
Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons
License Attribution 4.0 International (CC BY 4.0). IntelITSIS-2020

A Model for Estimating the Security Level of Mobile
Applications: a Fuzzy Logic Approach

Olha Yanholenko 1[0000-0001-7755-1255], Olga Cherednichenko 1[0000-0002-9391-5220],
Olena Yakovleva 2[0000-0002-6129-6146], Denis Arkatov 1[0000-0003-0162-159X]

1 National Technical University “Kharkiv Polytechnic Institute”, Kharkiv, Ukraine
2 Kharkiv National University of Radio Electronics, Kharkiv, Ukraine

olga.yan26@gmail.com, olha.cherednichenko@gmail.com,
olena.yakovleva@nure.ua, denarkatov@gmail.com

Abstract. In this paper a model for solving the problem of estimating the secu-
rity level of mobile applications was proposed. The estimation is performed
based on a fuzzy inference system of the Mamdani type. The input criteria were
defined as the most important security threats by applying the Analytic hierar-
chy process method. The pairwise comparison matrix was constructed from
mobile security research on OWASP Top 10 Mobile Risks. The proposed
methodology can be applied for any kind of mobile applications available for
modern platforms, except specific cases when security analyst does not have a
sufficient amount of information about the chosen application for performing
the security level testing. Mobile security analysts can easily make further deci-
sions about comprehensive mobile application security based on the results ob-
tained with the help of the introduced model.

Keywords: Mobile Application; Security; Model; Fuzzy Logic; Analytic Hier-
archy Process; Comprehensive Mobile Application Security.

1 Introduction

The number of available applications for mobile platforms reached 2 million on Ap-
ple AppStore and over 2.2 million available on Google Play Store [1]. An exponential
growth of portable application development and a large number of existing vulnera-
bilities made them enthralling for a wide variety of potential attackers. According to
the study published by [2], a total number of mobile malware reached 16 million by
Q2 2017. Pradeo’s Tech team has shown in their recently published Mobile Applica-
tions Threats Review that nearly 60% of modern mobile applications contain security
vulnerabilities [3]. Moreover, 1 out of 4 apps has security risks listed in Top 10 Mo-
bile Risks of the OWASP Foundation [4]. Gartner analysts say that nearly 75% of
apps failed security vulnerabilities checks [5]. Due to the relatively new market, there
is a visible lack of approaches to testing the apps security available for mobile devic-
es. Recently published research papers mainly focus on specific aspects of safety
testing (for example, communication protocol testing [6]; GUI testing [7]; testing
methodology based on privacy information encoding mechanism [8]; malware detec-

mailto:olga.yan26@gmail.com
mailto:olena.yakovleva@nure.ua

tion in mobile devices [9]; and software model checking approach [10] which does
not reveal entire picture of potential app threats.

Taking into account the mobile threats growth during the last few years and a visi-
ble lack of comprehensive testing techniques it is possible to state that mobile applica-
tion security evaluation continues to be an urgent problem. Therefore, the goal of the
given research is to analyze modern security methodologies and develop a new ap-
proach which would help security analysts to estimate the overall mobile application
security level. The goal is to be reached in three major steps:

1) Firstly, defining most important vulnerabilities, which presence significantly
impacts the overall application security. By applying the Analytic Hierarchy Process
(AHP) to matrix constructed from expert analysis data published by OWASP [4] in
Top 10 Mobile Risks list of the most valuable threats will be constructed.

2) Secondly, constructing a fuzzy logic model for estimation of the security level
of mobile application.

3) Finally, creating software testing tool which implements aforementioned algo-
rithm and analysis of the received results.

The rest of paper is organized as follows. Section “State of the Art” introduces the
background literature. It refers to the current scientific advances in mobile application
security and modern techniques and challenges concerned with assessment, arrange-
ment, and maintaining sufficient security of mobile applications, essential to avoid
major intruding attacks. Based on performed literature analysis it is possible to define
the main task of this work. Section “Methods” introduces main methods used for the
construction of the proposed model. The main instruments described here are the
Analytic Hierarchy Process, which uses the mobile security threats proposed by [4] as
the inputs, and a fuzzy inference system (FIS) (in particular, of Mamdani type). In
addition, this part provides a method for gathering input data, necessary for perform-
ing further app analysis. Section “Results” represents a step-by-step explanation of
the case study organized in logical order. The description provided here can be used
as a reference sufficient to replicate the proposed model. Section contains outcomes,
obtained from real-life examples security testing. This part represents the security-
testing results for eight open-source mobile applications along with all expert analy-
sis, necessary for replicating the experiment manually. Section “Discussion” consists
of a critical analysis of achieved improvements in comparison with results in related
works. In addition, the limitations and weaknesses of the proposed solution are con-
sidered. Section “Conclusions and future work” summarizes the results and includes
further ways of methodology improvement.

