
Network Traffic Classification based on

Class Weight based K-NN Classifier (CWK-NN)

Mohamad Hijazi School of Arts and
Sciences Lebanese International
University Nabatieh, Lebanon

MohamadOsamaHijazi@Gmail.com

Jawad Khalife

School of Arts and Sciences
Lebanese International University

Beirut, Lebanon
jkhalife.khalife@liu.edu.lb

Hussein Al-ghor Faculty
of Technology Lebanese

University Saida,
Lebanon

Hussein.ghor@ul.edu.lb

Jesus Diaz Verdejo School of
IT and Telecom. Eng. University

of Granada
Granada, Spain

jedv@ugr.es

Abstract— Network traffic identification is the first and
most important step in network management and
security. Numerous methods introduced by researchers.
One solution depends on processing both packet header
and payload, which is costly from both time and
processing aspects. Another solution depends on the flow
of statistical information such as packet header length,
flow duration. Blind classifiers are not accurate yet very
fast and do not violate privacy. Machine learning fills the
gap between accuracy and time by using the blind
classifier method and comparing the results with grand
truth then adapting and increasing the accuracy. K-NN is
used widely for its effectiveness and simplicity. However,
a major drawback
of K-NN is its dependency on the training set, being a
lazy classification algorithm with no classification model
to build. In this work, we aim first at assessing the KNN
algorithm in traffic classification. Then we introduce a
new deficiency, related to the training samples
distribution in the n-dimensional space we measure and
propose an enhancement for K-NN adapting to the new
problem and outperforming native K-NN classifier. We
weight the classes, not the instance, based on the
intersections of
class clusters in the dataset. Finally, we propose a
new Class Weight based K-NN Classifier (CWK-
NN), an enhanced K-NN algorithm that can easily
adapt to the newly explored training set deficiency.

Keywords— K-NN, weighted K-NN, traffic classification,
computer network, traffic identification, training dataset

I. INTRODUCTION

The ability to identify network applications is centric to many

network management and security tasks, including quality of

service assignment, traffic engineering, content-dependent

pricing, resource allocation, traffic shaping, and others. With

the proliferation of applications, many of them using different

kinds of obfuscation, traditional port-based classification has

long become obsolete.

Numerous methods were proposed for traffic classification as

in [1] in the last decade. These methods have different

characteristics at many levels, including the analyzed input,

the applied techniques, and the classified target objects.

Deciding upon which classification features to use is a

strategic choice for any traffic classifier. Ideally, Deep packet

inspection as in [2] and [3], or DPI, evaluates the data part

and the header of a packet that is transmitted through an

inspection point. DPI goes beyond examining IP packet

headers, therefore, it raises many privacy concerns and is not

applicable when the traffic is encrypted or tunneled.

However, DPI techniques are considered in the literature as

the most accurate techniques and are used therefore as

reference classifiers to build the Ground Truth or reference

results.

On the other hand, blind classifiers do not inspect the payload

and have the potential ability to deal with these obstacles, at

the expense of an acceptable sacrifice in accuracy. However,

less accurate, the so-called blind methods are preferred in
most environments because they guarantee the

users’ privacy, have the potential to classify encrypted

communications and usually require less computational

power.

Most of these techniques are based on traffic attributes at the

network and transport layers, such as packet sizes and inter-

arrival times. Due to the problem dimensionality, Machine

Learning (ML) techniques can be used in the classification

context. ML classification is considered an instance of

supervised learning, i.e., learning where a training set of

105

Copyright © 2019 for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

correctly identified observations is available. An algorithm

that implements classification, especially in a concrete

implementation, is known as a classifier. In machine learning,

the observations are often known as instances, the

explanatory variables are termed features (grouped into a

feature vector), and the possible categories to be predicted are

classes. The term "classifier" sometimes also refers to the

mathematical function, implemented by a classification

algorithm that maps input data (traffic attributes in the traffic

classification case) to a category (Application type like
HTTP, NTP, DNS…etc.).

There is a relevant research activity in network traffic

classification, employing different Machine learning

approaches. Among them, K-NN was used in several papers

[4-7] due to its simplicity and zero-training time, as will be

shown in the next sections.

