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Abstract—Although radiation level is a serious problem which

requires continuous monitoring, many existing systems are de-

signed to perform this task. Radiation Early Warning System

(REWS) is one of these systems which monitor the gamma

radiation level in the environment. On the other hand, such

system requires high manual intervention, depends totally on

experts analysis, and has some shortcomings that can be risky

sometimes. In this paper we introduced our approach called

RIMI (Refining Incoming Monitored Incidents) which aims to

improve this system to become an autonomous system. We also

introduced a new method to change this system to become a

predictive and proactive system which learns from past incidents.

Index Terms—Radiation, Early Warning System, Data Analyt-

ics, Anomamy detection, etc.

I. INTRODUCTION

Radiation level is one of the most critical hazards that
must be taken care of due to its catastrophic and persistent
consequences on the environment, humans and the other non-
living things. Radioactive incidents and disasters such as
Chernobyl [1], Fukushima [2], and the most recent one at
Russian nuclear missile test site [3], raised a serious concern.
These events have given rise to the need for continuous
monitoring of the radiation level in the environment. Since the
radiation can be transmitted through the wind, it is important
to monitor the radioactivity within widespread geographical
locations to prevent any unwanted exposure. The continuous
monitoring would greatly help in taking a proactive measure
that would eventually raise an alert upon an occurrence of
incidence. Therefore, many countries around the world raised
the idea of developing several techniques for monitoring the
radiation level in the environment to detect any abnormal
release or discharge. Lebanon was one of these countries
that developed a national environmental radiation monitoring
program to establish radiation baseline level and determine
trend of radiation level in the country. Air monitoring was
one of the scopes of this program.[Reference Public Exposure
Article]

There exist different approaches to monitor and analyze the
impact of high radiation levels. Among them is the Radiation
Early Warning System (REWS) that is a widely used network
system which exists in Lebanon since 2013. The REWS is
composed of many radiation detection sensors (also called

probes) disseminated on a specific region that monitor the
gamma radiation level. This system reacts as soon as possible
to anomalies by raising an alert. Typically, the alerts are
determined by predefined threshold values that are essentially
chosen based on observations (i.e. experience). It is worth
noting that there are different threshold values at different
locations since the threshold value depends strictly on the
normal reading of the radiation level (known as background
level) which is in turn is not fixed due to many factors
such as the altitude. Once an alert is raised, it needs to be
checked by an expert. Indeed, the expert needs to analyze the
potential causes for the incident as some alerts refer to an
authentic threat of high radiation level and others denote the
rise of radiation level that has no hazardous impact on the
environment or living beings. In order to do so the expert will
consult additional information such as the weather broadcast
and the quality factors (also called quality bits) of the probe.
For instance, the alert is false when the quality bits of the
probe indicate that there is a defect in the probe, meaning
that we cannot trust the collected gamma dose rate value. The
alert is innocent when external factors have occurred such as
rain, wind, lightening, etc. These external factors are the more
difficult to analyse, but they represent more than 90% of the
alarms. Finally, the alert is real and an emergency action need
to be taken by the authority immediately.

Existing REWS solutions have various shortcomings. The
most critical one is the manual intervention of the expert that
is heavily time-consuming, labor-intensive, and risk-prone.
Indeed, when an alarm is raised a considerable amount of
time and efforts are consumed by the expert to analyze the
parameters that are stemming from external data sets such
as weather data sets in order to classify the alert as false,

innocent or real. As there is no automated data collector,
the experts must carry out data searching and data fetching
operations manually. Moreover, most of the time, the expert
cannot classify the alert immediately as he/she needs to wait
for further readings of the gamma dose rate to see if it will
return to normal. This can take hours due to some parameters
such as rain. Therefore, it is not possible to make a faster or
real-time inference using the current approach.

