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Abstract—Despite the unprecedented volumes of Electronic

Medical Records (EMRs) generated daily across healthcare

facilities, the ability to leverage these data for patient partici-

pation in clinical trial remains overwhelmingly unfulfilled. The

reason behind this is that matching patient information to the

eligibility criteria for clinical trials is a manual, effort-consuming

process. Therefore, automating this process is an essential step

in improving the number of patients participating in clinical

research. To address this issue, we propose a novel framework

for automated patients to clinical trials matching. The matching

process is based on measuring the similarity score between

phrases extracted from patient medical records and the eligibility

criterion for a trial.

Our solution is based on a combination of NLP techniques

and modern deep learning-based NLP models. In this context,

we follow pre-training and transfer learning approaches to help

the model learn task-specific reasoning skills. Additionally, we

perform supervised fine-tuning on large Medical Natural Lan-

guage Inference (MedNLI) and Semantic Textual Similarity (STS-

B) datasets. The matching process was performed at semantic

phrases level by converting patient information and trial criteria

into vector representations. We then used a scoring function that

combined cosine similarity and scaling normalization to identify

potential patient-trial matches. The experimental results have

shown that our framework is highly effective in sorting out

patients by their similarity scores.

Index Terms—NLP, NLI, EMR, Automated clinical trial eligi-

bility screening, BioBERT, Sentence similarity

I. INTRODUCTION

The widespread adoption and use of electronic medical
records (EMRs), together with the development of advanced
artificial intelligence models, offer remarkable opportunities
for improving the clinical research sector [1]. Furthermore,
EMRs offer a wide range of potential uses in clinical trials
such as facilitating the clinical trial feasibility assessment and
patient recruitment, as well as obtaining main patient health
information and medical history prior to their screening visit.
The latter is a critical step in reducing the costs and duration
of clinical trials [2]. Additionally, linking EMRs with clinical
trials has been shown to increase patient recruitment rate [3].
However, there are many barriers to overcome in order to use
EMRs for clinical trials.

Even though EMRs were designed to record information in
a structured format, such as procedure information, diagnosis
codes, drug prescriptions, and lab results, free text remains

the most flexible way for physicians to express case nuances
and clinical reasoning [4]. These free texts usually contain
important facts about patients, but they are rarely available
for formal queries [5].

On the other hand, eligibility criteria for a clinical trial
describes the characteristics of patients who are qualified to
participate in the trial. Each criterion is usually expressed as
a descriptive text and specified in the form of inclusion and
exclusion criteria. Therefore, free text criteria can not always
be transformed into structured data representations.

Authors in [6] confirmed that using only structured data
from the EMR is insufficient in resolving eligibility criteria
for patient recruitment in clinical trials, and that unstructured
data is essential to resolve 59% to 77% of the trial criteria.

However, matching clinical notes with eligibility criteria is
still a manually performed task, which makes it an expensive
process in terms of time and effort. This slows down clinical
trials and may delay new drugs from benefiting patients. As a
consequence, it might entail the loss of human lives that oth-
erwise would have been able to benefit from new medication.
For these reasons, automated matching of clinical notes with
eligibility criteria in the eligibility screening workflow would
help overcome the bottlenecks of pre-screening practices in a
trial setting.

To tackle the above challenge efficiently, we need to execute
a matching process at a semantic sentence level, rather than by
just checking for the presence or absence of a lexical criterion.
The investigation of the potential use of modern deep learning-
based NLP(Natural Language Processing) models, led us to
propose a framework that would automate the evaluation of
the eligibility of patients to be candidates for a relevant clinical
trial. As a first step, the framework splits patient clinical
report and clinical trial sentences into comparatively basic
phrase units. Secondly, it classifies the phrases into various
clinical categories (diagnosis, drug, procedure, observation).
Thirdly, the framework converts candidate phrases into vec-
tor representations using an appropriate deep learning-based
NLP model. Finally, it calculates a semantic matching score
between patients and a clinical trial by using a combination of
cosine similarity alongside a scaling normalization method.

This paper is organized as follows: In section II, we expose
the problem definition and review the related works. In sec-
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Fig. 1. An example of discharge summary contents and format.

tion III, we describe our framework and illustrate the different
challenges. The evaluation of the results and outcomes is
discussed in section IV. Finally, we conclude this paper in
section V.