Cover and Hart first proposed K-NN (K Nearest Neighbor)

algorithm in 1968. The algorithm itself is simple and

effective, which is a typical lazy or instance-based learning

algorithm. It is not essential for the classifier to use the

training set to train and the training time complexity is 0.

With K-NN, the function is only approximated locally and all

computation is deferred until classification. The principle of

K nearest neighbor classification algorithm (K-

neighborhood) is that if the K samples in the eigenvalue space

most closed to the sample to be identified almost belong to

the same class, we determine this sample also belongs to such

a class. The key difference between classification and

regression tree in [8] is that in classification, the task is

predicting a discrete class label while in regression, the task

consists of predicting a continuous quantity.

In section two, we included the most significant papers

available in the literature. In section three, we explained the

known knn problems which is assessing knn in classifying the

datasets in each application. In section four we introduced the

new problem and we proposed and applied a solution. In

section 5 we will describe briefly the Experimental design

(for the lack of space). And provide the results of this work.

In section 6 there is a conclusion.

II. RELATED WORK

A large number of traffic classification approaches exist in the

literature, some are based on deep packet inspection, which

discloses the packet payload and raises privacy concerns,

while others rely on discriminative traffic attributes at the

network and transport layers, such as packet sizes and inter-

arrival times. This emergent research needs to arise since

IANA Port-based classification in [9] has become obsolete for

more than one decade. Machine learning techniques have been

widely used in the literature, especially the K Nearest

Neighbor due to its simplicity, zero-time for training, and

adequacy for general classification contexts.

In [10] authors reduced the flow attributes used in

classification by introducing a relationship between flows in

order to derive an expanding vector of flow which represents

the attributes of the classes. Their algorithm outperforms naïve

base classifier with 3.2% of decrease in error rate and achieved

99% of accuracy.

Known DPI methods were enhanced in [11] by introducing a

methodology that automatically learns signatures for

application. Their method enhances known DPI by identifying

new applications that old dpi cannot identify, has higher

accuracy, handles variation in applications and adapts to

changing network traffic without user intervention.

Many papers in the literature used K-NN for traffic

classification and attempted to enhance the native algorithm

by addressing key challenges. For example, to select the most

appropriate K value for K-NN, authors in [7] used Dynamic

K-NN, distance weighted K-NN, clustering the results, and

building a model. Dynamic K-NN is responsible for selecting

the most appropriate K value for each dataset. In the training

phase, K value is selected as well as calculating the weight of

each sample, then having clusters in order to build a model. In

the test phase, they calculate the distance between the center

of each cluster and the test point X to be classified. After

finding the nearest cluster, the weighted distance between X

and the rest of the cluster samples is calculated. After

determining the class of X they add it to the training dataset

106

after calculating its weight. As a result, they preserved the

same accuracy but were able to decrease the time to classify

an instance by 50%.

III. K-NN CHALLENGES

A. Algorithm Challenges
1) Adjusting the K value

The K value has a major impact in determining the nature of

the instance to be classified, selecting a small value of K

means that noise will have a higher influence on the result and

a large value make it computationally expensive as explained

in [12]. .The only way to validate a K-NN model is by the

error on test data. As The authors in [13] applied the manual

way of K value Selection. They also applied other solutions

related to the dataset modelling. They outperformed old K-NN

with performance increase ranging from 0.01 to 0.02 of

average misclassification cost.

2) Distance Method Selection

The distance function plays a major role in K-NN

classification accuracy. Researches constantly enhance

distance functions and add a new attribute to increase

accuracy. To determine the proximity of two objects in the

feature space, any distance type method can be applied.

(Euclidean, Manhattan, Minkowski, etc.) yet researcher must

test different distance types for each dataset application . In

[14] author introduced a new parameter for the original

distance method enhanced K-NN by focusing on enhancing

the distance measurement method. In [14] the authors

introduced a new variable to the distance rule that made it

dynamic. This variable represents the radius of a sphere

centered on the new object and excluding all samples that have

a distinct label, the distance between an unknown point X (to
be classified) and samples that have the same

“nature” is less than 1 while the distance between X and

the different elements is 1. They tested the new algorithm on

five different Datasets and values of K ranging from 1 to 50,

with Manhattan, Euclidean distance methods used, they

achieved lowering error rates up to 6%.

