
Calculating the average using Paillier’s
cryptosystem

Christiana Zaraket
ESIB, USJ CIMTI
Beirut, Lebanon

christiana.zaraket@net.usj.edu.lb

Maroun Chamoun
ESIB, USJ CIMTI
Beirut, Lebanon

maroun.chamoun@usj.edu.lb

Tony Nicolas
ESIB, USJ

CIMTI
Beirut, Lebanon

tony.nicolas@usj.edu.lb

Abstract—Homomorphic encryption (HE) is one of the
efficient ways that allow many companies to store their data in
an encrypted form into the Cloud and then the latter can be
analyzed and worked with as if it were still in its initial form. In
this paper we consider two types of homomorphic encryption
(HE) schemes: the additive and the multiplicative ones. But we
will be focusing on the additive one in order to calculate on the
cipher-texts and get the average while decrypting the result.
Therefore we will show the theoretical part of the additive
homomorphic Paillier's cryptosystem which is used in order to
encrypt and decrypt the messages needed, but what can be more
interesting is showing in details the application part of it which
is realized by a numerical example applied on Sagemath.

Keywords—Homomorphic encryption (HE), additive

homomorphic, Paillier’s cryptosystem

I. INTRODUCTION

Cloud computing is a data storing technique that gives
opportunities for out-sourcing of storage and computation. It
offers flexibility and cost saving, but the main disadvantage
that faces many companies to use the Cloud computing in their
work is the security concept. The first solution proposed was
to encrypt the sensible data before storing it into the Cloud,
but if ever we want to apply operations on the latter without
decrypting it and without having any information about the
initial data, we need to use what's called homomorphic
encryption (HE). The homomorphic encryption (HE)
procedure is simple: the user stores its encrypted data into the
cloud and sends encrypted queries over it, the latter must be
able to send back to user an answer which is in an encrypted
form and while decrypting the result, the user obtains what he
wants. In addition a homomorphic encryption (HE) scheme
could be either additive such as Paillier’s [1] and Goldwasser-
micali’s [2] cryptosystems or multiplicative such as RSA [3]
and EL Gamal [4] crypto-systems. This depends on what the
user wants as operation to be done on his plain-texts after
applying the decryption function. After all these work, in 2009
Craig Gentry had the idea of creating a new cryptosystem
known as Fully homomorphic encryption scheme (FHE) [5]
which can handle addition and multiplication operations at the
same time, but such scheme was proved unfeasible in practice
due to a massive overhead in computation and memory cost.
However, the idea of this article comes from the murex’s

This paper is the result of a prolonged study on Paillier’s
cryptosystem and our purpose of the latter is to facilitate and
to make clearer the mathematical ideas and theorems used in
this cryptosystem. All this is done by giving details and proofs
on every step taken, as well by giving numerical examples. So
that a reader, from any field, can understand not only the
Paillier’s cryptosystem but also can see direct applications on
it.

The rest of this paper is decomposed as follows: in section
II we define the notion of homomorphic encryption (HE) as
well as its properties. In section III, we present in details
Paillier’s cryptosystem which is an example of a
homomorphic encryption (HE) scheme and we show, in
section IV, how to apply operations on it. In section V, we
give a numerical example concerning the previous section.
And finally we conclude this paper in section VI by giving a
conclusion and an idea about future work.

II. HOMOMORPHIC ENCRYPTION

In this section we give a definition of a homomorphic
encryption (HE) for an asymmetric scheme as well as its
properties.

A. Asymmetric Scheme [6]
An asymmetric scheme is based on three functions:

• KeyGen():generates two different keys, a public one

noted pk and a secret one noted sk.

• Encrypt(pk, mi) : is a mathematical function that is
able to transform a plain-text mi into a cipher-text ci
using the public key pk.

