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Abstract—Homomorphic encryption (HE) is one of the 
efficient ways that allow many companies to store their data in 
an encrypted form into the Cloud and then the latter can be 
analyzed and worked with as if it were still in its initial form. In 
this paper we consider two types of homomorphic encryption 
(HE) schemes: the additive and the multiplicative ones. But we 
will be focusing on the additive one in order to calculate on the 
cipher-texts and get the average while decrypting the result. 
Therefore we will show the theoretical part of the additive 
homomorphic Paillier's cryptosystem which is used in order to 
encrypt and decrypt the messages needed, but what can be more 
interesting is showing in details the application part of it which 
is realized by a numerical example applied on Sagemath. 

 
Keywords—Homomorphic encryption (HE), additive 

homomorphic, Paillier’s cryptosystem 
 

I.   INTRODUCTION 

Cloud computing is a data storing technique that gives 
opportunities for out-sourcing of storage and computation. It 
offers flexibility and cost saving, but the main disadvantage 
that faces many companies to use the Cloud computing in their 
work is the security concept. The first solution proposed was 
to encrypt the sensible data before storing it into the Cloud, 
but if ever we want to apply operations on the latter without 
decrypting it and without having any information about the 
initial data, we need to use what's called homomorphic 
encryption (HE). The homomorphic encryption (HE) 
procedure is simple: the user stores its encrypted data into the 
cloud and sends encrypted queries over it, the latter must be 
able to send back to user an answer which is in an encrypted 
form and while decrypting the result, the user obtains what he 
wants. In addition a homomorphic encryption (HE) scheme 
could be either additive such as Paillier’s [1] and Goldwasser- 
micali’s [2] cryptosystems or multiplicative such as RSA [3] 
and EL Gamal [4] crypto-systems. This depends on what the 
user wants as operation to be done on his plain-texts after 
applying the decryption function. After all these work, in 2009 
Craig Gentry had the idea of creating a new cryptosystem 
known as Fully homomorphic encryption scheme (FHE) [5] 
which can handle addition and multiplication operations at the 
same time, but such scheme was proved unfeasible in practice 
due to a massive overhead in computation and memory cost. 
However, the idea of this article comes from the murex’s 

This paper is the result of a prolonged study on Paillier’s 
cryptosystem and our purpose of the latter is to facilitate and 
to make clearer the mathematical ideas and theorems used in 
this cryptosystem. All this is done by giving details and proofs 
on every step taken, as well by giving numerical examples. So 
that a reader, from any field, can understand not only the 
Paillier’s cryptosystem but also can see direct applications on 
it. 
 

The rest of this paper is decomposed as follows: in section 
II we define the notion of homomorphic encryption (HE) as 
well as its properties. In section III, we present in details 
Paillier’s cryptosystem which is an example of a 
homomorphic encryption (HE) scheme and we show, in 
section IV, how to apply operations on it. In section V, we 
give a numerical example concerning the previous section. 
And finally we conclude this paper in section VI by giving a 
conclusion and an idea about future work. 
 

II.  HOMOMORPHIC ENCRYPTION 

In this section we give a definition of a homomorphic 
encryption (HE) for an asymmetric scheme as well as its 
properties. 
 

A.  Asymmetric Scheme [6] 
An asymmetric scheme is based on three functions: 

 
• KeyGen( ):generates two different keys, a public one 

noted pk and a secret one noted sk. 
 

• Encrypt(pk, mi ) : is a mathematical function that is 
able to transform a plain-text mi into a cipher-text ci 
using the public key pk. 