2 State of the Art

At the present, the well-known IT-companies such as Hewlett Packard, Gartner,
OWASP, McAfee and Pradeo publish numerous reports on mobile application securi-
ty. Experts working in this area focus their attention on the problem of various mobile
applications security issues. Hewlett Packard Enterprise report [11] places the empha-
sis on the privacy issue. According to them, 97% of analyzed apps have access to at

least one private data source, and such massive data collection could potentially go
awry. The research team based their conclusions on a binary analysis of over 36,000
unique iOS and Android applications. McAfee’s Strategic Intelligence researchers
provided insights about modern mobile malware [2]. According to this study, there
are three broad classes of evasion techniques: anti-security, anti-sandbox, and anti-
analyst malware techniques. Total mobile malware amount continues to grow and
reached over 16 million by Q1 2017. It is most widespread in Asia-region (more than
20% customers reported mobile malware). Mobile Application Security Study made
by Hewlett Packard Enterprise [12] demonstrated in their report findings that nearly
75% of mobile applications do not utilize proper encryption techniques which could
lead to data leakage. The conclusion was based on the scanning analysis of over 2,000
applications from 600 different corporate companies listed in Forbes list of Global
2000. The 2017 Mobile App Market predictions and analysis highlighted the fact that
security issues are the center of attraction for the mobile developers nowadays [1].
The number of mobile security attacks will continue to grow tremendously. Gartner
research team provided a constructive guide to prioritize mobile defenses [5]. Accord-
ing to this paper, since the sophisticated attacks become more widespread, companies
must implement Mobile Threat Defense (MTD) techniques to avoid potential data and
financial loses. Therefore, the leading actors and developers of the mobile apps mar-
ket put a topic of their products’ security at the top of their priorities.

At the same time, business and academic community work together in order to de-
velop automatic tools for mobile apps security testing. The research by [6] described
commonly used encryption protocol for secure communication between a mobile
application (client-side) and a server-side. Summarizing their insights, it is possible to
say that the use of outdated or compromised protocols for communication can cause
serious leakage of private data. In addition, they reported a fundamental flaw in the
improper usage of popular encryption TLS/SSL protocols, which could lead to the
third-party data stealing.

The team of researchers introduced a tool “Autoforge”, that can automatically send
requests from the client app to check whether the server side handles user data with
proper security measures [13]. It analyses server responses by imitating requests from
the client side. They performed an experiment on 76 most popular applications (more
than million installations) and found that 65% of apps back-end servers have login
credentials brute-force vulnerability. Another software tool (iMPAcT) performs au-
tomatic testing based on analysis of UI Patterns, which is suitable for Android apps
with graphical user interface (GUI) [7]. The software tool performs analysis by pres-
ence identification process from the predefined catalogue of all known patterns. Paper
[14] shows different types of tests suitable for mobile applications. The paper consid-
ered five broad types of testing: functional, performance, usability, installation, and
operational testing.

The research conducted by [8] proposed a method to analyze the functionalities re-
lated to privacy of client’s information. The testing process is described using UI
Automator Viewer, which is a part of Android SDK Tools. A comprehensive study by
[9] demonstrated malware detection techniques based on sequence alignment algo-
rithms. By applying proposed methods, it is possible to successfully identify and neu-

tralize malware before it performs attacks. Authors of [15] recommend 40 possible
ways to perform penetration testing; it describes software products for mobile security
testing such as Burp Suite, Wireshark, MITM proxy and Androguard. The book fo-
cuses on iOS and Android platforms, but introduces basic testing methods for Black-
Berry and Windows mobile platforms.

Another team of researchers announced a tool (K-Android), which is based on the
K framework to test the effect of app-collision [10]. This condition can happen when
several applications exchange data whereas they have an access to private information
that could not be obtained per se. K-Android performs checking of APK-files, based
on static security analysis methods. Netcraft’s research [16] on mobile security testing
shows the required steps of comprehensive security threats analysis and the potential
list of vulnerabilities. They focus attention on applications that use SSL encryption
but have failed mechanisms to validate SSL-certificates, thus making them a potential
target for the man-in-the-middle (MITM) attacks. In addition, they advertise The Mo-
bile App Security Testing service performs security testing according to PCI DSS
v2.0 requirement 11.3. The book [17] provides a list of various tools to perform pene-
tration testing for Apple iOS developers. He describes iOS built-in security model,
device Jailbreaking and TOP 10 Mobile security shortcomings identification and pre-
vention methods. Most tests described in this book focus on static and dynamic analy-
sis, penetration testing, and successful threat assessment.

