
Anomaly Detection on DNS Traffic using Big Data
and Machine Learning

Kelvin Soh Boon Kai
University of Glasgow

Singapore

2355381s@student.gla.ac.uk

Eugene Chong
Singtel

Singapore

eugene.chong@singtel.com

Vivek Balachandran
Singapore Institute of Technology

Singapore

vivek.b@SingaporeTech.edu.sg

Abstract—In this paper, we will demonstrate, devise and build

an anomaly detection model for detecting general DNS anomalies

in an unsupervised learning problem using multi-enterprise

network traffic data collected from various organizations

(NetFlow dataset) without attack labels. In our approach two

types of clustering algorithms are implemented for evaluating

the detection rate of the model. Clustering algorithm K-means

and Gaussian Mixture Model (GMM) are investigated due to

their popularity for being the state-of-the-art techniques for

detecting anomalies with low false negatives [1]. In addition,

another unsupervised neural network algorithm (SOM) is used

for visualizing if any potential cluster can be found in the

dataset. Simulation of DNS anomalies will be performed for

evaluating the robustness of the final detection model, and a

comparison has been made between K-means and GMM by

assessing the detection rate against the simulated anomalies.

The final GMM model achieved a seemingly high detection rate

on the simulated anomalies.

1. INTRODUCTION

With the advent of abundance of devices and tools in the
market, collection of data has never been easier today. Corpus
of network traffic data can be generated in millions or billions
of records in seconds [2]. In this paper, the focus will be on
these Big ”Network Traffic” Data. By adopting and leveraging
the current tools and off-the-shelf state-of-the-art algorithms,
the objective is to to achieve cyber situational awareness thru
data exploration and modelling, to devise and build a detection
model for detecting network traffic anomalies with Big Data.

Cybersecurity is a major concern for companies and
organizations that relies on technology to keep the business
running. In any monetary intensive organization (Stocks and
Banking), due to a glitch or vulnerability in the system,
organizations could have lost millions or even billions. Thus,
given the rise of new technologies and tools, to exploit
and undermine the vulnerabilities of such systems can be
achieved easily with adequate resources. There comes a point
where new techniques and technologies are required to detect
unusual and suspicious activities within the network, such that
anomalous behavior can be promptly detected and mitigated.

With the prevalent of Big Data given the fact that it
is exponentially growing every year due to the increasing

technology available for generating these data e.g. IoT devices.
Using Big Data, we are interested in applying Big Data
Analytics on enormous network traffic dataset with the goals
of generating insights and knowledge to infer and detect
unusual and suspicious network behavior [3]. This paper is
structured as follows. 2. Related Work. 3. Design, 4. Analysis.
5. Implementation. 6. Evaluation and 7. Conclusion.

2. RELATED WORK

Past research has shown that traditional approach to anomaly
detection uses Network ”Intrusion Detection System” (IDS)
to detect anomalies using known signatures. It is known that
IDS is ineffective when trying to detect non-deterministic
or unknown traffic, since IDS can only detect patterns or
attacks from signatures, a new and unknown traffic might
not yet be captured by the IDS. It is evident that detecting
real time traffic has proven to be not feasible due to the
non-deterministic nature of the varying traffic patterns in any
enterprise network. Hence, alternative detection techniques
should be implemented to handle the unknown nature of
non-deterministic traffic patterns such as zero-day attacks [4].

Given the rise of Big Data, Machine Learning (ML), Deep
Learning (DL) and Artificial Intelligence (AI), the strategies
involving these techniques are evolving rapidly to help combat
the limitations of traditional detection approaches with IDS.
Given that these state-of-the-art techniques has proved to be
perform better as compared to traditional IDS approach.

The following subsections A, B, C and D discusses the
types of detection techniques approach to perform anomaly
detection. [5].

A. Anomaly Detection

Anomaly detection is the process of detecting rare or unusual
patterns that deviates from the normal behavior or norm.
Unusual patterns are also known as ”Outliers” or ”Anomalies”
[4], as shown in Fig.1. In the context of machine learning
to anomaly detection, the focus will be building an anomaly
detection model using ML clustering algorithms.

95

Copyright © 2019 for this paper by its authors. Use permitted under Creative 
Commons License Attribution 4.0 International (CC BY 4.0).