 
• Decrypt(sk, ci ): is a mathematical function that uses 

the secret key sk in order to obtain the plain-text mi 

from the cipher-text ci . 
B.  Homomorphic Encryption (HE) for an Asymmetric 

Scheme 
An asymmetric homomorphic encryption scheme, 

schematized in the Fig. 1, is realized by following these steps: 
 

As a first step the client must encrypt his messages mi 

using Encrypt(pk, m ) function, and then he sends the resu purpose,  which  is  to  calculate  a  list  of  KPI’s  such  as i 
lts 

calculating the average salary for the 10% higher salary and 
the average monthly earnings... After studying the elements of 
this list, we found that the operations needed by the latter are 
the addition operation and the dividing by a constant operation 
and then we found a new simple technique to calculate the 
average of given plain-texts by only using their appropriate 
cipher-texts. 

to be stored into the Cloud. The next step could be that the 
client sends some queries f( ) to the Cloud that must be capable 
to compute an encryption of f(mi ) noted by Encrypt(pk,f(mi )) 
and we mention here that f {+, ×}. Then the Cloud returns 
this     result     to     the     client     who     will     compute 
Decrypt(sk,Encrypt(pk,f(mi ))) and obtains f(mi ). 
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Fig. 1   A client-Cloud  homomorphic encryption (HE) scenario 

 
All this process, schematized in the Fig. 1, is done without 

having to decrypt the cipher-texts stored into the Cloud and 
without having any information on the initial data. 

 

C.  Homomorphic Properties 
There are two types of homomorphic encryption: 

 

• An encryption scheme is supposed to be additive 
homomorphic if it verifies the following: 

where r is a random element from Z* . 
 

This can be represented on Sagemath as following: 
def encrypt(m,n,g): 

r=random_prime(n,proof=True) 
return ((g**m)*(r**n))% n**2 

 
The decryption function is given by: 

 
L(cλ mod n2 ) 

Decrypt(sk, c)=  mod n 
L(gλ mod n2 ) 

Where L(u)= u–1 and the Carmichael’s function λ is equal to 
n 

lcm(p–1,q–1). 
 

On  Sagemath  this  function  could  be  represented  as 
following: 
 

def decrypt(c,lmd,mu,n): 
g(Encrypt(pk, mi ))=Encrypt(pk, ∑n

 mi ). return ((((c**lmd)%(n**2)-1)/n)*mu)%n 
 

• An    encryption    scheme    is    supposed    to    be 
multiplicative homomorphic if it verifies the 
following: 

n 

 
Remark: The decryption function gives back the plain-text 

m because: 
cλ mod n2 =(gm rn )λ mod n2 

=gmλ rnλ mod n2 (1) 
g(Encrypt(pk, mi ))=Encrypt(pk, ∏ mi ) . =gmλ mod n2 (2) 

 
i=1 =(1+n)mλ mod n2 (3) 

mλ mλ
 

We mention here that g {+, ×}. = ∑i=0  Ci ni mod n2 (4) 
=(Cmλ .1+Cmλ .n+ Cmλ .n2 + 

mλ mλ
 

n2 ( ∑i=3  Ci ni-2 ))mod n2 (5) 
III. PAILLIER’S CRYPTOSYSTEM [1] 

Paillier’s   cryptosystem   is   an   example   of   additive 
homomorphic encryption scheme invented by Pascal Paillier 

=(1+nmλ) mod n2 (6) 
 
The  second  part  of  the  decryption  function  which  is 

–1 

in 1999. We give in this section an explanation of the Paillier’s = (L(g  mod n2)) , is  calculated  in  the  key  generation 
cryptosystem construction and its properties. 

 

A.  Scheme Construction 
Let n be the multiplication of two chosen prime numbers 

p and q and let g be an element of Z*  . But in the rest of this 
article we will consider that g is equal to n+1 as Damgard, 
Jurik and Nielsen has chosen it in 2010 in order to make the 
choice of g the simplest possible [7]. 

 

The public key is given by pk=(n,g) and the secret one is 
given by sk=(p,q). 

