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Abstract— Network traffic identification is the first and 
most important step in network management and 
security. Numerous methods introduced by researchers. 
One solution depends on processing both packet header 
and payload, which is costly from both time and 
processing aspects. Another solution depends on the flow 
of statistical information such as packet header length, 
flow duration. Blind classifiers are not accurate yet very 
fast and do not violate privacy. Machine learning fills the 
gap between accuracy and time by using the blind 
classifier method and comparing the results with grand 
truth then adapting and increasing the accuracy. K-NN is 
used widely for its effectiveness and simplicity. However, 
a major drawback 
of K-NN is its dependency on the training set, being a 
lazy classification algorithm with no classification model 
to build. In this work, we aim first at assessing the KNN 
algorithm in traffic classification. Then we introduce a 
new deficiency, related to the training samples 
distribution in the n-dimensional space we measure and 
propose an enhancement for K-NN adapting to the new 
problem and outperforming native K-NN classifier. We 
weight the classes, not the instance, based on the 
intersections of 
class clusters in the dataset. Finally, we propose a 
new Class Weight based K-NN Classifier (CWK-
NN), an enhanced K-NN algorithm that can easily 
adapt to the newly explored training set deficiency. 
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I. INTRODUCTION 

The ability to identify network applications is centric to many 

network management and security tasks, including quality of 

service assignment, traffic engineering, content-dependent 

pricing, resource allocation, traffic shaping, and others. With 

the proliferation of applications, many of them using different 

kinds of obfuscation, traditional port-based classification has 

long become obsolete. 

Numerous methods were proposed for traffic classification as 

in [1] in the last decade. These methods have different 

characteristics at many levels, including the analyzed input, 

the applied techniques, and the classified target objects. 

Deciding upon which classification features to use is a 

strategic choice for any traffic classifier. Ideally, Deep packet 

inspection as in [2] and [3], or DPI, evaluates the data part 

and the header of a packet that is transmitted through an 

inspection point. DPI goes beyond examining IP packet 

headers, therefore, it raises many privacy concerns and is not 

applicable   when   the  traffic   is   encrypted   or   tunneled. 

However, DPI techniques are considered in the literature as 

the most accurate techniques and are used therefore as 

reference classifiers to build the Ground Truth or reference 

results. 

On the other hand, blind classifiers do not inspect the payload 

and have the potential ability to deal with these obstacles, at 

the expense of an acceptable sacrifice in accuracy. However, 

less accurate, the so-called blind methods are preferred in 
most  environments  because  they  guarantee  the  

users’ privacy, have the potential to classify encrypted 

communications and usually require less computational 

power. 

Most of these techniques are based on traffic attributes at the 

network and transport layers, such as packet sizes and inter- 

arrival times. Due to the problem dimensionality, Machine 

Learning (ML) techniques can be used in the classification 

context. ML classification is considered an instance of 

supervised  learning,  i.e., learning where a training set of 
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correctly identified observations is available. An algorithm 

that implements classification, especially in a concrete 

implementation, is known as a classifier. In machine learning, 

the  observations are  often  known  as instances,  the 

explanatory variables are termed features (grouped into a 

feature vector), and the possible categories to be predicted are 

classes. The term "classifier" sometimes also refers to the 

mathematical function, implemented by a classification 

algorithm that maps input data (traffic attributes in the traffic 

classification case) to a category (Application type like 
HTTP, NTP, DNS…etc.). 

There  is  a  relevant  research  activity  in  network  traffic 
 

classification, employing different Machine learning 

approaches. Among them, K-NN was used in several papers 

[4-7] due to its simplicity and zero-training time, as will be 

shown in the next sections. 

Cover and Hart first proposed K-NN (K Nearest Neighbor) 

algorithm in 1968. The algorithm itself is simple and 

effective, which is a typical lazy or instance-based learning 

algorithm. It is not essential for the classifier to use the 

training set to train and the training time complexity is 0. 

With K-NN, the function is only approximated locally and all 

computation is deferred until classification. The principle of 

K nearest neighbor classification algorithm (K- 

neighborhood) is that if the K samples in the eigenvalue space 

most closed to the sample to be identified almost belong to 

the same class, we determine this sample also belongs to such 

a class. The key difference between classification and 

regression tree in [8] is that in classification, the task is 

predicting a discrete class label while in regression, the task 

consists of predicting a continuous quantity. 

In section two, we included the most significant papers 

available in the literature. In section three, we explained the 

known knn problems which is assessing knn in classifying the 

datasets in each application. In section four we introduced the 

new problem and we proposed and applied a solution. In 

section 5 we will describe briefly the Experimental design 

(for the lack of space). And provide the results of this work. 