II. BACKGROUND

A. Problem definition

According to our approach, the problem definition of
patient-trial matching can be described as follows:

Finding clinical trial participants is the task of matching
Patient Pi(Pi 2 EMR) represented by a Discharge Summary
DSi to a Clinical Trial CT represented by an Eligibility
Criteria EC. Formally, the solution to this task is to find
the top-K highest-values of function M which computes the
matching score denoted by:

M(Pi, CT ) = v which represents the score of matching
patient Pi to a CT .

This list of the top-K highest-scores reduces the overall
number of patients that will need to be screened by clinicians
in order to identify eligible patients.

B. Data representation

1) Clinical trial: A clinical trial is a type of research that
provides a longstanding foundation in the practice of medicine
and the evaluation of new medical treatments. Each trial has
eligibility criteria describing the characteristics according to
which a patient or participant must meet all inclusion criteria
and none of the exclusion criteria. In this respect, the criteria
differ from study to study. Authors in [7] analysed 1000
eligibility criteria and showed that 23% of the criteria are
simple, or can be reduced to simple criteria, and that 77% of
the criteria remain complex to evaluate. Therefore, a formally
computable representation of eligibility criteria would require
natural language processing techniques as part of automated
screening for patient eligibility.

2) Patient medical records: An EMR typically collects var-
ious types of patient information, including patient discharge
summaries, prior diagnoses, radiology reports, medication his-
tory, and so on. Hospital discharge summaries are a physician-
authored synopsis of a patient’s hospital stay, which serve
as the main documents communicating a patients care plan
to the post-hospital care team [8]. Discharge summaries are
organized in several sections. These sections usually include
past medical history and history of present illness as shown
in fig.1.

C. Related work

In the recent past, several projects have developed tools
and technologies for automated trial-patient matching. Milian
et al. [9] used a template-based formalism to extract and
represent the semantics of the trial criteria in order to improve
their comparability. Patel et al. [10] formulated the matching
process as a semantic retrieval problem by expressing clinical
trial criterion in the form of semantic query, which a reasoner
can then use with a formal medical ontology - SNOMED CT
to retrieve eligible patients. Other works such as EliIE [11] and
Criteria2Query [12] have focused on identifying standardized
medical entities in eligibility criteria using machine learning
approaches, the extracted entities being then used to query pa-
tient data. Shivade et al. [13] constructed an annotated dataset
that determined whether the medical note contains text that
meets a criterion or not. Then, they implemented two lexical
methods and two semantic methods to determine a relevance
score of each sentence with a criterion statement, and found
that semantic methods gave better results than lexical methods.
Ni et al [14] evaluated a system using a combination of NLP,
information retrieval and machine learning methods to identify
a cohort of patients for clinical trial eligibility pre-screening.
Their system relies on both structured data and clinical notes
from EMRs.

III. FRAMEWORK OVERVIEW

In this section, we describe the framework we propose
for automating the matching process between patients and a
clinical trial. This framework takes into account the following
different challenges; (i) In order to treat complex sentences
in patient’s data as well as in clinical trials, we break down
paragraphs into sentences and complex sentences are then
parsed into phrases. These phrases are the basic units for
matching. (ii) To avoid costly comparisons without fault dis-
missals, phrases are partitioned using classification methods,
which limits the number of pairs to match. (iii) To match
phrases, we represent them in the form of distributed vectors,
which enables calculating similarity for formally different but
semantically related phrases. Fig. 2 shows an overview of
our Patients to Clinical Trial matching framework. Given a
Clinical Trial CT and set of Patients P, our task is to calculate
a Matching score M(Pi, CT ).

A. Paragraph and sentence decomposition

In order to measure the similarity between two sentences,
we have to deal with a simple sentence representing a
linguistically-meaningful unit. This process requires segment-
ing both paragraph-level and sentence-level structures into
phrase-level structures. According to [15], segmentation of
paragraphs and sentences is the process of parsing the longer
processing units, consisting of one or more words, to further
processing stages such as part-of-speech parsers, morpholog-
ical analyzers, etc.

