
Hybrid Ensemble Predictor as Quality Metric for German Text
Summarization: Fraunhofer IAIS at GermEval 2020 Task 3

David Biesner∗†‡, Eduardo Brito∗†§, Lars Patrick Hillebrand∗†‡, Rafet Sifa†
† Fraunhofer IAIS, Schloss Birlinghoven, 53757 Sankt Augustin, Germany

§ Fraunhofer Center for Machine Learning, Germany
‡ B-IT, University of Bonn, Endenicher Allee 19a, 53115 Bonn, Germany

Abstract

We propose an alternative quality metric
to evaluate automatically generated texts
based on an ensemble of different scores,
combining simple rule-based metrics with
more complex models of very different na-
ture, including ROUGE, tf-idf, neural sen-
tence embeddings, and a matrix factoriza-
tion method. Our approach achieved one
of the top scores on the second German
Text Summarization Challenge.

1 Introduction

In our previous work on automatic text summa-
rization (Brito et al., 2019), we concluded criticiz-
ing the suitability of ROUGE scores (Lin, 2004)
for overall evaluation purposes. These and other
common quality metrics found in the automatic
text summarization literature like BLEU (Papineni
et al., 2002) or METEOR (Banerjee and Lavie,
2005) are far from being optimal since they only
focus on the lexical overlap as a proxy for assessing
content selection. They do not only penalize cer-
tain abstractions (e.g. when the original sentences
are heavily reformulated or when synonyms are
applied) but they also ignore other aspects that are
usually considered desirable in good summaries,
including grammatical correctness and compact-
ness.

The second German Text Summarization Chal-
lenge aims to address this issue by releasing a text
corpus with several summaries per text1. Its partici-
pants were asked to rate these summaries with new
ideas and solutions regarding an automatic quality

Copyright c© 2020 for this paper by its authors. Use permitted
under Creative Commons License Attribution 4.0 Interna-
tional (CC BY 4.0)
∗These co-first authors contributed equally to this work.
1https://swisstext-and-konvens-2020.org/
2nd-german-text-summarization-challenge.

assessment of German text summarizations. We
propose to combine the advantages of neural ap-
proaches that excel at encoding semantic textual
similarity (and are thus suitable to predict content)
with statistical and rule-based metrics that can eval-
uate other important summarization aspects such
as compactness and abstractiveness.

In our approach, we employ an ensemble of 7
statistically significant predictors (p-value < 15%)
in a linear regression model (see Table 2). Compar-
ing our predictions to the competition host’s own
non-public annotations we achieved a score (i.e.
loss) of 33.72, one of the lowest and therefore best
scores of participating teams.

In the following sections, we detail the different
metrics that we considered and how we optimized
its combination.

2 Experimental Setup

This section describes our experimental setup,
namely the underlying dataset and the methodolog-
ical approach.

2.1 Data

The shared task organizers released a corpus con-
sisting of 216 texts with a corresponding reference
summary and a generated summary, each of them
rated with a value between 0 (bad) to 1 (excellent).

In order to evaluate the methods we manually
annotated all summaries in the dataset with a score
from 0 to 1. We independently rated a part of the
corpus each, such that different human biases can
be compensated to a certain extent. A submission
of these annotations to the competition received a
high score, indicating a large similarity to the gold
standard annotations set by the organizers. Addi-
tionally, we expanded the dataset by considering
the given reference summaries as perfect generated
summaries with an automatic score of 1.

https://swisstext-and-konvens-2020.org/2nd-german-text-summarization-challenge
https://swisstext-and-konvens-2020.org/2nd-german-text-summarization-challenge

This results in a dataset of 248 summary texts
with their corresponding score, which is used to
evaluate the unsupervised methods described be-
low.

2.2 Methodology

We address this challenge as a metric learning prob-
lem, where we define a set of unsupervised predic-
tors covering one or several features that answer
the required properties of a good summary (content
relevancy, compactness, abstractiveness and gram-
matical correctness). After calculating all predictor
scores (unsupervised) for each document we apply
min-max normalization to assure all scores lay in
the closed 0-1 interval. In a final step, we ensem-
ble these predictors in a capped linear regression
model (output between 0 and 1), which is trained
via ordinary least squares on our manual summary
annotations (see Section 2.1). We iteratively re-
move non-significant predictors, p-value ≥ 15%,
and re-run the regression model until all predictors
yield significant t-statistics, namely their coeffi-
cients lay within the two-sided 85% confidence
interval. Due to the limited amount of documents
and the loss of interpretability, we refrain from
including non-linearities (e.g. multiple layers, non-
linear activation functions, interaction terms of dif-
ferent polynomial degrees, etc.) into the regression
model. Also, by using a simple linear ensemble
model, we reduce the likelihood of overfitting on
our annotations, especially since no validation set
for parameter tuning is available.