In section 6 there is a conclusion. 

II. RELATED WORK 
 

 
A large number of traffic classification approaches exist in the 

literature, some are based on deep packet inspection, which 

discloses the packet payload and raises privacy concerns, 

while others rely on discriminative traffic attributes at the 

network and transport layers, such as packet sizes and inter- 

arrival times. This emergent research needs to arise since 

IANA Port-based classification in [9] has become obsolete for 

more than one decade. Machine learning techniques have been 

widely used in the literature, especially the K Nearest 

Neighbor due to its simplicity, zero-time for training, and 

adequacy for general classification contexts. 
 
 
In [10] authors reduced the flow attributes used in 

classification by introducing a relationship between flows in 

order to derive an expanding vector of flow which represents 

the attributes of the classes. Their algorithm outperforms naïve 

base classifier with 3.2% of decrease in error rate and achieved 

99% of accuracy. 
 
 
Known DPI methods were enhanced in [11] by introducing a 

methodology that automatically learns signatures for 

application. Their method enhances known DPI by identifying 

new applications that old dpi cannot identify, has higher 

accuracy,   handles variation in applications and adapts to 

changing network traffic without user intervention. 
 
 
Many papers in the literature used K-NN for traffic 

classification and attempted to enhance the native algorithm 

by addressing key challenges. For example, to select the most 

appropriate K value for K-NN, authors in [7] used Dynamic 

K-NN, distance weighted K-NN, clustering the results, and 

building a model. Dynamic K-NN is responsible for selecting 

the most appropriate K value for each dataset. In the training 

phase, K value is selected as well as calculating the weight of 

each sample, then having clusters in order to build a model. In 

the test phase, they calculate the distance between the center 

of each cluster and the test point X to be classified. After 

finding the nearest cluster, the weighted distance between X 

and the rest of the cluster samples is calculated. After 

determining the class of X they add it to the training dataset 
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after calculating its weight. As a result, they preserved the 

same accuracy but were able to decrease the time to classify 

an instance by 50%. 
 
 
 

III. K-NN CHALLENGES 
 

A.  Algorithm Challenges 
1)   Adjusting the K value 

 
The K value has a major impact in determining the nature of 

the instance to be classified, selecting a small value of K 

means that noise will have a higher influence on the result and 

a large value make it computationally expensive as explained 

in [12]. .The only way to validate a K-NN model is by the 

error on test data. As The authors in [13] applied the manual 

way of K value Selection.  They also applied other solutions 

related to the dataset modelling. They outperformed old K-NN 

with performance increase ranging from 0.01 to 0.02 of 

average misclassification cost. 
 

2)   Distance Method Selection 
 

The distance function plays a major role in K-NN 

classification accuracy. Researches constantly enhance 

distance functions and add a new attribute to increase 

accuracy. To determine the proximity of two objects in the 

feature space, any distance type method can be applied. 

(Euclidean, Manhattan, Minkowski, etc.) yet researcher must 

test different distance types for each dataset application . In 

[14] author introduced a new parameter for the original 

distance method enhanced K-NN by focusing on enhancing 

the distance measurement method. In [14] the authors 

introduced a new variable to the distance rule that made it 

dynamic. This variable represents the radius of a sphere 

centered on the new object and excluding all samples that have 

a distinct label, the distance between an unknown point X (to 
be classified)  and samples that have the same 

“nature” is less than 1 while the distance between X and 

the different elements is 1. They tested the new algorithm on 

five different Datasets and values of K ranging from 1 to 50, 

with Manhattan, Euclidean distance methods used, they 

achieved lowering error rates up to 6%. 

B.  Dataset Challenges 
1)   Outlier Instances 

An outlier is a data point that differs significantly 

from other observations. An outlier may be due to 

variability in the measurement or it may indicate the 

experimental error; the latter are sometimes excluded 

from the data set. Outliers, when found in the training 

dataset, can decrease the classification accuracy of K- 

NN voting. 

Finding such exception has received much attention 

in the data mining field. For example, one of the 

solutions used in [15] is to partition the dataset into 

several clusters and then in each cluster, to calculates 

the Kth nearest neighborhood for the object to find 

outliers. 

Another Solution is weighting each Instance which 

is quantifying each Instance contribution in the 

Classification process. And adding that number to the 

voting process. 