 

The key generation algorithm using Sagemath is the 
following: 

algorithm and so that of λ in order to not being obliged to 
repeat the same calculation each time we  are using the 
Decryption algorithm and therefore we are optimizing the 
calculation time of the latter.  is calculated as follows: 
 

gλ mod n2 =(1+n)λ mod n2 

=(1+nλ) mod n2 
 
 

L(gλ mod n2 )= 1+nλ–1  mod n 
n 

= λ mod n 
So = λ–1 mod n 
And then, 

1+nmλ–1 
def keygen(KeySize): 

p=random_prime(2**( KeySize //2),lbound=2**( 
KeySize //2-1),proof=True) 

L(cλ mod n2 ) 
Decrypt(sk, c)=  mod n = 

L(gλ mod n2 ) 
  n    mod n=m mod n 

λ 

q=random_prime(2**( KeySize //2),lbound=2**( 
KeySize //2-1),proof=True) 
n=p*q 
g=n+1 
lmd=(p-1)*(q-1) 
mu=(lmd**(-1))%n 
return p,q,n,g,lmd,mu 

 
To encrypt a plain-text m  Zn one can use the following 

encryption function: 

Before passing to  the  next section, we  would like to 
explain a little bit about the equalities we have considered 
while calulating cλ mod n2 . 
 

• To pass from (1) to (2) we have used the Carmichael‘s 
theorem [8], which is the following: 

 

For every element w  Z* 
 

{ w =1 mod n 
wnλ =1 mod n2 

 
c=Encrypt(pk, m)=gm rn mod n2 , 

In our case we have r  Z* which is equivalent 
to r  Z*   and 0<r<n, 
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and therefore while applying Carmichael‘s 
theorem one can get rnλ =1 mod n2 . 

 
• To pass from (2) to (3) we have replaced g by (1+n). 

 

• To pass from (3) to (4) we have used the binomial 

def encrypted_mean(M, n,g): 
k=(len(M)**(-1))% n 
return (encrypted_sum(M,n,g)**k)%(n**2) 

 

 
• Step 3: Apply Decrypt( ) function on [µ] to obtain 

theorem [9] which is the following: 
n 

(x+y)n= ∑ Cn xn-k yk 

i=1 mi 

k 

 
mod n which is the average but in Zn . 

k=0 

Where the n choose k combinations formula is equal 
to: 

Proof: 
Decrypt(sk,[µ]) 

=Decrypt(sk,( ∏k 

 
 
 
ci mod n2 ) 

 

 
 
k–1mod n 

 
 
 
mod n2 ) 

 

n n! =Decrypt(sk, Ck = k!(n-k)! 
 
(Encrypt(pk, ∑k    m mod n)) 

k-1mod n 
 
mod n2 ) 

 

• To pass from (4) to (5), we  have to develop the =(k-1 mod n . ∑k     mi
 

mλ mλ
 =(k-1 ∑k 

i=1 mod n) mod n  (using (8)) 
m )mod n. formula ∑i=0 Ci ni mod n2 . i=1     i 

 
• To pass from (5) to (6), we calculate each term of the 

equation (5) as follows: 

This step is applied on Sagemath as following: 
def dec_mean(M,lmd,mu,n,g): 
return decrypt(encrypted_mean(M,n,g),lmd,mu,n) 

- Cmλ 

 
- Cmλ 

.1=  (mλ)!    .1=1 
0!(mλ-0)! 

 

.n=  (mλ)!    .n= mλn 
1!(mλ–1)! 

 

• Step 4: Applying LLL algorithm or the Extended 
Euclidean Algorithm to obtain the average result in 
Q. 

 
mλ     2 2

  
mλ mλ  

i-2 2
 Proof: 

- (C2 .n +n ( ∑i=3  Ci n   )) mod n =0 because 
(integer×n2 ) mod n2 =0 

 

B.  Paillier’s Cryptosystem Properties 
Suppose that we have two plain-texts m1 ,m2 , with two 

cipher-texts respectively Encrypt(pk,m1 ), Encrypt(pk,m2 ). 
 

Paillier’s cryptosystem verifies the following equations: 
 

• Decrypt( Encrypt(pk,m1 )Encrypt(pk,m2 ) 
mod n2 )=(m1 +m2 ) mod n [1]. (7) 

• Decrypt( Encrypt(pk,m1 )k  mod n2 ) = k. m1  mod n 
[10].                                                                       (8) 
Equation (7) shows that Paillier’s cryptosystem is 
additive homomorphic. 