B. Dataset Challenges
1) Outlier Instances

An outlier is a data point that differs significantly

from other observations. An outlier may be due to

variability in the measurement or it may indicate the

experimental error; the latter are sometimes excluded

from the data set. Outliers, when found in the training

dataset, can decrease the classification accuracy of K-

NN voting.

Finding such exception has received much attention

in the data mining field. For example, one of the

solutions used in [15] is to partition the dataset into

several clusters and then in each cluster, to calculates

the Kth nearest neighborhood for the object to find

outliers.

Another Solution is weighting each Instance which

is quantifying each Instance contribution in the

Classification process. And adding that number to the

voting process.

Authors in [16] used fuzzy K-NN to enhance

accuracy f score and g mean of pulsar selection

algorithm. They a special weighting algorithm in the

training phase, where they compute the relationship

between the features and the class membership. Nearest

neighbors are given high membership value to the class

they are near from. However, the samples that are far

from a class will be given a small membership value to

this class. The proposed algorithm outperforms other

machine learning algorithms in accuracy metric values

starting from 0.01 to 0.04, G means metric from 0.03 to

0.06, and decreased the FPR value by 0.04 .

2) Class Imbalance Problem
A drawback of the basic "majority voting"

classification occurs when the class distribution is

skewed. That is, examples of a more frequent class tend

to dominate the prediction of the new example because

they tend to be common among the k nearest neighbors

due to their large number.

One way to overcome this problem is to weight the

classification, taking into account the distance from the

test point to each of its k nearest neighbors. The class

107

(or value, in regression problems) of each of

the k nearest points is multiplied by a weight

proportional to the inverse of the distance from that

point to the test point.

Another Intersecting application of weighting is

Introduced by authors in [4] used the sigmoid function to

weight training Instances based on Instances distribution in

the dataset.

WKS algorithm boost the weight of instances surrounded

by “friendly neighbors” and the decreases the weight if the

instance is surrounded mostly with different class members.

They were able to decrease the error rate that ranged from

0.007 to 0.025 for 10 different datasets. We find that their

work was the most significant to our algorithm so we

implemented their algorithm in the experimental setup we

built and compared the results between the native, WKS, and

CWK-NN.

IV. PROPOSED ALGORITHM (CLASS WEIGHT K-NN)

As mentioned previously, the dataset may have

various deficiencies, most commonly, outliers (samples

with errors) and, imbalance in the dataset classes (some

classes are predominant over the others). To address

these deficiencies, weighing samples (outliers problem),

or clustered samples (imbalance problem) are among the

most common solutions found in the literature.

To explore and understand further KNN training set

deficiencies, let us consider the ideal training set for

KNN, as derived from the way KNN classifies best any

unknown sample.

In a very ideal training-set situation, space is made

of one representative sample for each class so that any

unknown point will fall in the n-dimensional (n is the

number of features or attributes)

“exactly” (i.e. coincides) in the location where

only one of the class samples exist.

In real training-sets, however, the location of the

unknown point and existing sample can rarely coincide.

They might rather be close enough for KNN to be able

to derive the classification decision through majority

voting. When each class has many samples, KNN voting

described earlier will make the assumption about the

eventual class of the unknown point.

As such, in a less or near-ideal training-set situation,

an unknown point may fall then within the zone in the n-

dimensional space where only members of the same

class surround it, in this case, KNN voting will be more

reliable since the unknown point shall undoubtedly

belong to the same class of its surrounding neighbors.

Following the same reasoning, the closer the samples are

to the class centroid (i.e. higher density near the

centroid), the more reliable KNN decision shall be.

To illustrate this concept, Figure 1 shows, the

distribution of labeled training points. The set of labels

belonging to each class (Classes 1, 2 and 3), are

clustered into circles for n=2 or spheres for n=3. The

point labeled with X is the unknown point. Class cluster

radius is defined by the standard deviation of the

training samples distances from the centroid, and the

distance between two clusters is the distance between

their centroids. For example, D12 denotes the distance

between centroid C1 of class 1 and C2 of class 2

Fig. 1. real training set samples' distribution

108

Fig. 2. ideal distribution for a KNN-based classifier

Fig 2. Shows a near-ideal distribution where the

clusters are disjoint and do not intersect at all,

mimicking the near ideal situation. In this case, a test

point falling into only one of the class clusters will lead

to a highly deterministic KNN voting decision since all

nearest neighbors to X will have the same label, class 2

in this case.

