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Abstract—In this paper, we present a technique based on

fuzzy logic to improve the performance of an integrated inertial

navigation system with GPS. The fuzzy technique proposed is

mainly used to predict position and velocity measurements during

the absence of GPS signals. As long as GPS measurements are

available, the Q-SUKF [1] filter for INS / GPS integration works

efficiently and provides an accurate estimate of the states of

navigation. Nevertheless, during the disturbance of GPS signals,

the fuzzy technique will be used with the Q-SUKF filter to

correct the performance degradation of the algorithm. Finally,

an experimental part on the use of the fuzzy technique proposed

with the Q-SUKF has been validated. The aftereffects of our

experiment have demonstrated the adequacy and the critical

effect of the fuzzy method used. It decreases the error’s estimation

of the position and velocity during GPS blackout periods.

Index Terms—Inertial Navigation System, Global Positioning

System, Takagi-Sugeno Fuzzy Model, Fuzzy C-Means, Quater-

nion Scaled Unscented Kalman Filter.

I. INTRODUCTION

The last decades have seen an increase in demand for iner-
tial navigation systems (INS) low-weight, low cost and low-
power consumption, in many applications such as personal,
automotive and air navigation. The technological progress
of micro-electro-mechanical systems (MEMS) showed a
promised signs for the development of these systems. Com-
pared to higher quality systems, a low-cost inertial naviga-
tion system may cause a strong drift on the accuracy of
the estimate of position, velocity and attitude on short time
intervals. This is mainly due to the great uncertainty of the
outputs of MEMS sensors and their sensitivity to changes
in the environment. If the accuracy of low-cost INS can be
improved, its cost can be reduced in existing applications
and new applications may emerge. Like most uncertainties
exist in the behavior of the sensor errors, the calibration
would significantly improve the accuracy. However, intensive
calibration would increase considerably the cost. Another way
to improve the accuracy would be to hybridize the inertial
navigation systems with other complementary external sensors.
Choosing the appropriate method of hybridization is the key
for the development of Hybridised inertial navigation problem.
Currently, three approaches have been identified in research on
filtering methods for hybrid inertial navigation system. The
first is the use of the statistical approach techniques such

as the extended Kalman filter (EKF) and filters based on
sampling such as the unscented Kalman filter (UKF) [2], [3].
The second is to use of the probabilistic approach techniques
such as the particle filters [4], and finally we have the methods
based on Artificial Intelligence (AI), such as the Artificial
Neural Networks (ANN) [5] or adaptive information systems
for neural networks and fuzzy methods (ANFIS) [6]. The
Kalman filtering provides a powerful tool for creating synergy
between different sensors to hybridize. It can take advantage of
the benefits and characteristics of different sensors to provide
an hybrid inertial navigation system that performs better than
unaided inertial navigation. It gives the optimal estimate by
minimizing the mean squared error (MMSE). The extended
Kalman filter (EKF) is probably the most common and popular
approach to deal with non-linear system [7], [8], [9], [10],
[11]. However, it has some disadvantages. A new evaluation
method exists called ’Unscented Kalman Filter’ (UKF) [12],
[13], [14]. IT is nowadays considered a superior alternative to
EKF in treating the errors of inertial navigation systems aided
by one or more additional external sensors. In [1], [15], we
have proposed a new type of UKF filter called Quaternion-
Scaled Unscented Kalman Filter (Q-SUKF) which combines
the scaled unscented Kalman filter (SUKF) and the use of
quaternions as attitude representation parameters [1], [15].
This new hybridization digital filter makes it possible to obtain
a recalibrated state of the inertial navigation from information
provided by external sensors. The external measurements used
are the position and / or velocity resulting from satellite
navigation (GPS, Galileo). The Low-cost inertial navigation
systems provide accurate and reliable navigation parameter
solutions when integrated with the GPS aided sensor in the
Q-SUKF filter. However, the performance of the integrated
system will deteriorate considerably during periods of GPS
failure. During the last decade, the Takagi-Sugeno (TS) fuzzy
systems have been used to model successfully the non-linear
systems and have proved a good representation of dynamic
systems [16], [17], [18], [19]. In these approaches, the non
linear behavior of a system is represented by a composition
of If-Then rules, concatenating a set of local linear sub models.
In this article, a Takagi-Sugeno fuzzy model is used to estimate
the position and velocity measurements to the integrated
INS/GPS system during the various GPS blackouts. The fuzzy
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model requires an offline learning phase extracted from a large
number of input-output coupled data when GPS signals are
available. This phase aims to identify the parameters of the
fuzzy model used with the filter Q-SUKF. The Input-Output
data cover different dynamics and types of movement (straight
and rotation). During the learning stage, the inputs of the
fuzzy model are position, velocity predicted by the Q-SUKF
filter. The outputs of the fuzzy model are the positions and
velocity measured by the GPS. At the end of the learning stage,
the best estimates of the parameters of the fuzzy model are
achieved. These measurements allow to maintain the update
mode phase of Q-SUKF fiter. In this paper, we describe a new
hybridization filter, called Adaptive Fuzzy Logic Quaternion
Scaled Unscented Kalman Filter, denoted by (A) (FL) Q-
SUKF. It is based on the application of the fuzzy model with
the Q-SUKF filter. Next, an experimental part on the (A) (FL)
Q-SUKF algorithm has been validated.