 
IV. APPLYING OPERATIONS ON PAILLIER’S CRYPTOSYSTEM 

Calculating on the cipher-texts and getting the average 

1)   LLL Algorithm idea 
 

• The LLL algorithm purpose 
Let a1 , a2 be two vectors that form a basis of 
a lattice L. The goal of LLL algorithm is to 
take as input a1 , a2   and to give as output a 
new basis for the lattice L where the lengths 
of the vectors of the latter are as short as 
possible. 
One of  the  most important properties of 
the LLL algorithm is that the first vector 
given as output represents the shortest one 
in the lattice L [11]. 

 
• The use of LLL algorithm in our case 

Suppose that µ* is equal to ∑i=1 mi  such that 
k 

while decrypting the results could be interesting. gcd( ∑k 
mi ,k)

 
 
 

To realize that, we need to follow four steps: 

i=1 and gcd(k,n) are equal to 1. 
And suppose that µ represents the latter in 
Zn so that it could be written in this way: 

k 

• Step 1: Calculate an encryption of ∑k     mi mod n by ∑i=1 mi 
k mod n .  The  condition  of  having 

using (7) which means by calculating ∏k ci  mod n2
 gcd(k,n) =1,  taken before assure the 

and we consider here that k is the number of elements 
needed. This step is applied on Sagemath as 
following: 

def encrypted_sum(M,n,g): 

existence of k–1 in µ. 
In our case, this form is obtained after 
applying Decrypt formula on [µ]. So we 
know the value of µ and not that of ∑k     mi 

C=[encrypt(m,n,g) for m in M ] 
return mul(C) % (n**2) 

 
• Step 2: Calculate an encryption of k–1 ∑k     mi 

 
 
 
 
mod n 

nor that of k. A way to find the values of 
the latters is to apply the two-dimensional 
lattice theory. 
We define a lattice L as following: 
L = {(x,y) ∈Z2 ; x = yµ mod n} (9) 

by using (8) which means by calculating 
k–1mod n

 which is equivalent to: 
2 k

 
[µ] = ( ∏k ci  mod n2 ) mod n2 . This step is L = {(x,y) ∈Z ; kx =y ∑i=1 mi  mod n}(10) 
applied on Sagemath as following: From (9), one can say that (n,0) and (µ,1) 
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i=1 

i=1 

i=1 

i=1 
∑ 

∑ 

k 

m 

form a basis of L which is correct for two 
reasons: 

 
• First, because one can notice that n=0µ 

mod n therefore (n,0) ∈L and one 
can also notice that µ = 1µ mod n 
therefore (µ,1)∈L. 

 
• Second, we have n×1–0×µ≠0 therefore 

(n,0) and (µ,1) are not collinear. 

that in each time the initial vector length is 
getting shorter. 

b)   Swap two vectors. 
 
• Extended Euclidean Algorithm using 

Sagemath 
 

def ExtendedEuclide(N,avg): 
u1=0 
u2=N 
v1=1 

From (10), replacing x by ∑k mi and y by v2=moy 
k one can deduce that (∑k mi ,k) is a vector of while u2>sqrt(N): 
L. So obtaining the values of ∑k mi and k that Q = u2 // v2 
verifies  gcd( ∑k mi ,k) =1 ,   means  that  the [t1,t2]=[u1-v1*Q,u2-v2*Q] 

 
fraction 

 

i=1 mi 
k 

 
is irrational and then the latters’ 

[u1,u2]=[v1,v2] 
[v1,v2]=[t1,t2] 

values are optimal. This is equivalent to finding 
the shortest vector of the lattice L that can be 
obtained by the application of the LLL 
algorithm on the basis vectors (n,0) and (µ,1) 
[12]. 