OWASP Mobile Security Testing Guide proposed three major steps in security
analysis, which are: Intelligence Gathering (security analyst gather as much infor-
mation about application as possible to conduct further research), Threat Modeling
(identifying threats by using published security reports and proposing countermeas-
ures to prevent these threats) and Vulnerability Analysis (threats identification using
test-cases) [18]. Vulnerability Analysis includes three broad classes of security testing
methods: static methods (source code analysis), dynamic methods (network commu-
nication monitoring, analyzing running application) and forensic methods (app arti-
facts analysis, such as databases, log files, cookies, etc.).

The aforementioned tools have been developed based on the methods and algo-
rithms of various theoretical frameworks. The methods applied can be classified as
experience-based, simulation-based, and methods of mathematical modelling. Thus,
the experience-based approach implies the execution of multiple tests on the app
functioning and analysis of the obtained results. For instance, [6] measure the app
security in terms of successfully passed tests of safe client-server communication
guaranteed by TSL encryption. The techniques suggested by [15] are oriented on the
collection of real testing results and making straightforward conclusions on their ba-
sis. The GUI testing tool developed by [7] is based on the pattern matching models
represented via finite state machines and the logical rules of transition between states.

The simulation-based approach presupposes the intended injection of the malware
messages/code/app into the mobile device. Then the estimation of the mobile app is
performed with respect to its security under the created conditions. For example, the
developers of the “Autoforge” software made it automatically generate a new input
message with mutated fields satisfying the cryptographic constraints in a black-box
manner [13]. The authors have analyzed 3 measures of message field differences (pat-

tern matching, content matching, and the degree of difference – the Levenshtein dis-
tance calculated by the Wagner-Fischer algorithm). The difference occurs between a
traced and forge messages when that last is simulated by the “Autoforge” in order to
estimate the app security. Mathematical modelling methods provide the complex pro-
cessing of security-related data collected during experiments with the targeted mobile
app. Vidal [9] use the non-parametric Wilcoxon signed-rank test that operates on
paired data vectors of the scores resulted from aligning the monitored sequences of
system calls with the legitimate sample. This ranking method of Decision-making
theory allows to detect the malware apps on mobile devices. The study performed by
[19] suggests the probabilistic models to determine the set of relevant vulnerability
detection rules and the geometric weighted average of frequency and impact scores of
each threat in order to estimate their risk.

So, the topic of mobile apps security is broadly discussed by both industrial and
scientific community. The given review of reports and research articles allows to state
particular solutions of the mobile security problem have already been proposed. The
considered works are mainly focused on separate threats detection and analysis. How-
ever, the authors do not pay much attention to the measurement of separate security
threats identified in various models. Moreover, the problem of comprehensive as-
sessment of the overall security based on the estimates of definite threats is not com-
pletely researched. In order to fill this gap, the given research considers the basic
security detection principles and commonly known threats and proposes a new ap-
proach for estimation of mobile apps security level based on the fuzzy inference sys-
tem (FIS) approach combined with the Analytical hierarchy process.

3 Proposed technique

In order to construct the list of most valuable mobile security threats, the Analytic
hierarchy process (AHP) method was chosen. This method was developed by Saaty
[20]. AHP is the most widely used decision-making methodology that researchers use
in a huge number of fields [21]. Within this work, the AHP is applied to the matrix
which was constructed from expert analysis data presented by [4] in the Top 10 Mo-
bile Risks list shown in Table 1.

Insecure Authentication means that a mobile application contains security breaches
in client-side or its server-side authentication mechanisms that can be employed by
malicious users (attackers). Reverse Engineering means that the attacker gets the ac-
cess to the app installed from the store and tries to investigate it using own software
development tools. Insecure Data Storage occurs when mobile application stores criti-
cal or confidential customer information without encryption techniques (known as
plain text); in this case, the third party could bypass system protections and obtain
access to this private data. Code Tampering vulnerability may lead to serious sensitive
data leakage, loss or system damage. Insufficient Cryptography could happen when
developers use compromised or outdated encryption algorithms in their applications;
an attacker could easily bypass them and the outcomes will be the same as storing
sensitive data without any encryption. Improper Platform Usage leads to misuse of

mobile operating system security controls. Insecure Communication contains a wide
variety of potential threats. This condition could happen in case of improper configu-
ration of encryption techniques (for example, SSL-certificates generation and valida-
tion), usage of outdated frameworks or libraries on a client and server-side, and ena-
bling unnecessary access permissions, error logging or debug functions. By using this
vulnerability, an attacker could obtain access to app databases and back-end servers.
Client Code Quality exposes application to analysing, reverse engineering and source
code modifying attacks and techniques. To avoid this, mobile applications must uti-
lize solutions to detect source code modifications at runtime and prevent further ac-
cess. The vulnerability could lead to data leakage as well as source code piracy. Ex-
traneous Functionality assumes outside analysis of the mobile application and does
not require involvement of end users.