• Decrypt(sk, ci): is a mathematical function that uses

the secret key sk in order to obtain the plain-text mi

from the cipher-text ci .
B. Homomorphic Encryption (HE) for an Asymmetric

Scheme
An asymmetric homomorphic encryption scheme,

schematized in the Fig. 1, is realized by following these steps:

As a first step the client must encrypt his messages mi

using Encrypt(pk, m) function, and then he sends the resu purpose, which is to calculate a list of KPI’s such as i
lts

calculating the average salary for the 10% higher salary and
the average monthly earnings... After studying the elements of
this list, we found that the operations needed by the latter are
the addition operation and the dividing by a constant operation
and then we found a new simple technique to calculate the
average of given plain-texts by only using their appropriate
cipher-texts.

to be stored into the Cloud. The next step could be that the
client sends some queries f() to the Cloud that must be capable
to compute an encryption of f(mi) noted by Encrypt(pk,f(mi))
and we mention here that f {+, ×}. Then the Cloud returns
this result to the client who will compute
Decrypt(sk,Encrypt(pk,f(mi))) and obtains f(mi).

113

Copyright © 2019 for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

n

i=1

0 1 2

n2

λ

n2

n

n2

Fig. 1 A client-Cloud homomorphic encryption (HE) scenario

All this process, schematized in the Fig. 1, is done without

having to decrypt the cipher-texts stored into the Cloud and
without having any information on the initial data.

C. Homomorphic Properties
There are two types of homomorphic encryption:

• An encryption scheme is supposed to be additive
homomorphic if it verifies the following:

where r is a random element from Z* .

This can be represented on Sagemath as following:
def encrypt(m,n,g):

r=random_prime(n,proof=True)
return ((g**m)*(r**n))% n**2

The decryption function is given by:

L(cλ mod n2)

Decrypt(sk, c)= mod n
L(gλ mod n2)

Where L(u)= u–1 and the Carmichael’s function λ is equal to
n

lcm(p–1,q–1).

On Sagemath this function could be represented as
following:

def decrypt(c,lmd,mu,n):
g(Encrypt(pk, mi))=Encrypt(pk, ∑n

 mi). return ((((c**lmd)%(n**2)-1)/n)*mu)%n

• An encryption scheme is supposed to be
multiplicative homomorphic if it verifies the
following:

n

Remark: The decryption function gives back the plain-text

m because:
cλ mod n2 =(gm rn)λ mod n2

=gmλ rnλ mod n2 (1)
g(Encrypt(pk, mi))=Encrypt(pk, ∏ mi) . =gmλ mod n2 (2)

i=1 =(1+n)mλ mod n2 (3)

mλ mλ

We mention here that g {+, ×}. = ∑i=0 Ci ni mod n2 (4)
=(Cmλ .1+Cmλ .n+ Cmλ .n2 +

mλ mλ

n2 (∑i=3 Ci ni-2))mod n2 (5)
III. PAILLIER’S CRYPTOSYSTEM [1]

Paillier’s cryptosystem is an example of additive
homomorphic encryption scheme invented by Pascal Paillier

=(1+nmλ) mod n2 (6)

The second part of the decryption function which is

–1

in 1999. We give in this section an explanation of the Paillier’s = (L(g mod n2)) , is calculated in the key generation
cryptosystem construction and its properties.

A. Scheme Construction
Let n be the multiplication of two chosen prime numbers

p and q and let g be an element of Z* . But in the rest of this
article we will consider that g is equal to n+1 as Damgard,
Jurik and Nielsen has chosen it in 2010 in order to make the
choice of g the simplest possible [7].

The public key is given by pk=(n,g) and the secret one is
given by sk=(p,q).

The key generation algorithm using Sagemath is the
following:

algorithm and so that of λ in order to not being obliged to
repeat the same calculation each time we are using the
Decryption algorithm and therefore we are optimizing the
calculation time of the latter. is calculated as follows:

gλ mod n2 =(1+n)λ mod n2

=(1+nλ) mod n2

L(gλ mod n2)= 1+nλ–1 mod n
n

= λ mod n
So = λ–1 mod n
And then,

1+nmλ–1
def keygen(KeySize):

p=random_prime(2**(KeySize //2),lbound=2**(
KeySize //2-1),proof=True)

L(cλ mod n2)
Decrypt(sk, c)= mod n =

L(gλ mod n2)
 n mod n=m mod n

λ

q=random_prime(2**(KeySize //2),lbound=2**(
KeySize //2-1),proof=True)
n=p*q
g=n+1
lmd=(p-1)*(q-1)
mu=(lmd**(-1))%n
return p,q,n,g,lmd,mu

To encrypt a plain-text m Zn one can use the following

encryption function:

Before passing to the next section, we would like to
explain a little bit about the equalities we have considered
while calulating cλ mod n2 .