Fig. 1: The anomalies are the sudden spike.

Currently there exists two types of detection techniques
to detect anomalies, 1. Anomaly detection, and 2. Misuse
detection [4], [5], the research focus will be based on anomaly
detection due to the caveat of misuse detection and the absence
of attack labels.

B. Misuse Detection

Misuse detection or signature-based is an intrusion detection
technique that build signatures of different types of known
patterns from malicious behavior. It has been proven that misuse
detection can detect malicious behavior with high detection
rate due to the known patterns that are build and hard-coded
as signatures by security experts. However, the downsides are
they tend to perform badly due to unknown and unprecedented
patterns such as zero-day attacks [4], [5]. The following Fig.2
shows the process of misuse detection using a rule-based pattern
matching approach.

Fig. 2: Detection is only possible with existing rules and
signatures.

C. Establishing a baseline of common patterns

Prior to any anomaly detection techniques described above,
one of the statistical techniques for anomaly detection would
be relying on the commonalities found in the data.

One being that the data should follow a normal distribution.
Since anomalies don’t occur on a regular basis, the assumption
is that data should be normally distributed, as majority of the
DNS traffic should be largely normal as compared to anomalies.
By identifying the baseline of common behaviors/patterns,
one can determine what are the common DNS traffic patterns
flowing in the network [4], e.g. the average no. of pkts
and bytes in a normal DNS flow. *The term Flows, DNS

traffic and DNS flows are used interchangeably in the

subsequent sections.

In addition, if anomalies are presented in the data, it needs
to be removed, otherwise the detection model would have
failed to detect future instances of anomalies as the detection
would assumed it is normal during the detection [4].

Once the baseline of the common patterns has been
established, detection can be deployed using the normal
distribution as the baseline. Since anomalies are statistically
different from normal DNS traffic, by modelling the normal
distribution of the data, anomalies can be detected one, two
or three standard deviations away from the mean using some
threshold [4].

D. Clustering in Anomaly Detection

Clustering is a common technique used to group similar
objects together for cluster analysis. Objects that are similar to
each other belong to a cluster of it’s own and vice versa for
dissimilar objects, as shown in Fig.3. For anomaly detection
in DNS traffic, similar DNS traffic patterns should belong to
a cluster of its own, using some distance metrics such as the
Euclidean distance. By following this rule, anomalies can be
detected when new and incoming patterns stray away from any
of the clusters or its distance to any of the clusters exceeds a
certain threshold. It has been proven that clustering algorithms
shows promises by learning distinctive and complex patterns
from data without human intervention [6].

Fig. 3: Showing three blobs of clusters.

3. DESIGN

This section gives a short overview of the tools and
framework used for the proposed anomaly detection workflow.

A. Tools and Framework

The following are the computational and hardware
specifications for this research which are provided by our
industrial partner. Large scale data processing using Big Data
Analytics are performed using the following big data cluster.

The hardware specifications for the big data cluster consists
of 9 nodes with a total of 544 virtual cores and 3.5TiB of
memory. The big data framework ”Apache Spark” is used to

96



process the NetFlow datasets.

B. Proposed Anomaly Detection Workflow

The proposed anomaly detection workflow first comprises
of 1) Data collection, 2) Data analysis/preprocessing, 3)

Training using clustering algorithms, 4) Deploying model

for detection 5) Evaluation and 6) Reiterate.

Fig. 4: Anomaly Detection Workflow.

4. ANALYSIS

This section takes a deeper look into exploring the data. It
gives an overview of the NetFlow dataset, and further analysis
are explored to determine the characteristics that constitutes a
normal DNS traffic by performing exploratory data analysis
on the data.

A. NetFlow

NetFlow is a traffic monitoring protocol developed by Cisco
for collecting network traffic flows from NetFlow-enabled
router. Data collected using NetFlow can be used by network
analyst to understand how network traffic is flowing in and
out of the network [2].

Fig. 5: NetFlow data are collected from various multi-enterprise
network.