In the case where unknown points fall out of the

radius of any of the existing clusters, KNN voting

decision still applies however with less reliability. In

other words, the points falling in the intersections or

between zones are those for which KNN decision will

be controversial (i.e. not all of the nearest neighbors

have the same class label), which will decrease the

overall reliability of KNN classification decisions when

compared to the ideal training-set distribution in Fig 2.

Fig. 3. Real dataset classes distribution

To highlight more on this aspect and for simplicity,

in Fig3. we introduce a dataset having only four classes.

Each instance has only two attributes. Please notice that

the classes are balanced yet two classes is intersecting.

Consider the reliability of the KNN classification

decision when classifying the instances that belong to

collide classes. The reliability of KNN decisions is very

weak. yet for the classes not intersecting the reliability

is supposed to increase evidently for training sets having

the distribution similar to class one and class 3. Since

the reliability of KNN decisions for points, falling inside

the clusters will be higher than those falling outside any

of the existing clusters or at the intersections. Except for

the differences in the neighbors’ distances

considerations, the reliability of the classification

decision shall be quite the same for points falling

outside any of the existing clusters or at the intersections

in both cases.

Therefore, when the circles representing class

clusters are more distant and dense as in Fig2, KNN

classification is supposed to become more reliable, at

least for the unknown points falling within class

clusters. On the contrary, having too close cluster

centroids with lower density (i.e. more spread

distribution) will result in additional intersections

between clusters, which will decrease the reliability of

KNN classification for the unknown points falling on

the intersecting zones between classes (e.g. C2 and C3

in Fig 1.).

In other words, when class clusters have no or fewer

intersections, the training dataset shall become closer to

the “near-ideal distribution” in Fig 2. . Thus

leading for better classification results.

Despite the fact that imbalanced sets are likely to

have class clusters intersections, having one

characteristic (i.e. class imbalance or class intersections)

does not necessarily imply the other:

�� A dataset can be imbalanced but classes do

not intersect

�� A dataset can be balanced but classes do

intersect

The latter case, depicted in Fig 1. is the most

relevant to our approach where we measure the new
KNN training set deficiency related to

relative points’ distribution within the n-

dimensional space rather than

109

their relative numbers. To the best of our knowledge,
“Class clusters intersections” is not

explored yet as a deficiency for KNN training

sets, nor was it regarded in separate from the

imbalanced class problem.

Up to this level, we have theoretically explained

and discussed what we think to be ideal for KNN

training set distribution and speculated about its impact

on KNN classification. However, most of the presented

assumptions have to be proven through

experimentation.

For this reasons, we attempt next to measure and
quantify the value of “class clusters

intersections” inside KNN training sets. Then,

we attempt to derive a new KNN classifier in order to

experimentally demonstrate the importance and impact

of considering of class intersections or training points

distribution in the training set on KNN classification.

A. Weighting Classes with CWKNN
A Class Weight based KNN Classifier or CWKNN is

simply a KNN classifier that takes into consideration the

samples distribution or class intersections described earlier.

As mentioned, intersections should be expressed in terms of

newly defined class weights. The WCKNN algorithm is a

two-phase process that includes the training and the testing

described as follows:

1- Calculate centroids of each class.

2- Calculate the variance instance of each class.

3- Calculate the distance between centroids.

if the distance is larger than the sum of two

radiuses the classes does not intersect and the

weight of the two classes remain the same. Else

if the distance between centroids is smaller than

the sum of radiuses there is an intersection and

the weights of the classes must be decreased.

4- Assign the weight calculated for all instances.

Training phase:

For each class we add two instances the first instance is

The centroid, and second instance represents the avarge

distribution of the class in the n dimensions (where n is the

number of attributes).