In our model, we handle each phrase as a primitive semantic
unit and find matching phrases between patient and clinical
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TABLE I
EXAMPLE OF SENTENCES SEGMENTATION INTO PHRASES

Paragraph Phrases

Eligibility Crieteria NCT03484780
Previous open laparotomy

or contraindications to

laparoscopy, as determined by

implanting physician.

1- Previous open laparotomy

2- contraindications to laparoscopy

3- determined by implanting

physician

Discharge Summary

History of paroxysmal atrial

fibrillation with anticoagulation

in the past. History of coronary

artery disease status post

myocardial infarction

1- History of paroxysmal atrial

fibrillation

2- with anticoagulation in the past.

3- History of coronary artery

disease

4- status post myocardial infarction

trials by calculating the similarity of each phrase in the
discharge summary to each phrase in Eligibility Criteria (EC).

We used paragraph and sentence segmentation of
MetaMap [16]. MetaMap was provided by the National
Library of Medicine (NLM) to map Medical Language
Processor (MLP) text to the UMLS Metathesaurus
concepts [17]. MetaMap breaks text into paragraphs,
sentences, and then phrases. Table I presents a simple
example of segmenting sentences into phrases. The first refers
to the eligibility criteria (NCT03484780) and the second
illustrates an example from a patient discharge summary.

B. Phrases classification

A discharge summary report contains information about
different topics. Therefore, the large number of heterogeneous
phrases extracted from the patient reports may affect the
efficiency and effectiveness of pairwise phrase matching [18].

To minimize the number of required comparisons, we
applied a filtering methodology. The latter aims to filter all
the classes of phrases that do not correspond to a given class,
which limits the number of pairs to match.

Data classification techniques could support achieving this
filtering by separating phrases extracted from patient data and
clinical trial into different medical categories. This classifica-
tion filters-out non-matching pairs prior to verification, which
increases the efficiency of phrases similarity matching with
high precision and without sacrificing recall.

In our study, a total of 1500 eligibility criteria were extracted
from a Clinical Trials database1 and were manually labelled by
a certified nurse and a data science master student according
to four classes (diagnosis, drug, procedure, observation).

In this work, we have empirically explored and compared
four methods widely used in classification as our baseline:
SVM, CNN, LSTM, C-LSTM [19], in order to identify the
ones with the best performance. For SVM and CNN models,
we initialized word embeddings by the average of the word
embedding over all words in the sentence via PubMed-and-
PMC-w2v [20].

Our experiment indicates that CNN + w2v model has the
best prediction performance in comparison to the other models

1https://clinicaltrials.gov/

selected in our exploration, with a Precision of 0.87, a Recall
of 0.88, and a F1-score of 0.875. We therefore adopted CNN +
PubMed-and-PMC-w2v to perform this classification task and
were able to categorize the phrases into the four pre-mentioned
categories.

C. Phrase vector representations

The purpose of this work is to allow the matching of patients
data and clinical trials by comparing unstructured data from
both datasets. Our claim is that by measuring the similarity
of primitive semantic medical units (medical phrases) of a
patient’s Discharge Summary and Eligibility Criteria, we can
generate a score value supporting the matching task.

There are plenty of measures of semantic similarity between
sentences used in NLP. Unsupervised and supervised methods
have been used to calculate the semantic similarity between
two sentences in the biomedical domain [21]. Recently, a
number of novel approaches have been proposed to address
this problem by producing sentence vectors [22]. As an
example, Neural sentence-embedding methods [23] have been
shown to outperform traditional approaches, such as TF-IDF
and word overlap based measures.

1) Universal sentence embeddings: The concept of uni-
versal sentence embeddings has grown in popularity as it
leverages models trained on large text corpora. These pre-
trained models can be used in a wide range of downstream
tasks, such as providing versatile sentence-embedding models
that convert sentences into vector representations. Notable
works include ELMo [24], GPT [25], and BERT [26].