Today, we assist to the explosion of machine learning
techniques and complex algorithms in order to help experts or
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Figure 1. Low Dose Tube Broken Effect on Gamma Dose Rate

non-experts to learn more about their data. Machine learning
techniques might help building predictive models in order to
have a real-time proactive system. However, in order to apply
these techniques, some preliminaries analysis should be done
to better characterize the problem that needs to be solved. The
main objective of this research is to analyse REWS and see if
the expert can be removed from the picture and replaced by
an autonomous REWS. There are many challenges to address
before reaching this goal. The work described in this paper
is the first attempt to do so, as to our knowledge it does not
exist autonomous REWS in the literature.

The main objective of this research is to develop an end-to-
end solution that will be integrated with running REWS sys-
tems without any disruption or without replacing it completely.
Indeed, before replacing the expert, the system should prove
its accuracy to predict the right answer. Thus, a supervised
learning should take place at the beginning until it reaches its
full potential and work on its own. In this paper, we present
our RIMI framework (Refining Incoming Monitored Incidents)
that highlight the different steps that need to take place before
reaching an autonomous REWS solution. In this framework,
we plan to develop a list of components from data acquisition
and normalization, to building a predictive model on a real
data set produced by a running REWS, then by using it to
predict the right classification of the alarm on real-time data.

The remaining of this paper is organized as follows. Section
2 will highlight the nature of the problems that need to
be solved in REWS. In Section 3, we describe our RIMI
framework and detail each of its components. Finally, we will
conclude our work in Section 4. Notice, that there will not be a
related work section in itself, as it does not exist similar work
in the literature but rather, once a problem has been refined we
will give some hints of the approaches that have been proposed
in the literature to solve this particular problem.

II. PROBLEM DESCRIPTION
In this section, we illustrate some of the scenarios that an

expert will encounter during his/her work. These scenarios
reflect the variety of the situations that occur most of the time.

The scenario described in Figure 1 illustrates how an
internal factor can affect the gamma dose rate. For instance,

Figure 2. Wind Effect on Gamma Dose Rate

Figure 3. Lightning Effect on Gamma Dose Rate

when the low dose tube of the probe is broken, thus it affects
the quality of the gamma dose rate value. Its interpretation is
no more reliable. This type of scenario will produce a false

alarm.
In the scenarios respectively described in Figure 2 and

Figure 3, we see how the wind and lightnings directly and
immediately impact the gamma dose rate. In these scenarios,
we observe many peaks that do not last very long. We called
them hard parabola. These types of scenarios will produce a
false alarm.

On the opposite, the rain impacts the gamma dose rate in
a completely different manner. Rain for example can cause
the soil to emit radioactive gases into the air resulting a true
innocent gamma radiation readings. When hitting the soil,
the rain can increase the gamma dose rate that will return
to normal values after specific time. Sometimes, even if it
continues to rain after the peak, it will not affect the gamma
dose rate anymore. The effect is seen when the soil is dry, not
when the soil is already humid. This behavior is described in
the Figure 4 and corresponds to what is called soft parabola.
It is classified as an innocent alarm.

Fortunately, real alarm are very rare, but as you can imagine
the peak will not decrease after a short period of time but
will continue to increase. Many other scenarios can also be
found in practice. For instance, some factors like earthquakes
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Figure 4. Rain Effect on Gamma Dose Rate

or a truck with radioactive materials load passing near a probe
can cause the gamma dose rate level to increase immediately.
Moreover, multiple factors can be combined together such as
rain and wind making the recognition of the cause less easier.

Many data sources should be combined together. Some are
collected in a continuous manner by the REWS and stored in
an historical database. But many others data sources must be
queried on demand when an investigation is launched by an
expert. Combining all these heterogeneous data sources on the
fly is also a difficult problem in itself.

Another dimension of the problem concerns the variability
of the threshold values that evolve over time and that is also
dependant on the location of the probe itself. As said earlier,
these predefined threshold values are essentially chosen based
on observations or experience at the beginning, but they evolve
slightly over time on a monthly basis, making the comparison
of the time series over multiple months not an easy task.