Authors in [16] used fuzzy K-NN to enhance 

accuracy f score and g mean of pulsar selection 

algorithm. They a special weighting algorithm in the 

training phase, where they compute the relationship 

between the features and the class membership. Nearest 

neighbors are given high membership value to the class 

they are near from. However, the samples that are far 

from a class will be given a small membership value to 

this class.  The proposed algorithm outperforms other 

machine learning algorithms in accuracy metric values 

starting from 0.01 to 0.04, G means metric from 0.03 to 

0.06, and decreased the FPR  value by 0.04 . 
 
 

2)   Class Imbalance Problem 
A drawback of the basic "majority voting" 

classification occurs when the class distribution is 

skewed. That is, examples of a more frequent class tend 

to dominate the prediction of the new example because 

they tend to be common among the k nearest neighbors 

due to their large number. 

One way to overcome this problem is to weight the 

classification, taking into account the distance from the 

test point to each of its k nearest neighbors. The class 
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(or   value,   in   regression   problems)   of   each   of 

the k nearest    points   is   multiplied   by   a   weight 

proportional to the inverse of the distance from that 

point to the test point. 

 
Another Intersecting application of weighting is 

Introduced by authors in [4] used the sigmoid function to 

weight training Instances based on Instances distribution in 

the dataset. 
 
 

WKS algorithm boost the weight of instances surrounded 

by “friendly neighbors” and the decreases the weight if the 

instance is surrounded mostly with different class members. 

They were able to decrease the error rate that ranged from 

0.007 to 0.025 for 10 different datasets. We find that their 

work was the most significant to our algorithm so we 

implemented their algorithm in the experimental setup we 

built and compared the results between the native, WKS, and 

CWK-NN. 
 
 
 

IV. PROPOSED ALGORITHM (CLASS WEIGHT K-NN) 

As  mentioned  previously,  the  dataset  may  have 

various deficiencies, most commonly, outliers (samples 

with errors) and, imbalance in the dataset classes (some 

classes are predominant over the others). To address 

these deficiencies, weighing samples (outliers problem), 

or clustered samples (imbalance problem) are among the 

most common solutions found in the literature. 

To explore and understand further KNN training set 

deficiencies, let us consider the ideal training set for 

KNN, as derived from the way KNN classifies best any 

unknown sample. 

In a very ideal training-set situation, space is made 

of one representative sample for each class so that any 

unknown point will fall in the n-dimensional (n is the 

number  of features  or  attributes)  

“exactly” (i.e. coincides) in the location where 

only one of the class samples exist. 

In real training-sets, however, the location of the 

unknown point and existing sample can rarely coincide. 

They might rather be close enough for KNN to be able 

to derive the classification decision through majority 

voting. When each class has many samples, KNN voting 

described earlier will make the assumption about the 

eventual class of the unknown point. 

As such, in a less or near-ideal training-set situation, 

an unknown point may fall then within the zone in the n- 

dimensional space where only members of the same 

class surround it, in this case, KNN voting will be more 

reliable since the unknown point shall undoubtedly 

belong to the same class of its surrounding neighbors. 

Following the same reasoning, the closer the samples are 

to the class centroid (i.e. higher density near the 

centroid), the more reliable KNN decision shall be. 

To illustrate this concept, Figure 1 shows, the 

distribution of labeled training points. The set of labels 

belonging to each class (Classes 1, 2 and 3), are 

clustered into circles for n=2 or spheres for n=3. The 

point labeled with X is the unknown point. Class cluster 

radius is defined by the standard deviation of the 

training samples distances from the centroid, and the 

distance between two clusters is the distance between 

their centroids. For example, D12 denotes the distance 

between centroid C1 of class 1 and C2 of class 2 
 
 

 
 
 
Fig. 1.   real training set samples' distribution 
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Fig. 2.   ideal distribution for a KNN-based classifier 

 
Fig 2. Shows a near-ideal distribution where the 

clusters are disjoint and do not intersect at all, 

mimicking the near ideal situation. In this case, a test 

point falling into only one of the class clusters will lead 

to a highly deterministic KNN voting decision since all 

nearest neighbors to X will have the same label, class 2 

in this case. 

In the case where unknown points fall out of the 

radius of any of the existing clusters, KNN voting 

decision still applies however with less reliability. In 

other words, the points falling in the intersections or 

between zones are those for which KNN decision will 

be controversial (i.e. not all of the nearest neighbors 

have the same class label), which will decrease the 

overall reliability of KNN classification decisions when 

compared to the ideal training-set distribution in Fig 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Real dataset classes distribution 

 
To highlight more on this aspect and for simplicity, 

in Fig3. we introduce a dataset having only four classes. 