The NetFlow datasets are jointly provided by our industrial
partner (Due to privacy reasons, the industrial partner

would prefer to be anonymous) which originally consists

of 48 attributes with one day worth of network traffic
data, but it was reduced to only 10 columns which are
pre-selected as the most relevant attributes for data analysis
of DNS traffic, as shown in Fig.6. We will be using one
of the many NetFlow datasets stored in our database dated
on ”06/28/2018” which approximated around 253 million
worth of records, but was reduced to 4 million records,
since the objective of this research is to focus on DNS
traffic to detect DNS anomalies, other services like HTTP,
SSH etc. are removed. Each row or record in the dataset is
known as a ”Network Flow”, each flow can also be referred
as a transaction between the source and destination address [2].

A standard flow record F contains the following attributes.

F = (IPsrc, IPdst, Pkts,Bytes, Tstart, Tend, P rot, Portsrc

, Portdst, F lags)

Fig. 6: Sample of a DNS flow (The IP address are masked

for privacy reasons).

B. DNS flow packets count

TABLE I below shows packet feature where pkts 1 and
pkts 2 are the most common number of packets send per DNS
flow as compared to the next subsequent leading packets 3..5,
hence 4.1 million counts of pkts 1 formed a commonalities of
95% of the total DNS flow.

count (pkts)
pkts UDP TCP
1 4147021 274610
2 82152 1177
3 22477 102
4 11147 95
5 6753 70

TABLE I: More than 95% of the total DNS flow are formed
by only pkts 1 & pkts 2

C. Normality of Data

The above Fig.6 shows the 10 most relevant NetFlow
attributes, the most useful features or attributes for determine
the normality and distribution of the data are the no. of pkts
per DNS flow, the pkts feature, as shown in TABLE I above,
many of the UDP flow and TCP flow largely contains only 1
packet per DNS flow. Observations of UDP DNS flow with
low packets count are much more common than larger ones.

The following two figures, Fig.7 and Fig.8 shows the typical
distribution of the bytes feature commonalities in the NetFlow

97



dataset. There are two peaks in the distribution, one with 81
bytes another 1508 bytes Fig.7 (Red arrow), follow by a clearer
zoom into a single well-known DNS Server e.g. ”Google” that
exhibits a bimodal (multi-modal) distribution with two peaks
and also heavily right skewed, Fig.8. It can be concluded that
most DNS flows contains only 1 packet with the average of
around 81 bytes per DNS flow, Fig.7 and Fig.8 (Red arrow).

Fig. 7: Bimodal distribution of the feature bytes for all DNS
servers.

Fig. 8: Bimodal distribution of the feature bytes for one DNS
server e.g. Google

Given the above TABLE I, DNS flow using UDP are much
more common than DNS flow using TCP. Given the fact
that UDP are short-lived, and the typical usage of DNS is to
perform name-to-address translation by performing a DNS
lookup using some DNS Server, thus the protocol must be fast
to avoid any sort of latency, congestion and overhead in the
network. The usage of using DNS via TCP is not as common
as compared to UDP. Since TCP usually contains more
data per flow due to the necessity of a reliable connection
(three-way handshake) with additional information stored in a
flow [7]. The typical usage of using DNS via TCP is Zone
Transfer or sending large data over a network using DNS
as a tunneling protocol where reliability is insured [7], [8].
However, the similarity of DNS flow using either UDP or TCP
undoubtedly formed a commonality of only 1 packet per flow.

D. Determine important features

Relevant features of interest should be carefully hand-picked
before fitting into any ML algorithms. Since irrelevant data,
anomalies and noise should not exist in the data which will
heavily penalize the quality of the final ML model during the
actual detection [9], [10]. Given our initial analysis of the
most common occurrence of pkts in TABLE I, pkts should be

considered as one of the most crucial attribute for the detection
of anomalies. During our initial observation of the normal
baseline on DNS traffic, 95% of the flows contains only 1
packet per flow. This serves as an important information at
determining whether a DNS traffic is anomalous or not.

E. Feature Selection

Selecting the relevant features is an indispensable process
before data preprocessing, since the goal is to retain as much
information as possible and remove any redundant information
from the dataset that does not constitute towards the detection
of anomalies. The feature pkts is one important feature, which
helps in the detection of anomalies. It is evident from our initial
analysis, DNS traffic with packets count between 1 and 5 made
up of more than 95% of the data commonalities TABLE I; and
the probability of any DNS packets per flow Pr(2..N <= 1)
is <= 2%, where N is the packet, Fig.9.