Table 1. Security risks matrix according to [4].

Security risk Exploit
probability

Prevalence Detection
probability

Technical
impacts

Insecure Authenti-
cation

EASY COMMON AVERAGE SEVERE

Reverse Engineer-
ing

EASY COMMON EASY MODERATE

Insecure Data Stor-
age

EASY COMMON AVERAGE SEVERE

Code Tampering EASY COMMON AVERAGE SEVERE
Insufficient Cryp-
tography

EASY COMMON AVERAGE SEVERE

Improper Platform
Usage

EASY COMMON AVERAGE SEVERE

Insecure Commu-
nication

EASY COMMON AVERAGE SEVERE

Client Code Quali-
ty

DIFFICUL
T

COMMON DIFFICUL
T

MODERATE

Extraneous Func-
tionality

EASY COMMON AVERAGE SEVERE

In general, the AHP method requires a following set of steps:

1. Firstly, presenting the original problem in the form of a hierarchical descending
structure. On the top of it, there is the overall goal of the problem, the next level –
various criteria, then sub-criteria. The lowest level of the hierarchy contains all al-
ternatives [22].

2. Secondly, introducing experts opinions for paired comparisons at each hierarchical
level.

3. Lastly, processing matrices of pairwise comparisons for finding local and global
priorities [20].

To build comparisons matrix, a special scale of importance of weights of crite-
ria/alternatives is used [20]. After the comparison of alternatives is completed, the
weights of criteria importance should be calculated, similarly, by applying pairwise
comparisons. The problem has N criteria and M alternatives. In the given case, it is
necessary to construct N judgment matrices of MM × size and a single judgment
matrix of NN × size. The final decision matrix of priorities i

AHPA is determined by
[23]:

 ∑ = == n
j jij

i
AHP MiwaA 1 .,...,1, (1)

The problem of defining security level of mobile applications cannot be properly
described using Boolean logic truth-values (which may only be “true” or “false”). It
will not allow to make any meaningful conclusions about further necessary steps to
improve the security of the selected mobile application. In our case, more accurate
assessments could be made by presenting the results mapped on a spectrum derived
after reasoning from inexact or partial knowledge (for example, a list of security vul-
nerabilities provided in the research). Hence, fuzzy logic can be applied for describing
the aforementioned problem.

For the implementation of the proposed model for estimation of the security of
mobile applications, a Mamdani-type fuzzy inference system (FIS) was used. Figure 1
features a set of steps mandatory in the Mamdani algorithm [24].

Fig. 1. Mamdani fuzzy logic steps schema

The problem should be presented as a set of rules:

 ,)/(ZByAx THENORANDF == (2)

where Z is resulting condition, for example, Z = “unsecure”; A , B are fuzzy in-
puts and Z is a fuzzy output.

At the rule evaluation stage, to estimate the disjunction and conjunction of rule an-
tecedents the following formulae should be applied:

)],(),(max[xBxABA µµ=µ  (3)

)],(),(min[xBxABA µµ=µ  (4)

Among multiple defuzzification methods, in this work Centroid (centre of gravity -
COG) method was chosen [25]. This method finds the point where a vertical line
would split the aggregate set into two equal ones. The following formula is used to
calculate Centroid of the fuzzy set A on the interval [a, b]:

∫
∫

µ

µ
= b

a

b
a

dxxA

XdxxA
COG

)(

)(
 (5)

The model requires a set of input variables, which are the corresponding numbers
of most important security threats found by a mobile security analyst. An analyst
should perform the manual security threats analysis of the source code and executable
file of a mobile application for the presence of potential security threats, which de-
scription is presented in security reports such as Top 10 mobile risks [4].

4 Results

According to the expert analysis data provided by OWASP [4], a matrix which con-
tains a list of security risks and their respective characteristics was constructed (Ta-
ble 3.)

In order to define the most valuable threats the AHP method was applied and the
following hierarchy was developed (Fig. 2).

Fig. 2. AHP problem hierarchy

In this hierarchy the target is to define the priority of security criteria
(CRIT_PRIORITY); criteria - Exploit probability (EXPLOIT), Prevalence
(PREVAIL), Detection probability (DETECT), and Technical impacts (IMPACT).
Finally, the alternatives are the security risks defined the OWASP list (Table 1). In
case of this hierarchy, they are Insecure and Authentication (AUTH), Reverse Engi-
neering (REV_ENG), Insecure Data Storage (DATA_STOR), Code Tampering
(CODE_TAMP), Insufficient Cryptography (CRYPTOGR), Improper Platform Usage

(PLAT_USE), Insecure Communication (COMM), Client Code Quality
(CODE_QUAL), and Extraneous Functionality (EXTR_FUNCT).