All these examples illustrate the difficulty and the hetero-
geneity of analysing the gamma dose rate shape and under-
standing its causes in order to classify properly the alarm in
an automatic way. For all these reasons we believe that the
research problem is interesting to be tackled as it will require
many different techniques or approaches to be used. This is
the reason why we define the RIMI framework to offer an
end-to-end solution towards an autonomous REWS.

III. THE RIMI FRAMEWORK

In this section, we provide a detailed description of our
framework entitled, RIMI (Refining Incoming Monitored In-
cidents). The framework consists of three main components:
(1) the data collector and enrichment, (2) the building of the
predictive model, and (3) the online detection and prediction.
Figure 5 illustrates more in detail each of the main compo-
nents. As the incident is caused by a high gamma dose rate
level which can be harmful for humans and environment, this
framework aims to replace a human-driven verification system
that refines the incoming incidents and alerts and detect its
cause by doing it automatically with a high level of accuracy.

A. Data Collector and Data Enrichment

As seen in the previous section, the data is heterogeneous
(i.e. time series, quality bits, events) and comes either from
the online REWS monitoring system or from the external data
sources that must be queried on demand by experts in the
case of a triggered alarm. The data collected by the REWS
system is stored in an historical database. The data acquisition
is done on a regular basis through secure channels between
the radiation detection sensors (i.e. probes) and the server.
In normal mode, the probe sends a message containing the
gamma dose rate average every hour, but when an alarm is
triggered because the gamma dose rate is over the threshold,
the system switches to an alarm mode, thus the probe sends a
message every minute. The system returns automatically to its
normal mode when the gamma dose rate returns to normal. In
addition to the gamma dose rate, the probes send other sensors
data (also known as Quality Bits) as they are equipped with
internal sensors that can detect the defectiveness of any of
the system components. These sensors data are stored in the
historical REWS database for later analysis. As we have seen
earlier in one of the scenarios, the defect of the low dose tube
can cause a direct false high gamma radiation level.

For the time being, three years of historical data have been
collected by our REWS that is used in Lebanon and controlled
by the Lebanese Atomic Energy Commission. These data are
precious and can be used to train our predictive model, but
these data needs to be enriched by external information in
order to automatically find the causes of an alarm. The data
sources that can be queried on demand are numerous. It can
be a weather database, a radiation transportation database, etc.
In order to be queried, we need to know the approximate
timestamp of the alarm in order to better understand the past
context or situation in which the alarm was triggered. On the
historical data set, sometimes the data are annotated by the
alarm timestamp (i.e. when the alarm was triggered) but most
of the time it is not. So it is our responsibility to infer the
alarm detection on past sensors data.

Because of the heterogeneity of the data sources, the data
needs to have some validation and normalization before being
integrated into our framework. The RIMI framework has to
deal with multivariate time series that need to be integrated
in a proper way. The main time series related to the gamma
dose rate needs to be harmonized in respect with : (1) the
normal and fast modes, (2) communication problems between
the probe and the server which result in missing information.
Moreover the enrichment of the time series should also be
done in a proper way especially when it stems from external
data sources. For instance, timestamps should be aligned or
normalized to avoid inconsistencies in the analysis.

B. Building the Predictive Model

The predictive model is built upon the historical databases
produced by the running REWS system, which continuously
collect sensors data produced on the different probes. First,
there is a need to identify all the incidents. Second, we should
research the causes of each incident. This requires the data
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Figure 5. A Framework for Real-time Radiation Pollution Detection

enrichment to better understand the past situation or context
that occurred during the incident. Finally, all this mass of
information should be organized and classified in order to build
our predictive model that will be used at run-time.