Each instance has only two attributes. Please notice that 

the classes are balanced yet two classes is intersecting. 

Consider the reliability of the KNN classification 

decision when classifying the instances that belong to 

collide classes. The reliability of KNN decisions is very 

weak. yet for the classes not intersecting the reliability 

is supposed to increase evidently for training sets having 

the distribution similar to class one and class 3. Since 

the reliability of KNN decisions for points, falling inside 

the clusters will be higher than those falling outside any 

of the existing clusters or at the intersections. Except for 

the differences in the neighbors’ distances 

considerations, the reliability of the classification 

decision  shall  be  quite  the  same  for  points  falling 

outside any of the existing clusters or at the intersections 

in both cases. 

Therefore, when the circles representing class 

clusters are more distant and dense as in Fig2, KNN 

classification is supposed to become more reliable, at 

least  for  the  unknown  points  falling  within  class 

clusters. On the contrary, having too close cluster 

centroids with lower density (i.e. more spread 

distribution) will result in additional intersections 

between clusters, which will decrease the reliability of 

KNN classification for the unknown points falling on 

the intersecting zones between classes (e.g. C2 and C3 

in Fig 1.). 

In other words, when class clusters have no or fewer 

intersections, the training dataset shall become closer to 

the “near-ideal distribution” in Fig 2. . Thus 

leading for better classification results. 

Despite the fact that imbalanced sets are likely to 

have class clusters intersections, having one 

characteristic (i.e. class imbalance or class intersections) 

does not necessarily imply the other: 

�� A dataset can be imbalanced but classes do 

not intersect 

�� A dataset can be balanced but classes do 

intersect 
 

The latter case, depicted in Fig 1. is the most 

relevant to our approach where we measure the new 
KNN training set deficiency  related to 

relative points’ distribution within the n-

dimensional space rather than 
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their relative numbers. To the best of our knowledge, 
“Class clusters intersections” is not 

explored  yet  as a deficiency for KNN training 

sets, nor was it regarded in separate from the 

imbalanced class problem. 

Up to this level, we have theoretically explained 

and discussed what we think to be ideal for KNN 

training set distribution and speculated about its impact 

on KNN classification. However, most of the presented 

assumptions  have  to  be  proven  through 

experimentation. 

For this reasons, we attempt next to measure and 
quantify the value of “class clusters 

intersections” inside KNN training sets. Then, 

we attempt to derive a new KNN classifier in order to 

experimentally demonstrate the importance and impact 

of considering of class intersections or training points 

distribution in the training set on KNN classification. 
 
 

A.  Weighting Classes with CWKNN 
A Class Weight based KNN Classifier or CWKNN is 

simply a KNN classifier that takes into consideration the 

samples distribution or class intersections described earlier. 

As mentioned, intersections should be expressed in terms of 

newly defined class weights. The WCKNN algorithm is a 

two-phase process that includes the training and the testing 

described as follows: 

1-   Calculate centroids of each class. 
 

2-   Calculate the variance instance of each class. 
 

3-   Calculate the distance between centroids. 
 

if the distance is larger than the sum of two 

radiuses the classes does not intersect and the 

weight of the two classes remain the same. Else 

if the distance between centroids is smaller than 

the sum of radiuses there is an intersection and 

the weights of the classes must be decreased. 

4-   Assign the weight calculated for all instances. 

Training phase: 
 

For each class we add two instances the first instance is 
 

The centroid, and second instance represents the avarge 

distribution of the class in the n dimensions (where n is the 

number of attributes). 

The centroid is the instance core instance having the 

average value of all attributes. The radius is the distance 

between centroid and the instance having the variance of 

value for all attributes. Thus it’s the allowed  

normal margin for class distribution in the n dimensional 

space. All the instances outside the threshold is considered as 

outliers and they are not significant comparing to the majority 

of the class instances. Distances between centroids are 

accordingly calculated. To formalize how CWKNN operates 

in the training phase refers to simply formalize how class 

weights are calculated. The main idea of setting the class 

weights is that classes who do not intersect have less error 

margin. We boost the weight of all of Instances having the 

same class. However, classes with intersections should 

have decreased weights. 
 

Let M be the total number of classes in the dataset 
 

For each class i, find the distance between the class 

centroid and all other centroids. 
 