The centroid is the instance core instance having the

average value of all attributes. The radius is the distance

between centroid and the instance having the variance of

value for all attributes. Thus it’s the allowed

normal margin for class distribution in the n dimensional

space. All the instances outside the threshold is considered as

outliers and they are not significant comparing to the majority

of the class instances. Distances between centroids are

accordingly calculated. To formalize how CWKNN operates

in the training phase refers to simply formalize how class

weights are calculated. The main idea of setting the class

weights is that classes who do not intersect have less error

margin. We boost the weight of all of Instances having the

same class. However, classes with intersections should

have decreased weights.

Let M be the total number of classes in the dataset

For each class i, find the distance between the class

centroid and all other centroids.

Equation 1

𝑊 = 1 + 𝑒 −𝑖 ��

��

Equation 2

𝑀

 = ∑ 𝑎 ��
=1

110

1

 𝜖 [0 , 𝑀
]

𝐴 𝜖 [1 , 1]
𝑀

𝑊 𝜖 [1, (1 + 𝑒 −1)]

Wi: Weight of class i in what concerns class

intersections.

aij is a discrete value indicating if there is an intersection

between classes i and j.

Ai is a value measuring the level of intersections between

class i and the rest of classes.

As shown in equation 1, if Ai, denoting the number of class
i’s intersections with other classes, increases

then Wi should decrease.
1

accomplishment of some additional objectives related to

building the experimental setup.

In this experiment we used a server that has 16 GB of ram ,

2 Intel(R) Xeon(R) 2.66 GHz processors with 4 cores each.

With Ubuntu 18.01 OS to capture network traffic and

converting the flows into a dataset. We captured network

flows by using tcp dump. then we used nDPI to detect the real

nature of the flow traffic and to set the flow attributes.

was collected the flow , over an extended period of time

spanning around 3 days and totaling around 1.2 GB of real

traffic. we have excluded the encrypted traffic.

The 3 days span of collecting the data was due to our desire

to collect, a large dataset for testing and classification and

then we were obliged to use a part of the data collected 51752

labeled flow for the lack of resources. The part was selected

randomly. Knn classification algorithm stores all training

dataset in the in the RAM.

Ai has a minimal value of
𝑀

(since each class intersects with

After obtaining the dataset we have used weka open
itself at least)--when the class is disjoint from all other

classes-- and a maximum value for Ai=1 when theoretically

it intersects with all other classes.

This mechanism ensures that the interval of Wi is.

Intersecting classes are not thus explicitly punished, but

rather, they are not rewarded higher weights.

Test phase: each training sample belonging to class i is

assigned the weight of the class. The weighted voting of K

neighbors is combined, and the weight of each neighbor is the

function of the class to which the neighbor

the training phase.

As per equation 1, the class weight decreases exponentially

when the value of the number of intersections increases

towards M. The contributions of the classification for the

training sample belonging to a good class is regulated thus by

the weight value when the numbers of intersections get

considerably higher.

V. DATASET AND RESULTS

One of the objectives of this work, as previously stated, is to

assess and to enhance KNN in network traffic

classification. The completion of these

objectives requires the

source software to add wks and our algorithm.

To validate the obtained Result we have used many other
datasets from the weka library. We will only include the
results from three dataset for the lack of time.

Dataset Number of
clases

Number
of

attributes

Number
of

instances
Network flow 7 59 51752

Indian diabetes 2 8 768

Balance scale 3 4 628

Fig. 4. Datasets general information.

As mentioned, there is no optimal conditions applicable
for all dataset so we have ran several experiments to adjust the
optimal k value and distance method per dataset. Then we
applied wks and CWK-NN enhancement.

The dataset was randomized we used 0 as a random seed.
Then we split the dataset by 2/3 ratio for training and the
remaining for testing.

Dataset True positive rate
 K-NN WKS CWK-NN

Network flow 98.548% 98.367% 98.721%

Indian diabetes 61.67% 64.05% 69.02%

Balance scale 77.74% 78.18% 78.93%

Fig. 5. comparison between the native knn, wks, and the proposed
algorithm in the best k value and distance method per dataset.

111

VI. CONCLUSION

In this work, we have explored and measured a new

deficiency, related to KNN training samples distribution in the

n-dimensional space and classes’ intersections.