1) Incident Extractor: Incident extraction consists in
analysing the gamma dose rate time series data in order to
identify a fragment (i.e. shape). A fragment corresponds in
fact to a triggered alarm (i.e. incident). As said earlier, the
threshold and the background values are not fixed but they
evolved over time. At the beginning of the system, a value is
given but it is refined over time to better suit the default gamma
dose rate of the location on which the probe is installed. This
value called the background can be different from one location
to the next. At the end of each month, the average of the
background values is calculated to find the background mean.
This mean will be used for finding the background interval
which is the range of the safe gamma dose rate values in
the environment. It is important here to mention that this
mean will be calculated after removing the threshold values
from the month data set. To find the threshold value, we
noticed that experts in different countries depend on different
methods. Some consider that values that are equal and greater
than 1.5 times the background mean as thresholds. Others
refer to the values that are equal and greater than 2 times
the background mean as thresholds. We decided to be more
precise and rely on the 1.5 method knowing that this value
can be changed to suit experts’ expectations through different
countries. We explored several methods to find the most
suitable one that determines the lower and the upper bounds of
the background interval. Our study revealed that the standard

deviation [4] is promising to find the background level interval.

We choose standard deviation because of the nature of the
distributions of data. According to our observation, radiation
level data are uniformly distributed and to the best of our
understanding standard deviation is a suitable technique for
finding intervals when data are uniformly distributed in a two
dimensional graph. This background level interval is calculated
by adding and subtracting the value resulted in by calculating
the standard deviation to the mean of the background values in
the current month. This computation model produces a catalog
of parameters with the corresponding means, thresholds, and
the background intervals values for each month. Thus the
Incident Extractor component relies on the catalog which
defines the appropriate background interval values for each
month. We assume that this catalog is fully computed on
historical data before the extraction starts.

In the Figure 6, we define the background interval that corre-
sponds to the acceptable background values. It is represented
by a lower B1 and an upper B2 bounds. We also show the
threshold value which is 1.5 times the background mean.

A fragment is defined by a beginning x and an end y times-
tamps. In other words, once a threshold value is found, the
Incident Extractor will search for the nearest points x and y that
represent the preceding and succeeding values of the threshold
and extract the current fragment from x till y. Note that these
two values must lie within the background level interval. They
respectively identify the time when the gamma dose rate starts
to increase in an abnormal way and when its return to a normal
state. Moreover, it is worth noting that we designed a locking
mechanism that does not allow the Incident Extractor to start a
new extraction operation unless the previous one is completed.
We used a locking mechanism because a graph may contain
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Figure 6. Fragment Extractor

more than one fragment exceeding the threshold value. Thus,
incident extractor extract these fragments sequentially and the
endpoint of the preceding fragment may become the starting
point for succeeding fragment.

Shapelet extraction has drawn significant research attention,
in recent years. Many algorithms have been proposed in
the literature such as Piecewise Aggregate Approximation
(PAA)[5] and the Multivariate Shapelets Detection (MSD)[6].
These approaches search for shapelets that are similar to a
referent shapelet. These approaches are not be suitable to our
problem as we do not have any referent shapelet and due to the
evolving of the background level, the duration of our fragment
can be multiple. Moreover, some of the approaches go beyond
that and discuss extracting shapelets based on predefined key
points[7]. These methods aim at detecting key points in the
time series and then extract the shapelets referring to these key
points. Such approaches need to be investigated more in order
to check their compatibility with our evolving background
interval.

2) Identifying the Incidents Causes: Once the fragments are
extracted, we enrich them by querying external data sources to
better understand the context that occurred in the past during
a specific period of time as defined in the Figure 6 with the
beginning x and the end y timestamps. Our goal is to annotate
the fragments with its potential causes. Two kinds of incidents
can be obtained based mainly on the duration of a fragment:
the one representing incidents with hard parabola and the
others representing incidents with soft parabola as illustrated
in the different scenarios detailed in Section II. At this stage,
the cause behind each incident is unknown.