2) BioBERT: BERT (Bidirectional Encoder Representa-
tions from Transformers) is a neural network language model
trained on plain text for masked word prediction and next sen-
tence prediction tasks. BERT applies multi-layer bidirectional
transformer encoder with self-attention. According to [27],
BERT overall achieved state-of-the-art performances in many
Natural Language Processing tasks and was significantly better
than other models. However, compared against more recent
models, XLNet [28] outperforms BERT and achieves better
prediction metrics on the GLUE benchmark [29], but is not yet
widely used in the medical field. Applying the same architec-
ture as BERT, Lee et al. [30] proposed the BioBERT language
model trained on biomedical corpora including PubMED and
PMC. The BioBERT model showed promising results in the
biomedical domain.

3) Phrase embedding: In this respect, to generate context-
rich phrase embeddings, we chose BioBERT as the language
model in conjunction with the Bert-as-service library [31].
Bert-as-service is a feature extraction service based on BERT
which uses two strategies to derive a fixed-sized vector. In the
default strategy, Bert-as-service does average pooling of all
of the tokens of second-to-last hidden layer, while the second
uses the output of the special CLS token and is recommended
only after fine-tuning BERT on a downstream task.

D. Phrases Similarity Measures

The similarity between two vectors can be evaluated using
various similarity measures such as Cosine similarity, Eu-
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Fig. 2. Framework overview

clidean distance, and Manhattan distance. Since these simi-
larity metrics are a linear space in which all dimensions are
weighted equally, we perform here the similarity matching
metrics of different phrases by ranking these phrases according
to the cosine similarity. Therefore, the rank of similarity can
be obtained by the equations presented in (1) and (2).

cos(xxx,yyy) =
xxx · yyy

||xxx|| · ||yyy|| (1)

if cos(AAA,BBB) > cos(AAA,CCC) (2)
then AAA is more similar to BBB than CCC.

Whereas a pre-trained BioBERT knowledge often shows a
good performance for certain tasks, as we shall see later on,
this prior knowledge is not sufficient to compute the similarity
of sentences based on their embeddings. Indeed, we first tried
to compute the cosine similarity of sentences, annotated by
experts, using extracted embedding from pre-trained BioBert,
without any fine-tuning. The result of the comparison was
unsatisfactory and unacceptable (table II). The most significant
sentence is the exact opposite, for example; the most similar
sentence of ”History of CVA” was ”patient has normal brain

MRI” with similarity value of 0.91 which was annotated
by experts as ”contradiction”, and the ”Entailment” sentence
”patient has history of stroke” appears in the second place
with similarity value of 0.89. Therefore, foregoing experiments
reinforced our belief that it is necessary to fine-tune BioBERT
on our downstream task.

1) Supervised Fine-tuning: Transfer learning is the process
of extending a pre-trained model by leveraging data from an
additional domain for a better model generalization [32]. The
most common transfer learning techniques in NLP is fine-
tuning. Fine-tuning involves copying the weights from a pre-
trained network and tuning them using labeled data from the
downstream tasks. BERT is a fine-tuning based representation
model that achieves state-of-the-art performance on a large
suite of sentence-level tasks, with pre-trained representations

reducing thus the need for many heavily-engineered task-
specific architectures.

In the context of natural language understanding (NLU)
technology, comparing the relationship between two sen-
tences is based on several downstream tasks such as Natural
Language Inference (NLI) and Semantic Textual Similarity
(STS) [29]. Besides that, authors in [33] have shown that
fine-tuning BERT on NLI and STS datasets creates sentence
embeddings which achieve an improvement of 11.7 points
compared to InferSent [34] and 5.5 points compared to the
Universal Sentence Encoder [22]. In this context, we first
fine-tuned BioBERT on STS-B dataset that generated our
BioBERT-based model. We then further fine-tuned on MedNLI
dataset. We used the fine-tuning classifier from BERT sys-
tems [35].

• MedNLI [36]: is a large, publicly available, expert anno-
tated dataset drawn from the medical history section of
MIMIC-III. MedNLI includes a set of clinical sentence
pairs(14,049 pairs). They were annotated with one of
three classes: entailment, contradiction, and neutral.

• STS-B [37]: is a collection of sentence pairs selected from
news headlines. The dataset consists of paired sentences
(8,628 pairs) labelled by humans with a similarity score
of 1 to 5 denoting how similar the two sentences are in
terms of semantic meaning.