 

Equation 1 
 
 

𝑊  = 1 + 𝑒 −𝑖 ��
 
 

��

Equation 2 
 
 

𝑀 

 = ∑ 𝑎   ��
=1 
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1 

  𝜖 [0 , 𝑀 
] 

 

𝐴 𝜖 [ 1   , 1] 
𝑀 

𝑊 𝜖 [ 1, (1 + 𝑒 −1 )] 
 
 

Wi:   Weight   of   class   i   in   what   concerns   class 

intersections. 

aij is a discrete value indicating if there is an intersection 

between classes i and j. 

Ai is a value measuring the level of intersections between 

class i and the rest of classes. 
 
 
 

As shown in equation 1, if Ai, denoting the number of class 
i’s intersections with other classes, increases 

then Wi should decrease. 
1 

accomplishment of some additional objectives related to 

building the experimental setup. 
 
 
In this experiment we used  a server that has 16 GB of ram , 

 

2 Intel(R) Xeon(R) 2.66 GHz processors with 4 cores each. 

With Ubuntu 18.01 OS to capture network traffic and 

converting the flows into a dataset. We captured network 

flows by using tcp dump. then we used nDPI to detect the real 

nature of the flow traffic and to set the flow attributes. 

was collected the flow , over an extended period of time 

spanning around 3 days and totaling around 1.2 GB of real 

traffic. we have excluded the encrypted traffic. 

The 3 days span of collecting the data was due to our desire 
 

to collect, a large dataset for testing and classification and 

then we were obliged to use a part of the data collected 51752 

labeled flow for the lack of resources. The part was selected 

randomly. Knn classification algorithm stores all training 

dataset in the in the RAM. 

Ai has a minimal value of 
𝑀 

(since each class intersects with  

After obtaining the dataset we have used weka   open 
itself at least)--when the class is disjoint from all other 

classes-- and a maximum value for Ai=1 when theoretically 

it intersects with all other classes. 

This mechanism ensures that the interval of Wi is. 

Intersecting classes are not thus explicitly punished, but 

rather, they are not rewarded higher weights. 

Test phase: each training sample belonging to class i is 

assigned the weight of the class. The weighted voting of K 

neighbors is combined, and the weight of each neighbor is the 

function of the class to which the neighbor 

the training phase. 
 

As per equation 1, the class weight decreases exponentially 

when the value of the number of intersections increases 

towards M.   The contributions of the classification for the 

training sample belonging to a good class is regulated thus by 

the weight value when the numbers of intersections get 

considerably higher. 
 
 

V. DATASET AND RESULTS 

One of the objectives of this work, as previously stated, is to 

assess and to enhance KNN in network traffic 

classification. The    completion    of    these    

objectives    requires    the 

source software to add wks and our algorithm. 
 

To validate the obtained Result we have used many other 
datasets from the weka library. We will only include the 
results from three dataset for the lack of time. 
 
 
 

Dataset Number of 
clases 

Number 
of 

attributes 

Number 
of 

instances 
Network flow 7 59 51752 

Indian diabetes 2 8 768 

Balance scale 3 4 628 

Fig. 4.   Datasets general information. 
 

As mentioned, there is no optimal conditions applicable 
for all dataset so we have ran several experiments to adjust the 
optimal k value and distance method per dataset. Then we 
applied wks and CWK-NN enhancement. 
 

The dataset was randomized we used 0 as a random seed. 
Then we split the dataset by 2/3 ratio for training and the 
remaining for testing. 
 
 
 

Dataset  True positive rate  
 K-NN  WKS CWK-NN 

Network flow 98.548% 98.367% 98.721% 

Indian diabetes 61.67%  64.05% 69.02% 

Balance scale 77.74%  78.18% 78.93% 

Fig. 5.   comparison  between  the  native  knn,  wks,  and  the  proposed 
algorithm in the best k value and distance method per dataset. 
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VI. CONCLUSION 

In this work, we have explored and measured a new 

deficiency, related to KNN training samples distribution in the 

n-dimensional  space and classes’ intersections. 

We weighted classes accordingly in the training set. Then, 

we suggested class weighting scheme, then we derived a 

newly proposed Class Weight based KNN Classifier 

(CWKNN), an enhanced KNN algorithm that can account for 

sample distributions or classes intersections in KNN training 

sets. 

Furthermore, we have assessed KNN algorithm in traffic 

classification contexts through an experimental test-bed that 

we build for this purpose. 

Our tests on real captured and Internet-based datasets showed 

up top 7% enhancements in the classification results, 
compared to the native and samples’ weighted KNN 

approaches. 

Moreover, and as per our testbed, we showed that K=3 and 

Euclidean distance type can lead to more than 98% of overall 

Tp in computer traffic classification context. 
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