For incidents with hard parabola, the cause will not be risky
as it shows different peaks in a short period of time. In such
case, the cause could be because of the quality bits readings
indicating an error in one of the system components as shown
in Figure 1. Other causes for hard parabola incidents could be
the wind and the earthquakes. They will perform a shaking
effect on the probe leading to a false increase in the gamma
radiation level (Figure 2). Lightning can also cause the probe
to represent a false increase in the gamma dose rate level

(Figure 3).
On the other hand, the causes behind the incidents with soft

parabola are few. Rain is one of the most frequent causes that
can lead to the increase of the gamma radiation level for a
long period of time. This increase produces time series data
with soft parabola knowing that the radiation level will return
to normal values after a specific period of time. Other causes
leading to a soft parabola of gamma radiation level could be
real threads. Although rain has an effect on the radiation level,
its effect will not start directly on occurrence. For example,
we can notice in Figure 4 the several rain events occurred
before the gamma radiation level starts to increase. Also, we
can notice how rain events continue after the gamma radiation
level returned to normal values without affecting it again. This
can tell us that the effect of the rain on the gamma radiation
level is not simultaneous.

In the literature, it exist some causal models such as the
most well-known one which is the Granger Causality Model
[8] that can be helpful for finding the cause between time series
especially for hard parabola. Indeed, many external factors,
which come as time series data, have an immediate effect
on the gamma dose rate. In other words, they are directly
correlated and it is an evidence that the external factors are
the cause, and not the other way round. If the external factors
are not the cause for the hard parabola, we need to investigate
the Quality Bits to look for a problem in the components of
the probe. Moreover we need to inform some technicians that
the probe needs some reparation. However for soft parabola,
the Granger Causality Model will for sure not work as the
correlations are not direct, nor obvious. In particular, we need
to enrich the data in a more vaster way as the cause may have
happened before the beginning timestamp of the fragment.
How much before we do not know as it can depend on the
nature of the soil. We also don’t know if the quantity of heavy
rain will have an impact of the increase and decrease of the
gamma dose rate. At the moment, we do not know which
techniques can be used, may be a specific causal model needs
to be defined. Finally, if multiple causes are combined, such
as rain and wind, the causal model that can be used for hard
parabola will not work anymore. It is pretty sure that we may
encounter some situations that we have not yet identified.

Once the possible causes for an incident have been identi-
fied, we might check the accuracy of our model by consulting
the historical database. Indeed, some incidents have been
annotated in the past by some experts and we can use this
knowledge to tune our model. Moreover, there will be also the
possibility at the beginning of this stage to involve an expert,
to evaluate the accuracy of our findings. Most probably we
will find more causes for incident, because most of the time
the expert may focus on the main cause and will not look
for all causes as it is time consuming. Finding the causes for
a situation is in a way of finding a complex situation that
occurred in the past. We plan to look at situation awareness
models to better capture the complex nature of the causes (i.e.
situation). For instance, knowing that the rain that occurred
in the first week of October at a specific location may have
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more or less impact than the one occurring in the summer.
What is clear is that each fragment will be annotated with the
description of the situation (i.e. causes or events happening
together).

3) Classification: After identifying the causes and calculat-
ing the situation for each fragment, we need to classify them
in order to build and train our predictive model. We will start
by comparing the different incidents extracted in order to set
the main classes, then we will compare the situations inside
each class to form the sub classes. The classification process
will start forming the main classes by following a model-based
approach. Through this approach, the incidents extracted from
the gamma dose rate time series will be compared based on the
graphical shapes representing the incidents. Several incident
shapes will be gathered and classified as soft or hard parabola
shapes.