 
• LLL algorithm using Sagemath: 

def lattice_LLL(N,avg): 
M=Matrix(2,2,[avg,1,N,0]) #The 
vectors of the basis in a matrix 
form 
L=M.LLL() #The new basis 
vectors 
return L[0,0]/ L[0,1] 
#Return the fraction formed by the 
shortest vector 
#elements which corresponds to 

k 
i=1     i . k 

 
• Average Function using LLL 

algorithm in Sagemath: 
def avg_LLL(M,lmd,mu,n,g): 

return u2/u1 
 

• Average Function using Extended 
Euclidean algorithm in Sagemath: 
def avg_Euclide(M,lmd,mu,n,g): 

return ExtendedEuclide 
(n,dec_mean(M,lmd,mu,n,g)) 

 

 
 
 
V.  PRACTICAL EXAMPLE OF CALCULATING THE AVERAGE 

USING THE CIPHER-TEXTS 

Using Sagemath, we show in this part an example that 
illustrates the previous sections. 
[nb, min, max, KeySize] = [10, 100, 500, 24] 
random.seed(int(time.time())) 
M=[random.randint(min,max) for m in range(nb)] 
p,q,n,g,lmd,mu=keygen(KeySize) 
print("Average using LLL= "+str(avg_LLL(M,lmd,mu,n,g))) 
print("Average using Extended Euclide= 
"+str(avg_Euclide(M,lmd,mu,n,g))) 
 

Suppose that we have p = 3623 and q = 3833. In this case 
we have n=pq= 13886959, g=n+1= 13886960, λ= 13879504 

return 
lattice_LLL(n,dec_mean and [L(gλ mod n2 )]–1

 = 594224. 

(M,lmd,mu,n,g)) 
 
 

2) Extended Euclidean Algorithm idea [11] 
The Extended Euclidean Algorithm gives as 

result the shortest vector in a given two-dimensional 
lattice L. The only thing that differs the Extended 
Euclidean Algorithm from LLL Algorithm is that 
the latter can handle higher dimensions. But in our 
case we just need two dimensional lattices therefore 
the two algorithms can be applied and give the same 
result. 

 
To improve a given basis the Extended Euclidean 

Algorithm follows these steps: 
a) Subtract from a vector a linear 

Using the public key pk=(n,g), the secret key sk=(p,q) and 
random numbers r, one can compute cipher-texts given by 
c=Encrypt(pk, m)=gm rn mod n2 as shown in the table below. 
 

 
 

In our case, the average of the plain-texts is equal to 
1843/5. To obtain it using only the cipher-texts one must 
follow the steps given in section IV. 
 

As  mentioned  before  the  first  step  is  to  calculate 
k–1mod n 

[µ] = ( ∏k    ci 
2 2 

i=1 mod n ) mod n which is equal in our 
combination of the others which means case to 40102169206101. In the second step, while decrypting 

the latter; one can obtain 8332544 as a result. Finally, to have 
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the average value in Q, one must apply the Extended 
Euclidean Algorithm or the LLL algorithm and obtain 1843/5. 
So this example make us sure that in this way we can always 
calculate safely on the cipher-texts and obtain the same result 
as if we are applying the average on the plain-texts. 

 
VI. CONCLUSION AND FUTURE WORK 

In this paper, we reviewed the companies’ problem 
concerning the security issue while using the Cloud 
Computing in their work and how it can be solved by the 
homomorphic encryption idea. We present in particular the 
Murex’s KPIs list based on addition and ordering operations. 
For additional issue we used an important additive 
homomorphic scheme known by Paillier’s cryptosystem and 
we reviewed a numerical application on it. However, in fact, 
we realized that this cryptosystem could not achieve the 
ordering idea because of the existence of the modulus in its 
encryption function. 

 
Based on this problem, future work will focus on finding 

a new secured cryptosystem that can handle the additive and 
the ordering issue at the same time. Our objective is to allow 
Murex Company (and other companies that provide 
technology solutions to financial market) to calculate their 
KPIs list easily and efficiently. 
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