Fig. 9: Cumulative distribution function of DNS packets per
flow.

The following Fig.10 shows the cumulative percentage of
the average number of unique source and destination port in a
typical DNS flow. Where 99% of the total DNS flow contains
only at most 1 to 2 source or destination port. Hence, additional
information such as using the features source port: sport and
destination port: dport will be useful during the detection of
anomalies.

Fig. 10: Cumulative percentage of the average number of source
and destination port.

98



F. Finalize Feature Selection

The following Fig.11 are the 10 features we originally had
in the NetFlow dataset. These features will be used for data
preprocessing and implementing the anomaly detection model.

Fig. 11: Features selected for data preprocessing.

G. Types of Clustering Algorithm

Three clustering algorithms are investigated in this paper
given their suitability towards our problem of interest. The
following clustering algorithms will be further discuss in
Section 5. Implementation. *The list are by no means

exhaustive, there could be a better clustering algorithm

more suited for this research despite the following.

• K-means clustering - Based on centroid models.
• Self Organizing Map (SOM) - Based on unsupervised

neural network model with competitive learning.
• Gaussian Mixture Model (GMM) - Based on distribution

and probabilistic models.

Fig. 12: Different types of clustering algorithms.

5. IMPLEMENTATION

This section discusses the features that will be used for
implementing the anomaly detection model. It also discusses
the preprocessing stage of the anomaly detection model, and
finally the inherent limitation and caveat of the aforementioned
three clustering algorithms. Both UDP and TCP DNS flow will
be trained on clustering algorithms after data preprocessing.

A. Initial features

The following Fig.13 shows some features underlined in
red, and were used to produce additional features through
aggregation to derive a more sensible feature set. Since these are
nominal/categorical values the ML algorithms don’t understand.

Fig. 13: Features selected for data preprocessing.

B. Preprocessed features (Time Window Aggregation)

The following Fig.14 shows the set of preprocessed features
after time window aggregation using the features source ip:
src ip, datetime: first and last for aggregation in 1 minute
interval. The reason for aggregating the flow in 1 minute
interval is that a flow should not exceed X amount of packets
when using DNS as a service [11]. By looking at the first
row, the source IP ”231.x.x.x” communicated with 133 unique
destination IPs with 297 no. of packets with a total of 33.6k
bytes, using only one unique source port to 294 unique
destination ports with the protocol 17 (UDP) for transmission
with a total of 295 flows in 1 minute. When inspecting the
source IP of ”231.x.x.x”, it turns out that the source IP belong
to a well-known legitimate DNS Server e.g. ”Google”, and is
using one source port ”53” to resolve DNS requests to 133
unique destination IPs in 1 minute, which is perfectly normal
for a well known DNS server. After preprocessing the features,
the following Fig.14 shows the aggregated flow in 1 minute
interval.

Fig. 14: Aggregated Flow in 1 minute interval.

C. Feature Scaling

Feature scaling consists of normalization/standardization
which is to transform and bring features into the same
units despite the different measurements. Normalization is
to transform data into a specific range, bringing values into the
range ”[0,1]”. Our preprocessed features are standardized and
centered around mean 0 and standard deviation 1, modelling a
normal distribution. Standardization can be perform using the
following equation 1.

z =
x� µ

�
(1)

where µ is the mean, � is the standard deviation and z is the
z-score. The values of the rescaled features will be represented
in z as continuous value.

99



D. Dimensionality Reduction

After feature scaling, projecting the data for visualization
is difficult, since projection of data points in graph is only
visually interpretable in at most two to three dimensions,
anything beyond three dimensions are difficult for humans
to visualize. Dimensionality reduction techniques are used
such that our carefully preprocessed features can be best
represented in at most two or three dimensions for easier
exploration and visualization.

The preprocessed features after feature scaling has been
transformed into six Principal Components (PC) using Prin-
cipal Component Analysis (PCA). The following TABLE II
shows that by applying PCA to our standardized preprocessed
features, 95% of the total variance can be explained using only
PC1 and PC2. Using PCA, the standardized preprocessed
features are compressed into two for cluster analysis.