II. VALIDITY OF THE Q-SUKF

The Q-SUKF is an iterative procedure of calculation in-
tended to rectify the errors of the INS through outer es-
timations given by the GPS. For whatever length of time
that the GPS estimations are accessible, the Q-SUKF works
proficiently and gives a close valuation of the navigation
parameters states. Nevertheless, during GPS blackouts, the
general execution of INS/GPS framework is altogether cor-
rupted by the quick collection of blunders which influence
the inertial unit components estimation. To fix this trouble, a
fuzzy logic model expressed by (A)(FL) is suggested. The
fuzzy logic is a collection of scientific hypotheses which
manages the portrayal and control the defective information
(inaccurate, ambiguous or deficient). It doesn’t try to remove
them; oppositely, it will look to keep maintain them utmost.
Then, its aim is to make flexible the representative structure
and information’s treatment, inspiring thus from the human
mental procedures. The viable utilizations of fuzzy logic are
various. Models include: automatism, robotics, expert systems,
decision support, etc. In this paper, the fuzzy logic is charac-
terized as a reasoning which uses the general role of ”expert
system” in handling the information. When GPS signals are
accessible, this model is educed offline from a countless
amount of a paired input-output data during a period called
learning stage. The inputs of the fuzzy model are, position and
velocity, calculated by the Q-SUKF. The outputs of the fuzzy
model are the positions and velocities estimated by the GPS, as
demonstrated in fig.1. At the final stage of the learning phase,
the best assessment of the parameters of the Fuzzy model
are accomplished. When a GPS blackout happens, the fuzzy
model (A) (FL) reproduce instead an evaluated measures of
position and velocity which should be the GPS estimations if
they were accessible. Thus, the Q-SUKF keeps on utilizing the
conditions of the estimation update phase, as demonstrated in
fig.2. The Q-SUKF filer is refered to (A) (FL) Q-SUKF when
it is utilized with the proposed fuzzy model.

Fig. 1: Information accumulations for the extraction of fuzzy
model (A) (FL) during the learning stage

Fig. 2: Operating mechanism of the fuzzy model (A) (FL) with
the Q-SUKF during GPS blackouts.

III. PROJECTION OF THE FUZZY INFERENCE SYSTEM

The projected fuzzy model uses a fuzzy inference system of
Takagi-Sugeno type (FIS-TS) which has specific features since
it symbolizes the nonlinear systems as an interjection between
local linear models. The FIS-TS fuzzy model proposed can be
written in a general structure as:

Ri : If xk is Ai(xk)Then ỹi = aTi xk + bi, i = 1, . . . , r (1)

Where Ai(xk) is a gaussian membership function of the input
variable vector at observation k, xk, in the fuzzy set Ai. ai
and bi are the components of the consequent parameters vector
⇥i =

⇥
aTi bi

⇤T of the i-th fuzzy rule which describes the local
linear model. Ri is the i-th fuzzy rule, r is the total number
of rules and ỹi is the estimated output of the local linear
model. The proposition ” xk is Ai(xk) ” can be defined for
the different components in form of conjunction:

Ri :If x1,k isAi,1(x1,k)& . . . &xn,k isAi,n(xn,k) (2)
Then ỹi = aTi xk + bi, i = 1, . . . , r