Existing shapelet classifiers proposed in literature use dif-
ferent techniques. In [9], the authors proposed a model for
classifying shapelets using minimum Euclidean distance be-
tween the input and the expected templates. Mahalanobis
distance, introduced in [10], takes into consideration the
correlation of the data and is scale-invariant. The authors
believe that this approach will give more accurate results than
the Euclidean Distance method. We found some works that
focus on simplifying the distance calculation. For instance,
the DTW (Dynamic Time Wrapping) algorithm[11] focuses on
reducing the computing complexity and improves efficiency.
In addition, many previous approaches dealing with time series
classification will be investigated to perform this task. Some
potential mathematical model could be used in developing our
classifier including the Chebychev distance[12], Manhattan
distance[13], and Minkowski distance[14]. We will investigate
all potential algorithms and models to find the best technique
that can fit our data.

After forming the main classes, the incidents will be com-
pared based on their annotated situations. Sub classes will be
formed based on the incident annotated cause or combined
causes. This will refine the classes to form the sub classes
based on the values obtained. We will end up with a wide
range of classes that will be used in the online detection of
the incident.

C. Online Detection and Prediction

Once the classes are defined, the Online Detection and
Prediction phase can take place. Its job starts when an incident
alarm is triggered. As said earlier, the alarm can be categorized
into three types: false, innocent, or true. The aim behind this
phase is to check if the current incident occurring with the spe-
cific annotated information corresponds to a predefined class
as quickly as possible. The main job of the online predictive
model will be calculating the context by checking what is the
current situation once an incident is captured. Based on the
discovered situation, the model will start searching for similar
incidents in the related classes.

1) Incident Pattern Matching Engine: The incident pattern
matching engine is the analytical engine deployed to recognize

Figure 7. Fragment Matcher

the new incidents by performing a matching operation over
the annotated patterns produced at the incident classification
step. We designed this analytical engine based on Kappa
Architectural Style which means that the incident pattern
matching operations will be performed in real-time. At the
same time, a pre-designed algorithm will be running in the
background to calculate the parameters that will be used for
next month’s evaluation. On incident detection, the framework
will search for the current situation, since it will be always
connected to external and internal factors databases, and will
run the Incident Matcher phase, which will look to the nearest
point before the threshold belonging to the background level,
and start matching the beginning of the current shapelet with
those represented in the predefined classes.

For example, Figure 7 shows the analyzing process for
incoming data. As we can notice, the readings started within
the background level interval which means a normal situ-
ation with accepted values. Once the readings exceed the
upper bound of the background interval (B2) and reached
the threshold value, then the alarm will be triggered detecting
incident case and the matching process starts. This will provide
different possibilities for the continuity of the current shapelet
referring to the already obtained shape after comparing it to
the previously classified incidents. It will repeat this process
until the possibilities become so limited that the cause can be
detected. Thus, the framework will be able as soon as possible
to detect the cause behind the incident and alert the experts if
special procedures must be taken. To perform this task, we can
reuse the techniques defined in the Incident Extractor module.

2) Accuracy and Verification: The objectives of our re-
search is to propose a fully automated framework. However,
we strongly believe that at the initial stage the solution needs
an expert opinion to validate the results produced by the
system. This validation is important due to the sensitivity of
the use cases that will be implemented using this solution.
This will help in increasing the accuracy rate of the proposed
framework. Moreover, in case of exceptional use cases that
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were not known, the involvement of the experts would help
to enhance the solution by training the classifier over the data
and make it capable of recognizing incident patterns that were
unknown before.

CONCLUSION
This paper presented an end-to-end framework for (pre)-

processing, processing and analysis of radiation level data.
The objective of developing this framework is to eliminate the
manual intervention in radiation level monitoring systems. In
this paper, we explained the key components of the framework
including data pre-processor, incident extractor, data enhancer,
and incident classifier. We provided a detailed description of an
analytical engine which matches the fragment patterns in real-
time and helps the experts in faster decision making regarding
verification of an alarm.

Several works have been lined up for future. In the near
future, we planned to develop techniques for classifying the
incidents. We will train, test, and optimize the classifier
to guarantee that accuracy of classification. Also, we will
develop a real-time analytical engine using advanced tools for
performing classification in real-time.
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