• To pass from (1) to (2) we have used the Carmichael‘s
theorem [8], which is the following:

For every element w Z*

{ w =1 mod n
wnλ =1 mod n2

c=Encrypt(pk, m)=gm rn mod n2 ,

In our case we have r Z* which is equivalent
to r Z* and 0<r<n,

114

k

∑

i=1

i=1 i

0

1

k

i=1

i=1

i=1

i=1

i=1

k

and therefore while applying Carmichael‘s
theorem one can get rnλ =1 mod n2 .

• To pass from (2) to (3) we have replaced g by (1+n).

• To pass from (3) to (4) we have used the binomial

def encrypted_mean(M, n,g):
k=(len(M)**(-1))% n
return (encrypted_sum(M,n,g)**k)%(n**2)

• Step 3: Apply Decrypt() function on [µ] to obtain

theorem [9] which is the following:
n

(x+y)n= ∑ Cn xn-k yk

i=1 mi

k

mod n which is the average but in Zn .

k=0

Where the n choose k combinations formula is equal
to:

Proof:
Decrypt(sk,[µ])

=Decrypt(sk,(∏k

ci mod n2)

k–1mod n

mod n2)

n n! =Decrypt(sk, Ck = k!(n-k)!

(Encrypt(pk, ∑k m mod n))

k-1mod n

mod n2)

• To pass from (4) to (5), we have to develop the =(k-1 mod n . ∑k mi

mλ mλ
 =(k-1 ∑k

i=1 mod n) mod n (using (8))
m)mod n. formula ∑i=0 Ci ni mod n2 . i=1 i

• To pass from (5) to (6), we calculate each term of the

equation (5) as follows:

This step is applied on Sagemath as following:
def dec_mean(M,lmd,mu,n,g):
return decrypt(encrypted_mean(M,n,g),lmd,mu,n)

- Cmλ

- Cmλ

.1= (mλ)! .1=1
0!(mλ-0)!

.n= (mλ)! .n= mλn
1!(mλ–1)!

• Step 4: Applying LLL algorithm or the Extended
Euclidean Algorithm to obtain the average result in
Q.

mλ 2 2

mλ mλ

i-2 2
 Proof:

- (C2 .n +n (∑i=3 Ci n)) mod n =0 because
(integer×n2) mod n2 =0

B. Paillier’s Cryptosystem Properties
Suppose that we have two plain-texts m1 ,m2 , with two

cipher-texts respectively Encrypt(pk,m1), Encrypt(pk,m2).

Paillier’s cryptosystem verifies the following equations:

• Decrypt(Encrypt(pk,m1)Encrypt(pk,m2)
mod n2)=(m1 +m2) mod n [1]. (7)

• Decrypt(Encrypt(pk,m1)k mod n2) = k. m1 mod n
[10]. (8)
Equation (7) shows that Paillier’s cryptosystem is
additive homomorphic.

IV. APPLYING OPERATIONS ON PAILLIER’S CRYPTOSYSTEM

Calculating on the cipher-texts and getting the average

1) LLL Algorithm idea

• The LLL algorithm purpose
Let a1 , a2 be two vectors that form a basis of
a lattice L. The goal of LLL algorithm is to
take as input a1 , a2 and to give as output a
new basis for the lattice L where the lengths
of the vectors of the latter are as short as
possible.
One of the most important properties of
the LLL algorithm is that the first vector
given as output represents the shortest one
in the lattice L [11].

• The use of LLL algorithm in our case

Suppose that µ* is equal to ∑i=1 mi such that
k

while decrypting the results could be interesting. gcd(∑k
mi ,k)

To realize that, we need to follow four steps:

i=1 and gcd(k,n) are equal to 1.
And suppose that µ represents the latter in
Zn so that it could be written in this way:

k

• Step 1: Calculate an encryption of ∑k mi mod n by ∑i=1 mi
k mod n . The condition of having

using (7) which means by calculating ∏k ci mod n2
 gcd(k,n) =1, taken before assure the

and we consider here that k is the number of elements
needed. This step is applied on Sagemath as
following:

def encrypted_sum(M,n,g):

existence of k–1 in µ.
In our case, this form is obtained after
applying Decrypt formula on [µ]. So we
know the value of µ and not that of ∑k mi

