex “order arity”. For example, the relation
type that relates a class to its statechart is a (0, 1)-order relation since it relates 0th-
order and 1st-order model while the sub-model relation that relates a class diagram to
another that contains it is a (1,1)-order relation. An example of a (2,1)-order relation
is one where a set of class diagrams with relations between them is related to another
class diagram that represents their “merge.” Thus, a multimodel can contain models
and relations of different orders and provides the necessary richness to express the
structure of a complex modeling scenario. In addition, the underlying constraint
language (we use order sorted first order logic) allows for various types of reasoning
including the checking of the static semantics, consistency checks between constituent
models by checking the static semantics of relations, inference of relations from other
relations, etc.

Since a multimodel is hierarchical, it naturally lends itself to different abstractions
based on aggregation. We refer to an abstraction such as this as a macromodel. Thus,
a macromodel is a graphical model whose elements denote models and whose edges
denote model relations. Macromodels are useful both because they are convenient
views of the structure of a multimodel and also because they can be used to specify a
multimodel. The latter is achieved by considering some model/relation elements to be
placeholders that denote future models/relations to be created and these are
constrained by the indicated typing and their relations to other existing models. For
example, a placeholder for a sequence diagram may indicate that it must reference

1 Note that many of these steps are not “transformations” because the result model cannot be

generated from the source model, but they are generally directed relations.

Towards a Formal Framework for Multimodeling in Software Engineering 3

classes in a particular existing class diagram and must refine a particular existing
sequence diagram.

In addition to supporting model relation types as first class entities, we use
syntactic, semantic and pragmatic aspects of relation types to classify them using
meta-types. For example, the generic signature Transformation(M, M1) specifies a
binary relation meta-type with instances being relation types such as the UML to Java
transformation UML2Java(UML, Java). The key syntactic constraint of a
transformation is that the M1-model must be uniquely determined once the M-model
is given - thus, it acts like a function and we can also write it as
Transformation(M)�M1. Some common subtypes of Transformation(M)�M1

include Projection(M)�M1 and Translation(M)�M1 which have additional syntactic
and semantic constraints. Other relation meta-types include Refinement(M, M1),
Refactoring(M, M), Submodel(M, M), Aspect(M, M1), Homomorphism(M, M), etc.
These meta-types can be further qualified by the orders of the models they deal with.
For example, Refinement(M0, M11) classifies relations that decompose a 0th order
model type (i.e. an element type) into a set of related elements represented as a 1st
order model type while Merge(M2) � M11 classifies transformations that merge sets
of interrelated 1st order models into another 1st order model.

The key contribution of this framework is to provide a uniform approach for
expressing different modeling scenarios that arise in software engineering. In
particular, the fact that it is metamodel driven makes it applicable in a wide variety of
situations including model driven engineering scenarios based on multi-view
modeling languages such as UML or for related sets of domain specific modeling
languages.

Related Work

Existing work on dealing with multiple models has been done in a number of different
areas. Metamodeling is a key component of any such formalism. The foundational
work of Telos [12] on metamodeling within software engineering defined a very
general approach to modeling at multiple meta-levels but did not address the
definition of multiple model types. More recently, configurable modeling
environments, sometimes called meta-CASE tools, allow model types to be defined
and corresponding modeling tools to be automatically generated for creating and
processing the models. These include the Eclipse Graphical Modeling Framework
(GMF) [7], Generic Modeling Environment (GME) [13], Domain Modeling
Environment (DoME) [5] and MetaEdit+ [10]. In each case, there is a
metametamodeling language that is used for defining metamodels. All approaches
allow the use of metamodels for defining model types containing simple elements and
relations but not necessarily models containing models. This is the case with MOF
and Ecore. In contrast, the MetaEdit+, DoME and GME tools do support models
containing models – possibly because they emerged in the context of work in Method
Engineering where the focus is on defining a single metamodel that encompasses an
entire development method. However, even with these, model relations are not treated

4 Rick Salay

as first class entities and cannot be defined in the rich ways that are required for
general multimodeling.

The emerging field of Model Management [2] has close ties to my work. This has
developed in response to the problems of dealing with multiple models in meta-data
management such as the schema integration problem. A key part of the approach here
is to express the relation between two models by defining a “mapping” between them
and then treating models and mappings as basic units that can be manipulated at the
macroscopic level by using a set of generic model management operators. This basic
idea has been elaborated in various ways [6, 3, 4]. On the one hand, my focus is
different than this work in that I am interested in supporting the modeling process
whereas the motivation behind model management is primarily model integration. As
a result, I have a richer taxonomy of model relation types and view model
management operators as particular subclasses of the transformation meta-type. On
the other hand, this work has strong mathematical foundations that may be of value in
my framework. This is something I am investigating.