2) Evaluation of fine-tuned BioBERT: We evaluated the
new BioBERT model by computing the cosine similarity
between the phrase embeddings. We observed that the model,
was not just able to rank phrases in terms of similarity, but
also gave a more appropriate cosine value. A representative
sample of the results is depicted in Table II.

E. Matching Patients to Clinical Trials

After fine-tuning the BioBERT model for optimized cosine
similarity and creating both Discharge Summary and Clinical
Trial phrases embeddings, we proceeded to find Clinical Trial
participants from an EMR dataset.

Formally, we denote:
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TABLE II
NLI AND COS SIMILARITY BEFORE AND AFTER FINE-TUNING OF BIOBERT

Experts
Phrase 1 (P1) Phrase 2 (P2) NLI(P1, P2) Cos(P1, P2) Rank Cos(P1, P2) Rank

patient has history of stroke Entailment 0.89 1.53 0.87 3.00

patient has normal brain mri Contradiction 0.91 3.00 0.75 0.00

patient is hemiplegic Neutral 0.86 0.00 0.77 0.38

Patient has abnormal EKG findings. Entailment 0.89 2.05 0.82 3.00

Patient has normal EKG. Contradiction 0.90 3.00 0.80 2.30

Patient has angina. Neutral 0.88 0.00 0.73 0.00

the patient was in a MVC. Entailment 0.89 3.00 0.82 3.00

the patient has no medical history. Contradiction 0.88 2.48 0.53 0.00

the patient has no significant injuries. Neutral 0.86 0.00 0.67 1.51

History of CVA

Pre-trained BioBERT

Per report ECG with initial qtc of 410 
now 475, QRS 82 initially, now 86 
rate= 95.

History of hypercholesterolemia and 
peptic ulcer disease s/p gastric bypass 
some years ago was involved in a low-
speed MVC.

Fine-tuned BioBERT

• DSi = {phi,1, phi,2, ..., phi,r} as the phrases extracted
from Discharge Summary of patient Pi.

• IEC = {iec1, iec2, ..., iecp} as the phrases extracted
from Inclusion Eligibility Criteria.

• EEC = {eec1, eec2, ..., eecq} as the phrases extracted
from Exclusion Eligibility Criteria.

• EC = {ec1, ec2, ..., ecl} = IEC [ EEC | l = p + q as
all phrases extracted from Eligibility Criteria.

• S 2 [0, 1]n⇤l as the cosine Similarity matrix, where
n and l are the number of Patients and EC elements,
respectively.

1) Matching Patient to Eligibility Criteria: Once phrases
embedding are computed for the patients and the clinical
trial eligibility criteria, we calculate the similarity between
phrases of the same class (Diagnosis, Drug, Procedure,... ) as
defined in sub-section III-B. An element si,j of S represents
the similarity between patient criteria Pi and single eligibility
criteria ecj . The similarity function is defined by calculating
the cosine between each phrase phi,r extracted from DSi and
ecj , then only the higher cosine value of similarity is retained
for si,j and all other values are discarded.

si,j = max
8phi,r2DSi

(cos(phi,r, ecj)) (3)

i 2 [1, n] &j 2 [1, l]

Once the similarity values obtained, the final representation
of S would be as follows:

SSS =

2

4
maxph1,r (cos(ph1,r, ec1)) .

. .

. maxphn,r (cos(phn,r, ecl))

3

5

2) Ranking and Scoring Patients: The semantic cosine
similarity calculated in the previous paragraph enables a
proportional similarity instead of exact text semantic matching.
Therefore, when we compare similarity values obtained for

different features (eligibility criteria) in the generated matrix
S , we notice that just because the value of similarity is higher,
that does not mean that the similarity with the patient is
greater. For example if sx,1 and sy,2 represent the highest value
of the features ec1 and ec2, respectively, and if sx,1 > sy,2,
this does not mean that Px has a phrase more similar to ec1
than Py for ec2 (as a noticed in equation 2), but only means
that Px and Py are ranked respectively at the top similar of
the list for ec1 and ec2. The same logic applies for the lowest
value, which represents the last order of similarity.