The following subsections lay the focus on our
predictors and describe their functionality. We start
presenting three content predictors, which all de-
termine the most important words in the original
text and compute the fraction of how many of these
words occur in the generated summaries. We as-
sume that the most important words in a document
capture the essence of the text and thus, function as
proxy for contentual relevance. We continue with
neural language model driven predictors which pri-
marily focus on contentual relevance and gram-
matical correctness. We also include the standard
quality metrics for automatic summary evaluation,
ROUGE, BLEU, and METEOR, which all aim
to measure contentual relevance, as well. The re-
maining predictors are mainly rule-based and refer
largely to compactness and abstractiveness.

2.2.1 Tf-Idf content predictor

A very popular text vectorization method is tf–idf
(Term frequency – Inverse document frequency).
It is a frequency-based statistic, which intends to
reflect how important a word is to a “document” in
a corpus.

Given that our entire corpus contains N docu-
ments and the vocabulary of our corpus is of size
K, we can collect the individual tf–idf scores in
some matrix M ∈ RN×K . Each row vector in this
matrix corresponds to a document embedding. We
find the top 10 important words per document by
decreasingly sorting the tf-idf scores within each
embedding.

We utilize the sklearn 2 implementation of
the TfidfVectorizer and restrict our vocabu-
lary to words with a document frequency below 0.9.
Before vectorization, we apply lower-casing, punc-
tuation and stop word removal, and stemming to
the entire text corpus, which helps to better capture
meaning and content in the text’s vector represen-
tation.

2.2.2 NMF content predictor

NMF (Nonnegative Matrix Factorization) (Paatero
and Tapper, 1994; Lee and Seung, 2001) is a com-
mon matrix factorization technique frequently used
for topic modeling. In previous work, we find that
NMF achieves good results in clustering document
words to a predefined number of latent topics. As-
suming that a good summary should cover all main
topics in a text, we apply NMF on each document,
and determine the top 5 important words per la-
tent topic dimension. In particular, we factorize
the document’s symmetrical co-occurrence matrix3

S ∈ RN×N into a nonnegative loading matrix
W ∈ RN×M and a nonnegative affinity matrix
H ∈ RM×N ,

S = WH + E, (1)

where N is the vocabulary size of the document at
question, M = 10 is the number of latent topics
and E ∈ RN×N is the error matrix, whose elements
approach zero for a perfect decomposition.

2https://github.com/scikit-learn/
scikit-learn.

3We apply the same document preprocessing as in Section
2.2.1 before calculating the co-occurrence matrix. Also, we
choose a window size of 5 and each context word j con-
tributes 1/d to the total word pair count, given it is d words
apart from the base word i.

https://github.com/scikit-learn/scikit-learn
https://github.com/scikit-learn/scikit-learn

For both, W and HT we assign each word (row
vector) to the latent topic dimension with the high-
est value. Next, we decreasingly sort the assigned
words per topic, so that the most distinct topic
words are ranked on top. Finally, we get the impor-
tant words per document by removing all duplicates
from the selected topic words of W and H .

2.2.3 Flair NER content predictor
Flair (Akbik et al., 2018) is a specific contextual
string embedding architecture. The backbone of
the flair framework is a pretrained character-based
language model (based on an LSTM4-RNN), which
is bidirectionally trained on a huge independent text
corpus for different languages, including German.

Build on top of this language model, the frame-
work provides a German named entity tagger,
which is pretrained on the Conll-03 dataset (Sang
and De Meulder, 2003). First, raw and unprocessed
text is fed sequentially into the encoding part of the
bidirectional language model. Second, we retrieve
for each word i a contextual embedding by concate-
nating the forward model’s hidden state after word
i and the backward model’s hidden state before
word i. This word embedding is then passed into a
vanilla BiLSTM-CRF5 sequence labeler.

We apply this sequence tagger on our raw in-
put documents and consider all predicted named
entities as the document’s important words.

2.2.4 Flair grammar predictor
In order to evaluate grammatical correctness, we
again leverage the aforementioned flair language
model, which was trained as an auto-encoder to
correctly predict the next character in a text. For
a grammatically correct text we would expect the
model to mostly guess the next character correctly.
A text with grammatical errors however would not
match the expectations of the model, thus creating
a larger reconstruction error on the characters that
do not fit grammatically. To assess grammatical
correctness we feed the summary text through the
model and score the summary based on the accu-
mulated reconstruction error.