The next step is to construct matrices of pairwise comparisons for each security
criterion. The intensity of importance was set according to the expert data (Table 3).
The results of this step are presented in Tables 2-5.

Table 2. Matrices of pairwise comparisons for security criteria Exploit.

Security risk Scores
AUTH 1 1/5 1/5 1 1/5 1 1/5 1/5 1/5
REV_ENG 5 1 1 5 1 5 1 1 1
DATA_STOR 5 1 1 5 1 5 1 1 1
CODE_TAMP 1 1/5 1/5 1 1/5 1 1/5 1/5 1/5
CRYPTOGR 5 1 1 5 1 5 1 1 1
PLAT_USE 1 1/5 1/5 1 1/5 1 1/5 1/5 1/5
COMM 5 1 1 5 1 5 1 1 1
CODE_QUAL 5 1 1 5 1 5 1 1 1
EXTR_FUNC 5 1 1 5 1 5 1 1 1

Table 3. Matrices of pairwise comparisons for security criteria Prevail.

Security risk Scores
AUTH 1 5 1 1 1 1/5 1 1 1
REV_ENG 1/5 1 1/5 1/5 1/5 1/9 1/5 1/5 1/5
DATA_STOR 1 5 1 1 1 1/5 1 1 1
CODE_TAMP 1 5 1 1 1 1/5 1 1 1
CRYPTOGR 1 5 1 1 1 1/5 1 1 1
PLAT_USE 5 9 5 5 5 1 5 5 5
CONMM 1 5 1 1 1 1/5 1 1 1
CODE_QUAL 1 5 1 1 1 1/5 1 1 1
EXTR_FUNC 1 5 1 1 1 1/5 1 1 1
After performing corresponding AHP method calculations prior alternatives were

found (Table 6).

Table 4. Matrices of pairwise comparisons for security criteria Detect.

Security risk Scores
AUTH 1 1 1 1 1 1 1 3 3
REV_ENG 1 1 1 1 1 1 1 3 3
DATA_STOR 1 1 1 1 1 1 1 3 3
CODE_TAMP 1 1 1 1 1 1 1 3 3
CRYPTOGR 1 1 1 1 1 1 1 3 3
PLAT_USE 1 1 1 1 1 1 1 3 3
COMM 1 1 1 1 1 1 1 3 3
CODE_QUAL 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1 1
EXTR_FUNC 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1 1

Table 5. Matrices of pairwise comparisons for security criteria Impact.

Security risk Scores
AUTH 1 4 1 1 1 4 1 1 1
REV_ENG 1/4 1 1/4 1/4 1/4 1 1/4 1/4 1/4
DATA_STOR 1 4 1 1 1 4 1 1 1
CODE_TAMP 1 4 1 1 1 4 1 1 1
CRYPTOGR 1 4 1 1 1 4 1 1 1
PLAT_USE 1/4 1 1/4 1/4 1/4 1 1/4 1/4 1/4
COMM 1 4 1 1 1 4 1 1 1
CODE_QUAL 1 4 1 1 1 4 1 1 1
EXTR_FUNC 1 4 1 1 1 4 1 1 1

Table 6. The AHP calculation results.

Alternative Priority
DATA_STOR 0.1271
CRYPTOGR 0.1271
COMM 0.1271
PLAT_USE 0.124
CODE_TAMP 0.1049
AUTH 0.1049
CODE_QUAL 0.1022
EXTR_FUNC 0.1022
REV_ENG 0.08

The most important prior alternatives are Insecure Data Storage (DATA_STOR),
Broken Cryptography (CRYPTOGR), Insecure Communication (COMM), and Im-
proper Platform Usage (PLAT_USE).

Matrices of pairwise comparisons were constructed based on single expert opin-
ions. In order to solve the assigned task, additional experts may be engaged, but there
will be the problem of reconciliation of various experts’ results. Besides, specifics of
the task do not necessarily require different expert opinions that is why matrices were
constructed using expert opinions obtained from one expert. Based on the found secu-
rity alternatives it is now possible to proceed to the model construction step. To de-
velop mathematical models using fuzzy logic, Mamdani algorithm was selected.

The model was constructed using the following list of fuzzy variables:

4. Let’s consider the input fuzzy variables – DataStor, Comm, Cryptogr, and PlatUse
– which define the number of security issues per the corresponding category (Inse-
cure Data Storage, Insecure Communication, Insufficient Cryptography, and Im-
proper Platform Usage).

5. Let’s consider the output fuzzy variable SecurityLevel. This variable is used to de-
scribe the overall mobile application security level. According to obtained value
from this variable, a security analyst can make further decisions about the overall
mobile application security and necessity of additional actions.