C=[encrypt(m,n,g) for m in M]
return mul(C) % (n**2)

• Step 2: Calculate an encryption of k–1 ∑k mi

mod n

nor that of k. A way to find the values of
the latters is to apply the two-dimensional
lattice theory.
We define a lattice L as following:
L = {(x,y) ∈Z2 ; x = yµ mod n} (9)

by using (8) which means by calculating
k–1mod n

 which is equivalent to:
2 k

[µ] = (∏k ci mod n2) mod n2 . This step is L = {(x,y) ∈Z ; kx =y ∑i=1 mi mod n}(10)
applied on Sagemath as following: From (9), one can say that (n,0) and (µ,1)

115

i=1

i=1

i=1

i=1
∑

∑

k

m

form a basis of L which is correct for two
reasons:

• First, because one can notice that n=0µ

mod n therefore (n,0) ∈L and one
can also notice that µ = 1µ mod n
therefore (µ,1)∈L.

• Second, we have n×1–0×µ≠0 therefore

(n,0) and (µ,1) are not collinear.

that in each time the initial vector length is
getting shorter.

b) Swap two vectors.

• Extended Euclidean Algorithm using

Sagemath

def ExtendedEuclide(N,avg):
u1=0
u2=N
v1=1

From (10), replacing x by ∑k mi and y by v2=moy
k one can deduce that (∑k mi ,k) is a vector of while u2>sqrt(N):
L. So obtaining the values of ∑k mi and k that Q = u2 // v2
verifies gcd(∑k mi ,k) =1 , means that the [t1,t2]=[u1-v1*Q,u2-v2*Q]

fraction

i=1 mi
k

is irrational and then the latters’

[u1,u2]=[v1,v2]
[v1,v2]=[t1,t2]

values are optimal. This is equivalent to finding
the shortest vector of the lattice L that can be
obtained by the application of the LLL
algorithm on the basis vectors (n,0) and (µ,1)
[12].

• LLL algorithm using Sagemath:

def lattice_LLL(N,avg):
M=Matrix(2,2,[avg,1,N,0]) #The
vectors of the basis in a matrix
form
L=M.LLL() #The new basis
vectors
return L[0,0]/ L[0,1]
#Return the fraction formed by the
shortest vector
#elements which corresponds to

k
i=1 i . k

• Average Function using LLL

algorithm in Sagemath:
def avg_LLL(M,lmd,mu,n,g):

return u2/u1

• Average Function using Extended
Euclidean algorithm in Sagemath:
def avg_Euclide(M,lmd,mu,n,g):

return ExtendedEuclide
(n,dec_mean(M,lmd,mu,n,g))

V. PRACTICAL EXAMPLE OF CALCULATING THE AVERAGE

USING THE CIPHER-TEXTS

Using Sagemath, we show in this part an example that
illustrates the previous sections.
[nb, min, max, KeySize] = [10, 100, 500, 24]
random.seed(int(time.time()))
M=[random.randint(min,max) for m in range(nb)]
p,q,n,g,lmd,mu=keygen(KeySize)
print("Average using LLL= "+str(avg_LLL(M,lmd,mu,n,g)))
print("Average using Extended Euclide=
"+str(avg_Euclide(M,lmd,mu,n,g)))

Suppose that we have p = 3623 and q = 3833. In this case
we have n=pq= 13886959, g=n+1= 13886960, λ= 13879504

return
lattice_LLL(n,dec_mean and [L(gλ mod n2)]–1

 = 594224.

(M,lmd,mu,n,g))

2) Extended Euclidean Algorithm idea [11]
The Extended Euclidean Algorithm gives as

result the shortest vector in a given two-dimensional
lattice L. The only thing that differs the Extended
Euclidean Algorithm from LLL Algorithm is that
the latter can handle higher dimensions. But in our
case we just need two dimensional lattices therefore
the two algorithms can be applied and give the same
result.

To improve a given basis the Extended Euclidean

Algorithm follows these steps:
a) Subtract from a vector a linear

Using the public key pk=(n,g), the secret key sk=(p,q) and
random numbers r, one can compute cipher-texts given by
c=Encrypt(pk, m)=gm rn mod n2 as shown in the table below.