Component Variance (%) Cumulative (%)

1 78.53 78.53
2 17.05 95.58
3 2.4 97.98
4 1.1 99.08
5 0.76 99.84
6 0.16 100

TABLE II: Cumulative variance explained using six compo-
nents.

E. Clustering Algorithms

The following three clustering algorithms 1) K-means,
2) Self-Organizing Maps (SOMs) and 3) Gaussian Mixture
Model (GMM) are further discuss below.

1) K-means Clustering: K-means is one of the most popular
unsupervised clustering algorithm used in ML. It is capable
of handling large amount of data with O(n) complexity, and
often used for every preliminary cluster analysis priori. It is
highly scalable with Big Data [11]. K-means algorithm works
via an iterative approach, it takes in one important parameter
called k, which is also the number of clusters you want the
algorithm to return. The k is also known as the cluster centers
or centroids [12]. Fig.15 shows K-means initialized with three
clusters.

Fig. 15: K-means algorithm initialize with k=3.

The training of K-means algorithm are performed by
specifying the k value to be 2, max iterations of 100, and
a constant seed has been set for reproducible results. k = 2 is
purely based on hypothetical assumptions and related work [11],
[13]. With the absence of labels, we can only make general
assumptions of the dataset, by using k = 2, we presumed 2
clusters, where cluster 0 denotes normal traffic and cluster 1
denotes anomalous traffic. Back to our original analysis of
DNS flow, our CDF of DNS packets per flow contains only 1
packet 95% of the time Fig.9. The following Fig.16 shows two
clusters plotted using PC1 and PC2 for visualization with an
emerging V pattern, TABLE II.

Fig. 16: K-means cluster analysis on PC1 and PC2

2) Self-Organizing Maps (SOMs): Self-Organizing Map
(SOM) is a type of artificial neural network that perform
competitive learning known as vector quantization, unlike
standard neural network architecture that uses error correction
e.g. (Backpropagation via Gradient descent an optimization
technique). It is also a clustering technique that maps high-
dimensional features into low-dimensional for data visualiza-
tion. It is similar to K-means, given that both are clustering
algorithms. SOM is also a non-linear dimensional reduction
technique as opposed to PCA (Linear dimensional reduction),
suitable for learning complex non-linear patterns. SOM does
not require a target label like many clustering algorithms. The
following Fig.17 shows a map with grid X by Y , where the
nodes X and Y denotes the neurons and x1, x2..xn denotes
the input vector [14], [15].

Fig. 17: Self-Organizing Maps (SOMs)

SOM can be used for interpreting high-dimensional data
in at most 2D or 3D, usually accompanying with a unified

100



distance matrix (U-matrix) for SOM visualizations as a NxN

hexagonal grid for identifying potential neighbours/clusters in
large dataset without any prior k. Fig.18 shows the U-matrix of
Iris dataset exhibiting around two to three clusters in a hexmap.

Fig. 18: Iris dataset trained on SOM with grid size 7x7, where
the contrasting cyan-like color in the middle represents the
color of separation between the clusters, and the blueish areas
are data points/input vectors that are similar to each other. [16]

SOM is applicable to our problem as an unsupervised
learning approach, since we do not know how many hidden
k clusters exists in the NetFlow dataset due to the absence of
labels. SOM algorithm has been fitted using the preprocessed
dataset with grid size of 200x200 (*Grid size are hyperpa-

rameters which can be tuned, with larger grid size, the

separation of clusters becomes more visible). Fig.19 shows
that it is hard to determine the number of clusters, due to the
diversity of network traffic collected from various different
organizations.

Fig. 19: U-Matrix visualized with a hexmap after SOM training.
Contrasting high-value color denotes the cluster separators,
while adjacent and similar colors represents the similarity of
the data points.

3) Gaussian Mixture Model (GMM): Gaussian Mixture
Model belongs to the distribution/probabilistic model that relies
on normally distributed data. In real world scenario, many

datasets tends to be Gaussian or normally distributed when
enough data are collected. Using GMM, we assume there
are more than one distributions (multi-modal) existed within
the data that can be modelled using multiple Gaussian with
unknown parameters or latent variables that needs estimation
using the expectation maximization (EM) algorithm. With
GMM, to approximate a multi-modal distributions, the mixture
of several sub Gaussian distributions can be modelled as one
big Gaussian distribution [17].