6. The membership function has a trapezoidal form (trapmf). Membership Functions
for Insecure Data Storage (DataStor), Insecure Communication (Comm) = Secure,
Average, Unsecure.

7. Let’s consider the membership function for SecurityLevel variable. Membership
function has a trapezoidal form (trapmf). Membership Functions for Security Level
(SecurityLevel) = lowest, bad, average, good, highest.

8. Let’s consider the membership function for Cryptogr, PlatUse. Membership func-
tion has a trapezoidal form (trapmf). Membership Functions for Insufficient Cryp-
tography (Cryptogr), Improper Platform Usage (PlatUse) = Secure, Average, Un-
secure.

6) Let’s consider the fuzzy rules defined in Table 7.

Table 7. Fuzzy rules for the model.

№ Rule
1 if (DataStor is Secure) and (Cryptogr is Secure) and (Comm is Secure) and (Pla-

tUse is Secure) then (SecurityLevel is highest)
2 if (DataStor is Secure) and (Cryptogr is Average) and (Comm is Secure) and

(PlatUse is Secure) then (SecurityLevel is highest)
3 if (DataStor is Secure) and (Cryptogr is Secure) and (Comm is Average) and

(PlatUse is Secure) then (SecurityLevel is highest)
4 if (DataStor is Average) and (Cryptogr is Secure) and (Comm is Secure) and

(PlatUse is Secure) then (SecurityLevel is good)
5 if (DataStor is Average) and (Cryptogr is Secure) and (Comm is Average) and

(PlatUse is Secure) then (SecurityLevel is good)
6 if (DataStor is Average) and (Cryptogr is Average) and (Comm is Average) and

(PlatUse is Secure) then (SecurityLevel is average)
7 if (DataStor is Average) and (Cryptogr is Secure) and (Comm is Average) and

(PlatUse is Average) then (SecurityLevel is average)
8 if (DataStor is Average) and (Cryptogr is Average) and (Comm is Secure) and

(PlatUse is Average) then (SecurityLevel is average)
9 if (DataStor is Average) and (Cryptogr is Average) and (Comm is Average) and

(PlatUse is Average) then (SecurityLevel is bad)
10 if (DataStor is Average) and (Cryptogr is Unsecure) and (Comm is Average) and

(PlatUse is Average) then (SecurityLevel is bad)
11 if (DataStor is Average) and (Cryptogr is Average) and (Comm is Unsecure) and

(PlatUse is Average) then (SecurityLevel is bad)
12 if (DataStor is Average) and (Cryptogr is Average) and (Comm is Average) and

(PlatUse is Unsecure) then (SecurityLevel is bad)
13 if (DataStor is Secure) and (Cryptogr is Unsecure) and (Comm is Unsecure) and

(PlatUse is Unsecure) then (SecurityLevel is bad)
14 if (DataStor is Unsecure) and (Cryptogr is Average) and (Comm is Unsecure)

and (PlatUse is Secure) then (SecurityLevel is bad)
15 if (DataStor is Unsecure) and (Cryptogr is Unsecure) and (Comm is Unsecure)

and (PlatUse is Unsecure) then (SecurityLevel is lowest)

The following scale of security level (Table 8) was introduced to interpret the out-
put model results properly.

Table 8. Scale of security level.

Security level Description
1 Significantly risky
2 Risky
3 Lightly risky
4 Below average
5 Average
6 Above average
7 Good
8 Acceptable
9 Excellent

As a result, the model receives input variables (a number of security threats in the

chosen mobile application) and after performing fuzzy logic calculations displays an
output as an overall security level of the mobile app. Based on the model designed in
the previous section, the real-time software has been built for defining security level
of mobile applications. After that, a research on several open-source applications
available on GitHub was conducted. The characteristics of the selected apps are pre-
sented in Table 9.

Table 9. List of mobile apps which security level are analyzed.

App name Version Description
TVHeadEnd 4.2 TVHeadEnd PVR client
Xabber Classic 0.9.31a Instant messaging client
Shaarlier 1.6.1 Share links on Shaarli
TripleCamel 1.0.4 Check price history of Amazon products
AndroPTPB 1.1 Post snippets and files with the ptpb service
Quick Dice Roller 2.1.3 Flexible, complete and handy dice roller
Gobandroid 2.5.9 Ancient Go game

The analysis results (defined security level) were obtained using the software based
on the developed model (Section 4). The number of security issues per each category
and corresponding overall security level are presented in Table 10.

According to the provided results, it is possible to say that the mobile application
“Gobandroid” is significantly risky and requires additional work to improve its securi-
ty while the app “Shaarlier” could be safely used without additional security im-
provements.

Table 10. Results of defining security level for aforementioned apps.