In our case, the average of the plain-texts is equal to
1843/5. To obtain it using only the cipher-texts one must
follow the steps given in section IV.

As mentioned before the first step is to calculate
k–1mod n

[µ] = (∏k ci
2 2

i=1 mod n) mod n which is equal in our
combination of the others which means case to 40102169206101. In the second step, while decrypting

the latter; one can obtain 8332544 as a result. Finally, to have

116

the average value in Q, one must apply the Extended
Euclidean Algorithm or the LLL algorithm and obtain 1843/5.
So this example make us sure that in this way we can always
calculate safely on the cipher-texts and obtain the same result
as if we are applying the average on the plain-texts.

VI. CONCLUSION AND FUTURE WORK

In this paper, we reviewed the companies’ problem
concerning the security issue while using the Cloud
Computing in their work and how it can be solved by the
homomorphic encryption idea. We present in particular the
Murex’s KPIs list based on addition and ordering operations.
For additional issue we used an important additive
homomorphic scheme known by Paillier’s cryptosystem and
we reviewed a numerical application on it. However, in fact,
we realized that this cryptosystem could not achieve the
ordering idea because of the existence of the modulus in its
encryption function.

Based on this problem, future work will focus on finding

a new secured cryptosystem that can handle the additive and
the ordering issue at the same time. Our objective is to allow
Murex Company (and other companies that provide
technology solutions to financial market) to calculate their
KPIs list easily and efficiently.

ACKNOWLEDGMENT

We thank Dr. Eric Filiol (ESIEA University, France) for
valuable discussions and feedback.

We would also like to thank Murex Company for placing
their trust and confidence in our abilities to achieve our
purpose.

Finally, the authors would like to acknowledge the
National Council for Scientific Research of Lebanon (CNRS
– L) for granting a doctoral fellowship for Christiana Zaraket.

REFERENCES

[1] Naveed ISLAM, William PUECH and Robert BROUZET, How to
Secretly Share the Treasure Map of the Captain? Proc. SPIE 7542,
Multimedia on Mobile Devices 2010, 75420L (27 January
2010); https://doi.org/10.1117/12.839844

[2] Shruthi R, Sumana P, Anjan K Koundinya, Performance Analysis of
Goldwasser-Micali Cryptosystem, International Journal of Advanced
Research in Computer and Communication Engineering, Vol. 2, Issue
7, July 2013

[3] Nikita Somani, Dharmendra Mangal, An Improved RSA
Cryptographic System, International Journal of Computer Applications
(0975 – 8887), Volume 105 – No. 16, November 2014.

[4] Andreas V. Meier, The ElGamal Cryptosystem, June 8, 2005.
[5] Craig Gentry.2009. Fully homomorphic encryption using ideal lattices.

In Proceedings of the forty-first annual ACM symposium on Theory of
Computing (STOC’09). ACM, New York, NY, USA,
169178:https://doi.org/10.1145/1536414.1536440

[6] Khalil Hariss, Maroun Chamoun and Abed Ellatif Samhat, On DGHV
and BGV Fully Homomorphic Encryption Schemes, 1st Cyber Security
in Networking Conference (CSNet), Rio de Janeiro, Brazil, 18-20
Oct. 2017.

[7] Nina Pettersen, Applications of Paillier’s Cryptosystem, NTNU,
Norwegian University of Science and Technology, August 2016.

[8] Andreas Steffen, The Paillier Cryptosystem, Hochschule für Technik
Rapperswil, 17.12.2010, Paillier.pptx 1.

[9] Brett Berry, The Binomial Theorem Explained wi8th a special splash
of Pascal’s Triangle, Oct 26, 2018.

[10] Mohamed Nassar, Abdelkarim Erradi, Qutaibah M. Malluhi, Paillier’s
Encryption: Implementation and Cloud Applications. International
Conference on Applied Research in Computer Science and
Engineering (ICAR)

[11] Phong Nguyễn, The LLL Algorithm, May 2010, Luminy,
http://www.di.ens.fr/~pnguyen.

[12] Pierre-Alain Fouque, Jacques Stern, and Geert-Jan Wackers,
CryptoComputing with rationals. In Financial Cryptography, volume
2357 of Lecture Notes in Computer Science, pages 136-146. Springer,
Berlin, Heidelberg 2002.

117