Fig. 20: Gaussian Mixture Model of three normal distributions.

During our analysis of the bimodal distribution Fig.7 and
Fig.8, there seems to be two peaks for the bytes feature, thus
GMM is worth considering, presumably there could be more
than one distributions in the underlying NetFlow dataset.
In addition, GMM is also computationally efficient when
modelling large datasets, especially vital in the context of Big
Data. With more than one feature, modelling the data using
one Gaussian is not feasible, since there could be different
latent distributions that needs to be estimated [17], [18]. Thus
using GMM, one could approximate which distributions
a data point belongs to, by generating data points from a
mixture of Gaussians. *(The term gaussian, components and

clusters are used interchangeably in the context of GMM).

6. EVALUATION

Evaluation is conducted on the simulated NetFlow dataset
with anomalies injected. It will also discusses the caveat of
the proposed clustering algorithms K-Means, SOM and GMM,
such as finding the parameters k for K-means and the number
of gaussians or components for GMM. Finally, the evaluation
of the final proposed clustering algorithm are again used to
evaluate on the detection rate of the simulated anomalies.

A. Simulated NetFlow Anomalies

The simulated NetFlow dataset are jointly provided by our
industrial partner using the tool ”dns2tcp” to simulate a DNS
attack known as ”Data Exfiltration”. The simulated traffic are
used to assess the performance of the detection model. Where
the model should detect these anomalies and cluster them into
the anomalous clusters, separating them from the normal cluster.
Data exfiltration (Large file transfer/Unauthorized copying over
DNS) was conducted between 1130hrs and 1430hrs.

101



Fig. 21: Sudden spike from 1130hrs to 1430hrs.

1) NetFlow Dataset: In Section 5. Implementation, to
determine what constitute the baseline of a normal DNS flow,
we will be combining an additional of four more different
NetFlow datasets of different date dated months and years
apart. After the baseline has been ascertained from the
different NetFlow datasets, such that these different NetFlow
datasets exhibits similar behaviors/patterns for the typical DNS
flow, we can safely combine them and form an even larger
NetFlow dataset. This is to ensure that with NetFlow datasets
of the future, the normal behavior of a DNS flow should not
fluctuate too much, affecting normality. Finally with more
data, the approximation of future unseen data can be more
accurately identified.

2) Combining different NetFlow Datasets: The idea of
combining the different NetFlow datasets is to validate our
original assumptions of the preprocessed dataset conforms
to the same normality across different NetFlow datasets of
different date, e.g. days, weeks and years. The following
Fig.22 are the results of combining four different NetFlow
datasets, preprocessed and plotted on two principal components
dated months and year apart. It is seemingly convincing that
the following visualization exhibits the same unique V shape
pattern for the DNS traffic when compared to Fig.16.

Fig. 22: Four different NetFlow datasets combined.

B. Evaluation of Clustering Algorithms

Our combined preprocessed NetFlow dataset are feed into
K-means and GMM algorithm for evaluating the detection rate
on the simulated data exfiltration anomalies. The following 1)
and 2) discusses the detection rate on the simulated anomalies
using both clustering algorithms.

1) Anomalies Detection with K-means: The following Fig.23
shows the data exfiltration anomalies plotted in two-dimensional
scatterplot using the features no pkts and no bytes. All the
blue points are anomalies, filtering has been done to show only
the data exfiltration points. Given our analysis on the K-means
clustering results below, K-means cluster these anomalies as
normal, and fails to detect any data exfiltration anomalies. It
is possible that using the hypothetical assumptions of k = 2
based on research and [13] may not be the optimal k choice.

Fig. 23: K-means fails to detect even a single anomalies from
the simulated dataset.

Finding the optimal k using the elbow method has also
been experimented. However K-means still fails to detect
even a single anomalies with the optimal k. It is evident that
the model K-means is not complex enough to handle the
diversities of DNS traffic.

2) Anomalies Detection with GMM: The GMM is trained
on two components/clusters using the covariance type ”Full”
and max iterations set to 100 due to several trial and errors
and hyperparameter tuning.