App Data
storage

Cryptog-
raphy

Commu-
nication

Extraneous
functionali-
ty

Security Level

TVHeadEnd 5 5 5 5 2.67 (Risky)

Xabber Classic 7 6 6 7 1.42 (Sign. risky)

Shaarlier 1 1 1 1 8.92 (Excellent)

TripleCamel 2 1 3 1 6.52 (Above avg.)

AndroPTPB 2 4 3 1 4.43 (Below avg.)

Quick Dice
Roller

1 4 3 1 5.5 (Average)

Gobandroid 7 8 7 8 1.4 (Sign. risky)

MineSweeper 6 7 7 7 1.42 (Sign. risky)

5 Discussion

The review of sources on the topic of mobile apps security showed that the prob-
lem of model design for the comprehensive assessment of the overall application
security is still relevant and requires a solution. In this research, a model for defining
overall application security level was proposed. This model was developed as a next
step to the OWASP [4] research and was constructed using security issues data sub-
mitted by teams who made this research. Except that list, the model can also use re-
sults of the Mobile Application Security Study [12] and the research [6] to make more
accurate encryption threats assessments. Security analysis tools presented by [13] and
[7] can be used along with the proposed model for retrieving input data for overall
mobile security level estimation. Instead of manual examination, a security analyst
could use these tools to perform the necessary analysis and then use the obtained re-
sults as the model inputs which helps to receive a comprehensive representation of
app security. Analysts can apply methodologies and techniques presented in [15] and
[17] for various criteria testing. Their results can also be used as inputs for the provid-
ed model. The model is suitable for processing results obtained by using all three
major testing methods – static, dynamic, and forensic methods [18].

The model is based on the third-party mobile security threats analysis of the
OWASP Foundation [4], thus model results strictly depend on the correctness and
completeness of the aforementioned research. Other research companies may publish
different threats analyses in their papers which will require additional model altera-
tion. Another limitation of the developed model is that it is based on fuzzy inference
system, thus, the results may contain small imprecision. Nevertheless, a security ana-
lyst should have results that allow him to make further decisions about mobile appli-
cation security and the model can successfully handle this task, possible fuzzy logic
results inaccuracy should not affect an overall decision-making process.

6 Conclusions and future work

In this research, a model for estimating the security level of mobile applications has
been proposed. A real-time software system has been developed to implement the
suggested model. The experiments were conducted on a set of open-source mobile
applications. This model also allows narrowing the range of potential vulnerabilities,
which presence should be checked by the analyst in particular mobile app. This step
allows reducing significantly the amount of work which mobile security specialist
should perform to evaluate the level of mobile application security. It was achieved
by defining which classes of security threats pose the most significant risks to the
overall application’s security level.

The main contributions of the paper are: 1) An efficient method for estimating the
security level of mobile application. 2) A set of most valuable mobile security threats.
3) The developed real-time software system which allows performing a security test-
ing of mobile applications. In future, it is planned to make several improvements to
this model and software product. The model has a great reusability potential – it is
possible to modify easily the classes of security threats, according to threats list up-
dates published by different software security companies. Additionally, it is possible
to improve functionality by adding scanning methods, which could perform checks of
threat presence in a source code of mobile application and automatically calculate
inputs for model without the manual work of a security analyst. Moreover, the effi-
ciency of the model can be advanced by redefining the list of security issue categories
according to new researches which will be published in future.

7 References

1. Saifi R The 2017 Mobile App Market_ Statistics, Trends, and Analysis. Retrieved from
(2017) http://www.business2community.com/mobile-apps/2017-mobile-app-market-
statistics-trends-analysis-01750346#op3a6wsaZb0h6d3T.97.

2. Beek C, Dinkar D, Gund Y, Lancioni G, Minihane N, Moreno F, Weafer V McAfee Labs
Threats Report: June 2017. McAfee Labs Report, (June), pp 1–83 (2017)
https://www.mcafee.com/us/resources/reports/rp-quarterly-threats-jun-2017.pdf.

3. Pradeo Pradeo’s biannual mobile applications threats review for S1 (2017)
https://www.pradeo.com/en-US/datasheet/mobile-applications-threats-review-S12017.

4. The OWASP Foundation Top 10 mobile risks (2016) https://owasp.org/www-project-
mobile-top-10/, 03/05/2020

5. Girard J, Zumerle D, Reed B, Firstbrook P and Willemsen B Predicts 2017: endpoint and
mobile security (2017) https://www.gartner.com/doc/
3512932?ref=AnalystProfile&srcId=1-4554397745.