Where n is the dimension of the vector xk. The components
of xk are the three elements of the position pn

k = [�k �k hk],
and the velocity vn

k . The choice of these parameters as input
of the fuzzy model is convenient because they are the main
factors to affect the prospected outputs of the fuzzy model
(position and velocity vectors). In addition, these states are all
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determined in the navigation frame and easily obtained from
the prediction phase of the Q-SUKF filter. Two classes have
been assigned iteratively to each component of the entry vector
where a Gaussian function has been implemented to represent
the membership degree to each class. Based on the number of
entries equal to 6 and the class number equal to 2, the number
of rules is therefore equal to 26 = 64. The estimated outputs
of the fuzzy model are the position and velocity vectors, pn

and vn, expressed in the navigation frame and which can be
calculated from the equation (1) of the FIS as follows:

ỹk =

rX

i=1

�i(xk)(a
T
i xk + bi)

rX

i=1

�i(xk)

(3)

where �i(xk) denotes the degree of fulfillment of the i-th rule:

�i(xk) =
nY

j=1

Ai,j(xj,k) (4)

=
nY

j=1

exp

 
�1

2

(xj,k � Vi,j)2

�2
i,j

!

Vi,j , �2
i,j represent the center and the variance of the Gaussian

fuzzy membership functions respectively. To identify the FIS
of the fuzzy model, the antecedent parameters Vi,j , �2

i,j , and
the consequent parameters, ⇥i, must be determined.

A. Determination of Antecedent Parameters
Abonyi in [20] has proposed the Fuzzy C-Means classifi-

cation algorithm (FCM) to identify the antecedent parameters
of Takagi-Sugeno fuzzy model. The FCM algorithm aims to
divide the data points into homogeneous classes or groups.
Thus, the points in the same class are as similar as possible
while points in different classes are as dissimilar as possible.
The FCM algorithm, which issued from the works of [21]
and improved later by [22], constitutes an important reference
among the different methods of fuzzy coalescence [23] based
on the minimization of the objective function, of the form:

JFCM (X;U, V ) =
cX

i=1

NX

k=1

µik.D
2
ik (5)

Where X is the data matrix, N is the number of observations,
µik is the Fuzzy partition of fuzzy subset i, U = [µik]
is the fuzzy partition matrix of dimension c ⇥ N , V =
[V1, V2, . . . , Vc] is a matrix of cluster centroid vectors which
must be determined, with Vi 2 Rn, 1  i  c, in our case,
the number of cluster c is equal to the number of rules r
and Dik is the euclidean distance between the observation xk

and the Cluster centroid vector Vi. In the equation (5), the
dissimilarity measure expressed by the term JFCM (X;U, V )
is the sum of the squares of the distances between each
observation xk and the corresponding center Vi. The effect
of this distance is weighted by the degree of activation of the
class, µik corresponding to xk. The value of the objective

function can be seen as a measure of the total variance
of xk with respect to the centers Vi. The minimization of
JFCM (X;U, V ) is a non-linear optimization problem that can
be solved by different methods; the most used is the Fuzzy
C-Means (FCM) algorithm [22]. It can be achieved by finding
the cluster centroid vectors and the standard deviation of the
membership Gaussian functions iteratively [24]:

V l
i =

NX

k=1

µl�1
ik xk

NX

k=1

µl�1
ik

,�2(l)
i,j =

NX

k=1

µl�1
ik (xj,k � V l

i,j)
2

NX

k=1

µl�1
ik

(6)

1  i  c, 1  j  n

Where the membership degree µik is calculated as follows:

µik =
1

cX

j=1

(Dik/Djk)
2/(m�1)

1  i  c, 1  j  n (7)

avecµik 2< 0, 1 > et
cX

i=1

µik = 1

m 2 [1,1) is the fuzziness parameter of the partition. The
parameter m influences the form of the classes in the data
space of the system. When m approaches 1, the shape of the
membership function of each class is close to be Boolean
function (m 2 {0, 1}). The partition can range from a hard
partition (m = 1) to a completely fuzzy partition (m ! 1)
when there is no changes significantly of the fuzzy partition
matrix between two successive iterations. Although the choice
of m depends on the data [25], usually this parameter is
initialized to a value between 1.5 and 2.5. The iterative process
stops when the partition becomes stable, i.e., when it no longer
changes significantly, between two successive iterations. This
is generally expressed by checking the expression (8) where
the left term indicate a matrix norm and the coefficient ✏
defines the convergence threshold:

����U
(l) � U (l�1)

���� < ✏ (8)

The expression U (l) represents the fuzzy partition matrix of
the l-iteration.