2.2.5 Sentence-BERT predictor
We explore how sentence embeddings can be used
to measure “how similar” (semantically) a sum-
mary is compared to its original text. In particular,

4Long Short Term Memory.
5Bi-directional Long Short-Term Memory Conditional Ran-
dom Field.

we infer sentence embeddings with the pretrained
bert-base-german-uncased BERT model from the
HuggingFace’s transformers library (Wolf et al.,
2019) in the fashion proposed with the Sentence-
BERT architecture (Reimers and Gurevych, 2019).
The output of the BERT model is max-pooled to
obtain a fixed-size vector for each processed piece
of text. This way, we can obtain embeddings for
both the original text and each of the summaries.
The resulting predictor score is thus the cosine sim-
ilarity of the summary vector with the original text
vector.

2.2.6 ROUGE predictor
The ROUGE score is a classic metric for assessing
the quality of summaries. Even though it alone is
not sufficient to evaluate summaries it can give use-
ful insight when applied in an ensemble setting. We
calculate the rouge-1, rouge-2 and rouge-L scores
between the summary and both the full original
text and the reference summary. While rouge-1
and rouge-2 calculates the overlap of unigrams and
bigrams (i.e. single words and adjacent word pairs)
between reference text and summary, rouge-L eval-
uates the longest common subsequence between
reference and summary.

2.2.7 BLEU predictor
BLEU is a metric that calculates an n-gram preci-
sion between one or multiple reference texts and
a summary hypothesis, in which n-gram counts
in the summary are compared to their maximum
count in one of the references.

2.2.8 METEOR predictor
METEOR is a metric that calculates a harmonic
mean between the recall and precision of an n-gram
matching which considers word order between a
reference text and a summary.

2.2.9 Compactness predictor
We calculate the compactness score as the compres-
sion rate with respect to the original text, where the
text length is measured by the number of charac-
ters.

2.2.10 Number matching predictor
A good summary should be factually correct.
While there might be some ambiguity from dif-
ferent word choices between original text and sum-
mary, there usually is only one way to display exact
numbers like dates. We thus expect every number
in the summary to also appear in the original text.

To assess factual correctness regarding numbers,
we count how many of the numbers in the summary
are also present in the text.

2.2.11 Sentence copying predictor
At times, one can generate a usable summary by
simply extracting the first sentences of the origi-
nal text, since they often provide an introduction
and therefore a mini-summary of the remaining
text. However, the goal of our evaluation is find-
ing abstractive and novel summaries. We therefore
perform a binary check on whether the summary
exactly matches the first sentences of the original
text and assign a 1 if they are extracted from the
original text and a 0 if they are more abstracted.

3 Evaluation

In this section, we report and analyze our results
of employing a capped linear regression model to
ensemble the significant subset of our predictors
to generate a representative summarization quality
metric. We start by fitting a capped linear regres-
sion model to the full set of predictors, including
an intercept, and consider the p-values of each pre-
dictor. We iteratively remove the most insignificant
predictor (largest p-value) and re-run the linear re-
gression. We stop once all predictors are statisti-
cally significant to the 15% level.

The final regression model on the remaining 7
significant predictors is described in Table 1.

coef std err P> |t|

constant 0.072 0.095 0.447
tfidf content 0.535 0.107 0.000
flair grammar 0.226 0.109 0.038
sbert 0.169 0.106 0.110
sentence copying −0.168 0.064 0.009
rouge-1 2.560 0.571 0.000
rouge-2 −1.531 0.340 0.000
rouge-L −1.329 0.646 0.041

Table 1: Regression coefficients, standard errors and
p-values for final predictor set.

The columns show the estimated coefficients,
standard errors and p-values of each predictor.
Since all predictors have been normalized (min-
max normalization) prior to the regression, their
regression coefficients are directly comparable in
magnitude. It can be seen that the rouge-1 predictor
has the highest coefficient and thus, is most impor-
tant for predicting the summary evaluation score.
However, the other predictors also contribute sig-
nificantly to the prediction outcome, which gets

evident when comparing the final ensemble error
of 33.72 (see Table 2) to the individual rouge-1
error of 35.99 (see Table 3).

Further, the coefficients of the sentence copying,
rouge-2 and rouge-L predictors imply a negative
correlation to the annotated summary scores. This
is expected because all three predictors yield high
scores, when entire sentences, bigrams or common
subsequences of the original documents get copied
to or make up the generated summaries. Yet, our
annotations favor abstractive summaries which is
why a higher score of one of the above predictors
indicates a worse summary when taking abstrac-
tiveness as a quality indicator into account.

Table 2 shows the final error values obtained
by different predictor ensembles in the shared task
public ranking. Despite of more predictors increas-

Ensemble Error Predictors

7 predictors 33.72 constant, tfidf content,
flair grammar, sentence copying
sbert, rouge-1,
rouge-2, rouge-L

10 predictors 33.90 + nmf content,
bleu, meteor

13 predictors 33.82 + flair ner content,
compression, number matching

Table 2: Error values obtained in the shared task pub-
lic ranking by different predictor ensembles. A lower
value means better performance.

ing the likelihood of overfitting on our manual an-
notations and thereby lowering our final error score,
one can observe the opposite. Removing insignif-
icant predictors actually yields the best perform-
ing model and puts us among the top participating
teams.