6. Kieseberg P, Frühwirt P, Schrittwieser S, Weippl ER Security tests for mobile applications
— Why using TLS/SSL is not enough. 2015 IEEE Eighth International Conference on
Software Testing, Verification and Validation Workshops (ICSTW), 1-2 (2015) doi:
10.1109/ICSTW.2015.7107416

7. Morgado I, Paiva ACR Mobile GUI testing. Software Qual J 26, 1553–1570 (2018).
https://doi.org/10.1007/s11219-017-9387-1.

https://owasp.org/www-project-mobile-top-10/
https://owasp.org/www-project-mobile-top-10/
https://doi.org/10.1007/s11219-017-9387-1

8. Kaur S, Singh DK Mobile Application Testing based on Privacy information Encoding
Mechanism (2016)

9. Vidal J M, Monge MAS, Villalba LJG A novel pattern recognition system for detecting
Android malware by analyzing suspicious boot sequences. Knowledge-Based Sys-
tems, 150, 198–217 (2018) https://doi.org/10.1016/j.knosys.2018.03.018

10. Asǎvoae IM, Nguyen HN, Roggenbach M, Shaikh SA Software model checking: A prom-
ising approach to verify mobile app security-A position paper. In Proceedings of the 19th
Workshop on Formal Techniques for Java-Like Programs, FTfJP 2017 - Co-located with
ECOOP 2017. Association for Computing Machinery, Inc. (2017)
https://doi.org/10.1145/3103111.3104040.

11. Hewlett Packard Enterprise Mobile application security report (2016)
http://h22168.www2.hpe.com/docs/capgemini/Mobile%20Report%20ver%2010.2.pdf.

12. Hewlett Packard Enterprise (2013) Mobile application security study. 2013 report.
http://files.asset.microfocus.com/4aa5-1057/en/4aa5-1057.pdf.

13. Zuo C, Wang W, Wang R, Lin Z Automatic Forgery of Cryptographically Consistent Mes-
sages to Identify Security Vulnerabilities in Mobile Services. Internet Society (2017)
https://doi.org/10.14722/ndss.2016.23146.

14. Kim H, Yeo H, Hwang HJ, Ramos CH, Marreiros G. Effective Mobile Applications Test-
ing Strategies (2016)

15. Meng H, Thing VLL, Cheng Y, Dai Z, Zhang L A survey of Android exploits in the
wild. Computers and Security, 76, pp 71–91 (2018)
https://doi.org/10.1016/j.cose.2018.02.019.

16. Netcraft Mobile app security testing (2018) https://www.netcraft.com/security-
testing/mobile-app-security-testing/.

17. Wilhelm T Professional Penetration Testing: Creating and Learning in a Hacking Lab:
Second Edition. Elsevier Inc. pp 1–445 (2013) https://doi.org/10.1016/C2012-0-00443-7

18. Stahl F, Stroher J Security testing guidelines for mobiles apps. (2013)
https://www.owasp.org/images/0/04/Security_Testing_Guidelines_for_mobile_Apps_-
_Florian_Stahl%2BJohannes_Stroeher.pdf.

19. Sadeghi A, Esfahani N, Malek S Mining mobile app markets for prioritization of security
assessment effort. In WAMA 2017 Proceedings of the 2nd ACM SIGSOFT International
Workshop on App Market Analytics, pp. 1–7. Association for Computing Machinery, Inc.
(2017) https://doi.org/10.1145/3121264.3121265.

20. Saaty TL Decision making — the Analytic Hierarchy and Network Processes
(AHP/ANP). Journal of Systems Science and Systems Engineering, 13(1), pp 1–35 (2004)
https://doi.org/10.1007/s11518-006-0151-5.

21. Vaidya OS, Kumar S Analytic hierarchy process: An overview of applications. European
Journal of Operational Research, 169(1), pp 1–29 (2006)
https://doi.org/10.1016/j.ejor.2004.04.028.

22. Kousalya P, Mahender Reddy G, Supraja S, Shyam Prasad V Analytical Hierarchy Process
approach – An application of engineering education. Mathematica Aeterna, 2(10), pp 861–
878 (2012) https://doi.org/10.1016/j.jvir.2016.06.036.

23. Triantaphyllou E, Mann SH Using the Analytic Hierarchy Process for Decision Making in
Engineering Applications: Some Challenges. International Journal of Industrial Engineer-
ing: Theory, Applications and Practice, 2(No. 1), pp 35–44 (1995)

24. Fuzzy inference systems.
http://www.cs.princeton.edu/courses/archive/fall07/cos436/HIDDEN/Knapp/fuzzy004.htm

25. Mamdani fuzzy model (2015) http://researchhubs.com/post/engineering/fuzzy-
system/mamdani-fuzzy-model.html.

http://researchhubs.com/post/engineering/fuzzy-system/mamdani-fuzzy-model.html
http://researchhubs.com/post/engineering/fuzzy-system/mamdani-fuzzy-model.html

	1 Introduction
	2 State of the Art
	3 Proposed technique
	4 Results
	5 Discussion
	6 Conclusions and future work
	7 References