B. Determination of Consequent Parameters
After the learning of the antecedent parameters using equa-

tions (5) and (6), the equation (3) can be rewritten as follows:

ỹk =
cX

i=1

�̄i(xk).x
e
k⇥i

=


�̄1(xk).xe

k . . . �̄c(xk).xe
k

�
⇥1 . . . ⇥c

�T

=


�̄1(xk).xe

k . . . �̄c(xk).xe
k

�
⇥

(9)
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Where xe
k =

⇥
xk 1

⇤
is the input vector to the fuzzy model

augmented by the unit element. ⇥ is the M-dimensional
consequent parameters vector where M=c ⇥ (n + 1). �̄i is
defined by the following formula:

�̄i(xk) =
�i(xk)
cX

i=1

�i(xk)

(10)

The linear equation (9) of the consequent parameters vector
can be written as follows:

Z⇥ = Y (11)

Given M the number of linear consequent parameters and N
the number of learning input-output data, the dimensions of
the matrices Z, ⇥, Y are N⇥M , M⇥1 and N⇥1 respectively.
As N is always greater than M , the system of linear equations
(9) is an underdetermined system, therefore generally there is
no exact or unique solution which can be reached. To get
there, the least squares estimation (LSE) method is exploited
to minimize the squared distance between the vector Y and the
linear combination Z⇥ . It is a classical problem that forms the
basic in many applications such as linear regression, adaptive
filtering and signal processing. The famous formula for solving
systems of underdetermined equations uses the pseudo-inverse
matrix of ⇥ as follows [26]:

⇥⇤ = (ZTZ)�1ZTY (12)

Where ZT is the transpose of Z. (ZTZ)�1ZT is the pseudo-
inverse matrix of Z if ZTZ is non-singular. Despite that the
equation (12) is expressed in few words, it is very costly in
terms of computation time when it comes to the calculation
of the inverse of a matrix ZTZ and, in addition, it becomes
poorly defined if this matrix is singular. To avoid the large
computation time or the problem of singularity, sequential
formulas are used to calculate the least square estimation of
⇥. This sequential method is more efficient, especially when
M is small. If the ith row of the matrix Z in equation (11) is
denoted by zTi and the ith element of the vector Y is denoted
by yTi , then ⇥ may be calculated iteratively using the following
sequential formulas [26], [27]:

Si+1 = Si +
Sizi+1zTi+1Si

1 + zTi+1Sizi+1
; i = 0, . . . , N � 1

⇥i+1 = ⇥i + Si+1zi+1(yi+1 � zTi+1⇥i)
(13)

Where Si is often called the covariance matrix and the esti-
mated least squares ⇥⇤ is equal to ⇥N . The initial condition
of the equation (13) is ⇥0 = 0 and S0=⌘I , where ⌘ is an
arbitrary positive number which is large and I is the M ⇥M
dimensional identity matrix.

IV. SIMULATIONS AND RESULTS

A. Simulations
To test the effectiveness of the (A) (FL)Q-SUKF filter and

its impact on the accuracy of the navigation parameters calcu-
lation (specially the position and velocity), a simulated data of

inertial measurement unit, GPS and magnetometer were used.
The experiment was conducted using a car driving (reference
trajectory) for 30 mimutes. This reference trajectory was
generated by the function progencar of INS toolbox version 3.0
created by GPSoft. This trajectory covers different dynamic
(static and kinematic) and scenarios of motion (rotation and
rectilinear). The data of the inertial navigation system (angle
and velocity increments) were simulated from the parameters
of the profile of the automobile using certain functions of the
INS toolbox. These angle and velocity increments have been
corrupted with various sources of errors such as biases, scale
factors and noises in order to generate outputs close to real
data of an inertial navigation system. The characteristics of the
errors models of the inertial sensors used in the experiment
are presented in TABLE I, where the two parameters T and
� describe the first-order markov process x represented by:

ẋ = � 1

T
x+ ! (14)

Where T is the correlation time of the process x and ! is a
wiener process with variance 2�2/T .