The concept of a macromodel is similar to that of a “megamodel” as first defined
by Favre[8] and also later as part of the Atlas Model Management Architecture
(AMMA) [1]. In both cases the elements of a megamodel denote models and the
edges denote the relations between them. My approach differs from these in that a
macromodel is type of model related to a multimodel in a formal way via abstraction,
whereas a megamodel is closer to a form of documentation for a resource repository
used in modeling.

Progress and Methods

I have developed an initial candidate metamodeling formalism for multimodels based
on sorted first order logic with transitive closure and use some facets of Institution
theory [9]. An initial taxonomy of relation meta-types has also been proposed based
on a survey of the software engineering literature. The intention is to refine this
further in the context of actual usage scenarios.

In order to do some preliminary evaluation and experimentation with the
framework, a hypothetical metamodel was defined for UML multimodels (called
“UMLLite”) and three multimodeling use cases were defined and tested on a set of
UML diagrams sourced from a publicly available example project [11]. The first use
case was to extend the set of diagrams to a multimodel based on the UMLLite
metamodel by adding the model relations between the diagrams as specified in the
metamodel. The macromodel was then produced to show the structure of this
multimodel. The goal here was to informally determine whether a macromodel could
be useful for making the set of models more comprehensible and this indeed seemed
to be the case. A more rigorous evaluation is required to determine whether this is
generally true. The second use case involved showing that this macromodel could be
used to specify extensions to a multimodel. This experiment revealed that even a
simple specification task sometimes needs to use relations between relations. Finally,
the third use case was to show how to develop an operator (i.e. transformation) for
constructing new sequence diagram refinements from existing ones. The conclusion

Towards a Formal Framework for Multimodeling in Software Engineering 5

of this experiment was that, although such an operator could be “coded” using axioms
in the metamodeling formalism, it is cumbersome and it suggests that higher order
extensions to the logic would be desirable. I am investigating this.

In order to actualize and evaluate the framework in a more in-depth way, I am
developing an Eclipse-based tool to implement the framework. The intention is to use
this as a basis for doing more detailed case studies that will help evaluate the
usefulness of the framework.

References

[1] “ATLAS MegaModel Management” website: http://www.eclipse.org/gmt/am3/

[2] Bernstein, P. A. “Applying Model Management to Classical Meta Data Problems,” In Proc.

CIDR, 2003

[3] Brunet, G., Chechik, M., Easterbrook, S., Nejati, S., Niu, N., and Sabetzadeh, M. 2006. “A

manifesto for model merging.” In Proceedings of the 2006 international Workshop on
Global integrated Model Management (Shanghai, China, May 22 - 22, 2006). GaMMa '06.
ACM Press, New York, NY, 5-12.

[4] Boronat, A., Carsí, J. A., Ramos, I. “An Algebraic Baseline for Automatic Transformations

in MDA,” Electr. Notes Theor. Comput. Sci. 127(3): 31-47 (2005)

[5] DoME website. http://www.htc.honeywell.com/dome/support.htm#documentation

[6] Diskin, Z. “Mathematics of Generic Specifications for Model Management I,” In

Encyclopedia of Database Technologies and Applications 2005: 351-358

[7] Eclipse Graphical Modeling Framework website. http://www.eclipse.org/gmf/

[8] Favre, J. M. “Modelling and Etymology.” Transformation Techniques in Software

Engineering 2005

[9] Goguen, J.A. and Burstall, R.M. “Institutions: Abstract Model Theory for Specification and

Programming.” J. ACM 39(1): 95-146, 1992.

[10] MetaEdit+ website. www.metacase.com

[11] Methods for Testing and Specification (MTS); Methodological approach to the use of

object-orientation in the standards making process. ETSI EG 201 872 V1.2.1 (2001-08):
http://portal.etsi.org/mbs/Referenced%20Documents/eg_201_872.pdf

[12] Mylopoulos, J.; Borgida, A.; Jarke, M.; Koubarakis, M. "Telos: Representing Knowledge

About Information Systems", TOIS 8(4), pp. 325-362.

[13] “The Generic Modeling Environment.” http://www.isis.vanderbilt.edu/publications/

archive/Ledeczi_A_5_17_2001_The_Generi.pdf