We weighted classes accordingly in the training set. Then,

we suggested class weighting scheme, then we derived a

newly proposed Class Weight based KNN Classifier

(CWKNN), an enhanced KNN algorithm that can account for

sample distributions or classes intersections in KNN training

sets.

Furthermore, we have assessed KNN algorithm in traffic

classification contexts through an experimental test-bed that

we build for this purpose.

Our tests on real captured and Internet-based datasets showed

up top 7% enhancements in the classification results,
compared to the native and samples’ weighted KNN

approaches.

Moreover, and as per our testbed, we showed that K=3 and

Euclidean distance type can lead to more than 98% of overall

Tp in computer traffic classification context.

VII. REFRENCES

[1] J. Khalife J. Verdejo, and A. Hajjar A multilevel taxonomy and

requirements for an optimal traffic-classification model [Journal]. -
[s.l.] : Int. Journal of Network Management , 2014. - 2 : Vol. 24.

[2] J. Khalife J. Verdejo, and A. Hajjar On the Performance of OpenDPI
in Identifying P2P Truncated traffic [Book]. - [s.l.] : JOURNAL OF
NETWORKS, 2013. - Vols. VOL. 8, NO. 1.

[3] digitalguardian digitalguardian [Online] // digitalguardian. -
digitalguardian, 2019. - https: //digitalguardian.com/blog/what-deep-
packet-inspection-how-it-works-use-cases-dpi-and-more.

[4] Min Zhang Min Qi ，*, Kang Sun , YuJun Niu , Longxiang Shi New
Classification Algorithm WKS Based on Weight [Conference] // 2017
IEEE 19th International Conference on e-Health Networking,
Applications and Services (Healthcom). - Dalian, China : IEEE, 2017.

[5] Hou Kaihu Zhan, Hui ,Zhou Zhou A Weighted KNN Algorithm Based
on Entropy [Journal]. - Kunming, china : IEEE, 2018.

[6] Shweta Taneja Charu Gupta, Kratika Goyal , Dharna Gureja Enhanced
K-Nearest Neighbor Algorithm Using Information Gain and Clustering
[Conference] // 2014 Fourth International Conference on Advanced
Computing & Communication Technologies. - [s.l.] : IEEE, 2014.

[7] Kumar Nath Syed,M.Rahman,Akram Salah An Enhancement of k -
Nearest Neighbor Classification Using Genetic Algorithm [Journal]. -
2018.

[8] machinelearningmastery machinelearningmastery [Online] //
machinelearningmastery. - machinelearningmastery, 2018. - https:
//machinelearningmastery.com/classification-versus-regression-in-
machine-learning/.

[9] IANA IANA Port Numbers. [Online] // IANA . - IANA, 2013. - 01
2013. - http: //www.iana.org/assignments/ port-numbers.

[10] Lei Dinga Jun Liua, Tao Qina, Haifei Lib Internet Traffic Classification
Based on Expanding Vector of Flow [Journal]. - China : IEEE.

[11] Alok Tongaonkar⇑ Ruben Torres, Marios Iliofotou, Ram Keralapura,
Antonio Nucci Towards self adaptive network traffic classification
[Journal]. - [s.l.] : IEEE, 2014.

[12] pseudo_teetotaler stack overflow [Online] // stack overflow. - 2019. -
https: //stackoverflow.com/questions/33884325/ideal-k-value-in-
KNN-for-classification.

[13] Zhang Shichao Cost-Sensitive KNN Classification [Journal]. - [s.l.] :
IEEE, 2019.

[14] Jigang Wang Predrag Neskovic,Leon N. Cooper Improving nearest
neighbor rule with a simple adaptive Distance measure [Conference] //
International Conference on Natural Computation. - [s.l.] : ICNC 2006:
Advances in Natural Computation, 2006.

[15] P. Yang B. Huang KNN Based Outlier Detection Algorithm in Large
Dataset [Conference] // 2008 International Workshop on Education
Technology and Training & 2008 International Workshop on
Geoscience and Remote Sensing. - Shanghai : Research Gate, 2008.

[16] TM Mohamed Pulsar Selection Using Fuzzy knn Classifier
[Conference] // Future Computing and Informatics Journal (2018). -
[s.l.] : IEEE, 2018.

112