4 Comparison with standard metrics

In order to show the validity of our approach and
its improvement over previously established meth-
ods, we take a look at the performance of BLEU,
METEOR and ROUGE as single predictors.

We implement each metric using the standard
definition and further employ min-max normaliza-
tion as described above in order to receive a metric
that assigns a score between 0 (bad) and 1 (good)
so that both extremes appear in the dataset. This
approach is developed entirely without manual an-
notations. The scores received on the challenge
task are depicted in the middle column of Table 3.

Furthermore, we use our manual annotations to
adjust the predictors to the available dataset, fitting

a linear regression of a single predictor to the anno-
tated summary scores. These scores are depicted
in the right column of Table 3.

As already signified, we see that using these met-
rics out-of-the-box results in significantly worse
performance than both the fitted algorithm and our
ensemble approach. While the fitted metrics score
is considerably higher than their original counter-
part, we still see a distinct improvement when em-
ploying an ensemble of different predictors.

Predictor Error (original) Error (fitted)

rouge-1 44.26 35.99
rouge-2 52.50 36.08
rouge-L 44.27 36.12
bleu 64.16 36.11
meteor 53.05 36.06

Table 3: Error values obtained by some of the common
evaluation metrics for automatic text summarization af-
ter uploading their scores to the shared task public rank-
ing. A lower value means better performance. The
middle column represents the errors for the min-max
normalized predictor scores. The right column shows
the final errors for the normalized predictor scores be-
ing fitted via linear regression to our manual summary
annotations.

5 Conclusion and Future Work

We showed that a hybrid combination of rule-
based, statistical and deep-learning techniques out-
performs other alternatives for automatic evalua-
tion of automatically generated German text sum-
marization given the provided shared task dataset.

Although the text corpus covers a wide range of
topics, the text style is quite homogeneous. Mostly,
it consists of generally grammatically perfect de-
scriptive texts. It would be interesting to test if
our approach also works for more informal noisy
texts. Furthermore, it would be also interesting to
evaluate different state-of-the-art summarization
approaches with our new metric.

Acknowledgments

The authors of this work were supported in parts
by the Fraunhofer Research Center for Machine
Learning (RCML) within the Fraunhofer Cluster of
Excellence Cognitive Internet Technologies (CCIT)
and by the Competence Center for Machine Learn-
ing Rhine Ruhr (ML2R) which is funded by the
Federal Ministry of Education and Research of
Germany (grant no. 01—S18038B). We gratefully
acknowledge this support.

References
Alan Akbik, Duncan Blythe, and Roland Vollgraf.

2018. Contextual string embeddings for sequence
labeling. In Proceedings of the 27th International
Conference on Computational Linguistics, pages
1638–1649, Santa Fe, New Mexico, USA. Associ-
ation for Computational Linguistics.

Satanjeev Banerjee and Alon Lavie. 2005. Meteor: An
automatic metric for mt evaluation with improved
correlation with human judgments. In Proceedings
of the acl workshop on intrinsic and extrinsic evalu-
ation measures for machine translation and/or sum-
marization, pages 65–72.

Eduardo Brito, Max Lübbering, David Biesner,
Lars Patrick Hillebrand, and Christian Bauckhage.
2019. Towards supervised extractive text sum-
marization via RNN-based sequence classification.
arXiv preprint arXiv:1911.06121.

Daniel D Lee and H Sebastian Seung. 2001. Algo-
rithms for non-negative matrix factorization. In
Advances in neural information processing systems,
pages 556–562.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Pentti Paatero and Unto Tapper. 1994. Positive matrix
factorization: A non-negative factor model with opti-
mal utilization of error estimates of data values. En-
vironmetrics, 5(2):111–126.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th annual meeting on association for compu-
tational linguistics, pages 311–318. Association for
Computational Linguistics.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using siamese BERT-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing.
Association for Computational Linguistics.

Erik F Sang and Fien De Meulder. 2003. Intro-
duction to the conll-2003 shared task: Language-
independent named entity recognition. arXiv
preprint cs/0306050.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Fun-
towicz, et al. 2019. Transformers: State-of-the-
art natural language processing. arXiv preprint
arXiv:1910.03771.

https://www.aclweb.org/anthology/C18-1139
https://www.aclweb.org/anthology/C18-1139
https://arxiv.org/abs/1911.06121
https://arxiv.org/abs/1911.06121
https://www.aclweb.org/anthology/W04-1013
https://www.aclweb.org/anthology/W04-1013
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/1910.03771