To determine if GMM is able to detect and cluster anomalies
into the anomalous cluster, the simulated data exfiltration traffic
are feed into GMM for clustering. The following Fig.24 shows
that GMM is able to detect the anomalies with a detection
rate of 95% given that the number of pkts and bytes for the
anomalies are generally higher as compared to a normal DNS
flow, thus the detection of data exfiltration anomalies works
well for GMM with only 5% of false negatives, Fig. 24 blue
points. In the next section, we aim to overcome these false
negatives or mis-clustered anomalies that are very similar to a
normal DNS flow.

102



Fig. 24: GMM detected 95% of anomalies using two gaussian.

C. Finding GMM model parameters

Up till now, using the parameter k = 2 is a hypothetical
assumptions based on existing literatures and research [13].
However, there could be a suitable k that one could choose
via statistical inference, such that anomalies can be better
identified with the appropriate k. The following 1) Finding
no. of Components, explores two techniques for selecting the
optimal k for GMM.

1) Finding no. of Components: Two techniques that will be
discuss here are Bayesian Information Criterion (BIC) and
Akaike’s Information Criterion (AIC). Both are statistical
model to perform model selection criteria to determine if one
model is better than the other. [19].

The following Fig.25 shows that both BIC and AIC are
identical with respect to the number of components specified,
where the reduction of the maximum likelihood of BIC
asymptote at around five components or more. Hence, we can
safety choose the minimum number of components with the
lowest BIC score where the maximum likelihood is achieved, in
this case 5 (Circled in red), where the BIC line was overlapped
by AIC, given that both attained the same score.

Fig. 25: BIC and AIC scores.

D. Anomalies Detection after Model Selection

After selecting the optimal number of components, in this
case the lowest BIC and AIC scores tell us at around five
components or more is a suitable trade-off between a better
model fit with the extra computation time by adding additional
gaussians or components. Thus, the GMM has been re-trained
using the same data with the number of components set to five
and covariance type ”Full”. When using this GMM model to
cluster the simulated NetFlow dataset, the first cluster is the
normal cluster, since it represented 81% of the total DNS
flow, and any subsequent clusters from 2..N are assumed
to be the anomalous or unknown clusters, where N is the
number of clusters/components, in this case five clusters. The
simulated data exfiltration anomalies are conducted between
1130hrs - 1430hrs, as shown in Fig.26, the GMM with five
components is able to accurately detect all data exfiltration
anomalies successfully under Cluster 4, with the trade-off of
having more components representing the different mixture
distributions of the combined NetFlow dataset Fig.22.

Fig. 26: Data exfiltration anomalies are detected under Cluster
4.

The following TABLE III shows the confusion matrix after
GMM detection on the simulated NetFlow dataset filtered
to show only the data exfiltration anomalies. The simulated
NetFlow dataset have a total of 141 time window aggregated
DNS flow of data exfiltration anomalies after preprocessing.

Normal Anomalies
Detected Normal TP FP
Detected Anomalies FN TN=141

TABLE III: Confusion Matrix: All 141 data exfiltration
anomalies has been detected by GMM.

E. Kernel Density Estimation (KDE) on Gaussian Mixture

The following TABLE IV are the Gaussian mean µ and
mixture weights � of the simulated NetFlow dataset. Where
the Normal Cluster/Gaussian represented 68% of the total
distribution and the remaining clusters represents only 32%;
the simulated data exfiltration anomalies are clustered under
Cluster 4 by the GMM model.

103



Cluster k Mean µ Weight �

Normal 86 0.68
Cluster 1 587 0.08
Cluster 2 491 0.12
Cluster 3 1762 0.08
Cluster 4 22040 0.02

TABLE IV: The mean and weight of the average number of
bytes with five Gaussian.

The following Fig.27 shows the KDE of the five Gaussian
after GMM clustering. We can see that there are some slight
overlapping between the Normal (Blue) and Cluster 3 (Purple).
By modelling the distribution of the DNS Flows using GMM,
data exfiltration anomalies that are similar to normal traffic can
be accurately clustered using probabilities/soft assignments.

Fig. 27: KDE on a mixture of five Gaussian.