This variation in the similarity values between features
requires a range normalization step to enable rank similarity
instead of cosine similarity, which supports perfectly the
computation of a matching score between patients and the
Clinical Trial. To this end, we generated a new matrix R by
applying the following feature scaling normalization:

ri,j =

(
n⇥ si,j�min8i(si,j)

max8i(si,j)�min8i(si,j)
; ecj 2 IEC

(�n)⇥ si,j�min8i(si,j)
max8i(si,j)�min8i(si,j)

; ecj 2 EEC

(4)

Finally, the matching score M of Patient Pi with a Clinical
Trial is determined by:

M(Pi, CT ) =
lX

j=1

rij. (5)

IV. EVALUATION

To validate our framework, we used two datasets; MIMIC-
III (Medical Information Mart for Intensive Care) [38] com-
prising information relating to patients admitted to critical care
units, and Clinical Trials 2 a Web-based resource providing
access to information on supported clinical studies.

2https://clinicaltrials.gov/
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Fig. 3. The eligibility criteria specified in the NCT04078425 clinical trial

TABLE III
RANKS AND SCORES OF MATCHING 10 PATIENTS WITH 6 ELIGIBILITY

CRITERIA (NCT04078425)

iec1 iec2 eec1 eec2 eec3 eec4 Score

P-1 9.46 9.84 -8.47 -2.74 -1.02 -1.02 6.03

P-2 5.02 7.44 -3.43 -3.12 -8.42 -8.42 -10.93

P-3 9.08 8.65 -10.00 -2.38 -10.00 -10.00 -14.65

P-4 0.00 4.09 -2.96 -5.76 -5.24 -5.24 -15.12

P-5 3.43 4.02 -6.26 -2.69 -1.09 -1.09 -3.69

P-6 5.19 0.00 0.00 -1.42 0.00 0.00 3.77

P-7 5.65 2.95 -3.86 -2.72 -0.15 -0.15 1.72

P-8 7.26 10.00 -7.52 -5.76 -6.98 -6.98 -9.99

P-9 6.43 9.14 -4.44 -10.00 -2.70 -2.70 -4.27

P-10 10.00 7.44 -6.27 0.00 -10.00 -10.00 -8.83

A. Text processing

MIMIC III Clinical Dataset is a critical care database that
contains 2,083,108 medical reports from 46,520 patients. We
experimented with a randomly selected dataset of 100 Dis-
charge Summaries from patients last visit, excluding patients
whose ages are under 18. The segmentation stage produces an
average of 400 phrases per report.

We selected a clinical trial that identifies the role of Aldos-
terone antagonist in patients of heart failure with preserved
ejection fraction (NCT04078425). Fig. 3 shows the five eligi-
bility criteria of this clinical trial.

B. Evaluation of the obtained results

Table III presents the results for a sample of ten patients. In
order to evaluate the clinical correctness of patients matching
to the clinical trial(NCT04078425), a validation task was per-
formed manually by a nurse and a computer science student.
The noteworthy fact is that the evaluation of the matching
does not reveal false positives in the score results. Indeed, the
similarity scores reflect the order of matching between patients
and the clinical trial. The score distribution ranged from (-15)
to (8), and eligible patients to be retained for further screening
by experts were those with a score greater than 5.

We should note that the scores would be more realistic if
the segmentation process was more accurate. For instance, the
sentence ”you were thought to have a blood clot in your right
leg” was segmented by Metamap into ”a blood clot in your
right leg” which would result in a false outcome.

V. CONCLUSION

EMRs contain a large portion of unstructured data that need
to be matched with eligibility criteria for trial-patient enroll-
ment. Indeed, the gradual improvement of artificial intelligence
technology could reduce the number of physician-hours spent
in screening patient eligibility. To tackle the problem, we pro-
posed a framework designed to automatically recommend the
most suitable patients for a clinical trial. The framework adopts
a pre-trained language model (BioBERT) and uses STS-B and
MedNLI datasets to improve the accuracy of the model via
transfer learning. This work verified that the fine-tuning of
BioBERT shows better performance in calculating the simi-
larity between two medical sentences using embedding-based
metrics. In future works, we will also explore EMRs structured
tables in order to significantly improve the performance and
accuracy of our trial-patient matching framework.
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