TABLE I: Characteristics of error models of the inertial
sensors used in the experience

Parameter Model Accelerometer Gyroscope

Noise Random Walk 0.6 m/s/
p
h 3.5 deg/

p
h

Bias
1st Order

Gauss Markov
�a = 0.1 m/s2

T=1hour
�g = 100 deg/h

T=1hour

Scale Factor
1st Order

Gauss Markov
�sa = 1000 PPM

T= 4 hours
�sg = 1000 PPM

T= 4hours

The GPS data (position and velocity) were generated by
adding to the positions and velocities data of the reference
trajectory a gaussian white noise. The initial standard deviation
of the position expressed in Cartesian coordinates in the
navigation frame is equal to 2cm in the horizontal plane and
is equal to 4cm in the vertical plane. The initial standard
deviation of the velocity expressed in the navigation frame is
equal to 0.25m/s for the horizontal components and is equal
to 0.4m/s for the vertical component. Two simulations of GPS
outages with a duration of 30s have been considered along the
path as shown in Fig. 3.
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-35 000 -30 000 -25 000 -20 000 -15 000 -10 000 -5 000 0 5 000 10 000
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-1000
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GPS Blackout
(2)

GPS Blackout 
(1)

Fig. 3: Simulated trajectory with GPS outages indicated.
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B. Results
To test the implementation of the proposed methodology,

an initial attitude error of 60 degrees is given on each axis.
The diagonal terms of the initial covariance matrix represent
variances or mean squared errors. The off-diagonal terms are
set to be zeros. The parameters used in the Q-SUKF are given
by scaling parameters ↵ = 0.05 and � = 2, and by weight
of 0th point !0 = 0.5. The Fig. 4, Fig. 5, Fig. 6 and Fig. 7
demonstrate the position and velocity errors during the two
periods of GPS blackouts 1, 2 respectively, before and after
the use of the proposed technique of the fuzzy model to Q-
SUKF.
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Fig. 4: Position error estimated during GPS blackout1
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Fig. 5: Position error estimated during GPS blackout2
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Fig. 6: Velocity error estimated during GPS blackout1
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Fig. 7: Velocity error estimated during GPS blackout2

We notice in these figures that the maximum errors of
the position and velocity components have been reduced
considerably after the application of the proposed technique of
the fuzzy model to the Q-SUKF filter during the two periods
of GPS blackouts. The TABLE II summarizes the percentage
of the reduction of these errors.

The fuzzy model applied to the Q-SUKF conduct to an
important enhancement of 75.32 % and 43.90 % at least in
reducing the errors estimation of position and velocity respec-
tively. Finally, in spite of the fact that these first outcomes
cannot be extrapolated, they might anticipate to give the green
light for future research presenting GPS blackouts in various
situations of real scenarios for the purpose of a generalization.
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TABLE II: Reduction of the maximum error of the position
and the velocity of Q-SUKF filter after using the fuzzy model.

Maximum Error Outage GPS1 Outage GPS2

�xn(m) & �vn(m/s) of Q-SUKF

�xn(m) & �vn(m/s) of (A)(FL)Q-SUKF

Reduction % of �xn & �vn

81,20 & 7.70

1.10 & 1.93

98.64 &75.32

34.20 & 8.30

1.50 & 1.25

75.32 &84.93

�xe(m) & �ve(m/s) of Q-SUKF

�xe(m) & �ve(m/s) of (A)(FL)Q-SUKF

Reduction % of �xe & �ve

74.40 & 8.20

2.30 & 4.60

96.90 &43.90

70,80 & 6.10

0.80 & 2.10

98.87 &65,57

�xd(m) & �vd(m/s) of Q-SUKF

�xd(m) & �vd(m/s) of (A)(FL)Q-SUKF

Reduction % of �xd & �vd

17.60 & 2.00

0.30 & 0.50

98.29 &74.75

5.70 & 3.20

0.40& 0.40

99.25 &87.50

V. CONCLUSION

This paper displays a novel hybridization filter of the
inertial navigation system with GPS. This new filter, denoted
(A) (FL) Q-SUKF, depends on the use of Q-SUKF with a
fuzzy approach. For whatever length of time that the GPS
estimations are accessible, the fusion INS/GPS gives great
outcomes. At the point when the estimations of GPS are
not reliable or inaccessible, the fuzzy model permits the Q-
SUKF to keep on rectifying the errors of the estimation
of the parameters of navigation (position and velocilty) of
the vehicule by giving simulated GPS position and velocity
measures. The consequences of the experimental validation
have demonstrated the adequacy and the critical effect of the
fuzzy strategy utilized with the Q-SUKF in the decrease of
errors estimation of the position and velocity in the tried sit-
uations. The (A) (FL) Q-SUKF gives us progressively precise
computation of the rotation matrix which is integrated in the
computing of the position and velocity, and therefore leads to
a better estimation of the parameters of navigation.The results
obtained on synthetic data have shown the contribution of the
fuzzy logic and have approved the methodology proposed.
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