7. CONCLUSION

Anomaly detection is still a challenging problem that spans
decades of research [20]. The purpose of this research is to
detect general DNS anomalies that are statistically different
from normal behavior using Big Data, given that DNS are
often used as a covert channel for attackers to perform
malicious activities e.g. data exfiltration. Detecting anomalies
in a DNS environment is beneficial and proved to be crucial
in any enterprise network. Using GMM with two clusters, the
detection model is able to detect data exfiltration anomalies
with a 95% detection rate. Further to that, SOM has also been
used for cluster analysis to determine if there are any visible
clusters in the NetFlow dataset. However, given the nature of
the network traffic collected from multi-enterprise network
of different organizations, no fixed number of clusters can
be obtained due to the diversity of network traffic and the
varying traffic behavior of how different organizations operates.

Thus, model estimation techniques using BIC/AIC
has been selected to determine the optimal number of
components/clusters for the GMM model. Using only five
components, the final GMM model achieved a 100% detection

rate on the data exfiltration anomalies. However, limited to
only data exfiltration anomalies, the evaluation of the model is
limited to and only that. Hence, it is probable that our model
is not able to detect other kinds of DNS anomalies other than
data exfiltration.

To validate the robustness of our detection model, more
DNS anomalies needs to be simulated to assess the detection
rate/recall of the GMM model, by understanding the patterns
of the different kinds of anomalies, experimentation using
statistical analysis and evaluation can be further conducted.

8. ACKNOWLEDGMENTS

This is an industrial research project supported by the
University of Glasgow and Singapore Institute of Technology
(SIT) with Industrial Partner. I want to thank my professor Dr.
Vivek Balachandran in the department of Singapore Institute of
Technology for sharing his knowledge and guidance throughout.
Finally, I would also like to thank my industrial supervisor
Eugene Chong for giving me a chance for taking on this
challenging research project.

REFERENCES

[1] M. Facure, “Semi-Supervised Learning for Fraud Detection Part
1”,” https://lamfo-unb.github.io/2017/05/09/Semi-Supervised-learning-for-
fraud-detection-Part-1/, 2017.

[2] M. W. Lucas, “Network flow analysis,” ch. 1, pp. 9–11.
[3] Y. Cheng, T. T. Nguyen, H. Zeng, and J. Deng., “Big data analytics in

cybersecurity,” ch. 2, pp. 27–30.
[4] S. Singh and G. Kaur, “Unsupervised anomaly detection in network

intrusion detection using clusters,” 2007.
[5] C. Zhang, G. Zhang, and S. Sun, “A mixed unsupervised clustering-based

intrusion detection model,” 2009.
[6] I. Syarif, A. Prugel-Bennett, and G. Wills, “Unsupervised clustering

approach for network anomaly detection,” 2012.
[7] S. Northcutt and J. Novak, “Network intrusion detection third edition,”

ch. 6, pp. 103–115.
[8] S. Northcutt and J. Novak, “Network intrusion detection third edition,”

ch. 6, pp. 113–115.
[9] S. Paul, “Beginner’s Guide to Feature Selection in Python,”

https://www.datacamp.com/community/tutorials/feature-selection-
python, 2018.

[10] S. Tripathy and L. Sahoo, “A survey of different methods of clustering
for anomaly detection,” vol. 6, 2015.

[11] D. S. Terzi, R. Terzi, and S. Sagiroglu, “Big data analytics for network
anomaly detection from netflow data,” 2017.

[12] A. Trevino, “A Introduction to K-means Clustering,”
https://www.datascience.com/blog/k-means-clustering, 2016.

[13] G. Munz, S. Li, and G. Carle, “Traffic anomaly detection using k-means
clustering,” 2007.

[14] A. Ralhan, “Self Organizing Maps,” https://towardsdatascience.com/self-
organizing-maps-ff5853a118d4, 2018.

[15] D. Miljkovic, “Brief review of self-organizing maps,” 2017.
[16] O. K. Pavel Stefanovic, “Visual analysis of self-organizing maps,” vol. 16,

p. 495, 2011.
[17] C. M. Bishop, “Pattern recognition and machine learning,” ch. 9, pp.

430–435.
[18] C. M. Bishop, “Pattern recognition and machine learning,” ch. 9, pp.

435–439.
[19] C. Xie, J. Chang, and Y. Liu, “Estimating the number of components in

gaussian mixture models adaptively,” 2013.
[20] V. Chandola and V. Kumar, “Anomaly Detection: A Survey,” 2009.

104


