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Abstract. The influence of the input data and a Hurwitz matrix on the stability 

of the system in general is investigated. The factors that influence the behavior 

and timing of the transient process are analyzed. An expression is obtained for 

finding the time of the transient process as well as its dependence on the param-

eters of the Hurwitz matrix. 
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1 Introduction 

Functional stability theory originated in the 1980s [1–5] and was used to control com-

plex dynamic objects and computing systems. This theory makes it possible to re-

spond promptly to system and block failures, to redistribute the functions of the failed 

blocks between those capable of performing the final task [4–12]. The use of this 

theory was limited by the capacities of computing systems and by the need to reserve 

the main blocks of the control system. For this reason, this theory was used for the 

control systems of large aircraft. With progress, the dimensions of control systems 

elements have decreased and the characteristics of computing systems have improved 

significantly, so this theory has evolved significantly and has become applicable to 

complex dynamic control objects of a broader purpose [6–9, 13–20,]. 

The dynamic object (Fig. 1) is written in the form of linear difference equations: 

 k
uQ( q )y( n ) q P ( q )U( n ) P ( q ) ( n )   , 

where y(n) – initial value; 
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U(n) – control influence; 

ξ(n) – external influence (disturbance); 

Q(q), Pu(q), Pξ(q) – polynomials of q; an, bn, cn; 

q; an, bn, cn – coefficients of polynomials; 

q – delay operator: qmχ(n) = χ(n–m) (sometimes the delay operator q–1 is used in the 

literature, so q–mχ(n) = χ(n–m)). 

 

Fig. 1. Block diagram vector of the object parameters 

The control device (Fig. 2) is described as: 

 r yR( q )U( n ) P ( q )r( n ) P ( q )y( n )  , 

where r(n) – input influence. 

 

Fig. 2. Block diagram of control device 

The system as a whole is described by the equations (Fig. 3): 

 
)()()()()()()()( 1 nqRqPnrqPqPqnyqG ru

k  


, 

where G(q) – is a characteristic polynomial. 



In functionally stable systems, vector of reducing filter parameters (Fig. 4) must 

change so as to ensure the optimality of the whole system over time. 

To solve this problem we will use the method of inverse dynamics problems 

(Fig. 5). 

2 Description of the mathematical model 

The mathematical description is based on the matrix equations of the form [4, 6, 8, 18, 

19]: 

 ],,[,)();()](),(),([)( 000 TtttXtXtPtZtUtXFtX   (1) 

where U(t) is a vector of control; 

Z(t) is a vector of the object parameters;  

P(t) is a vector of disturbances acting on the object;  

X0 is the initial conditions. 

 

 

Fig. 3. Structural (a) and equivalent (b) schemes of a closed system 



 

Fig. 4. Optimal reducing filter 

The presented theory is intended to provide a given programmatic movement 

(state) of the object of control and may provide for solving the problems of stabiliza-

tion, terminal control, and adaptive tracking (Fig. 6). An object that can be described 

by the system (1) must be on a given trajectory (correspond to a certain state) and 

provide a minimum of the functionality of quality: 

 )](),([min)](),([ 00  nnnn XUJXUJ , (2) 

where )(0 tXn , )(0 tUn  are optimal vectors of state and control. 

 

Fig. 5. Block diagram of the synthesis problem statement 

3 Statement of the problem 

In Refs. [18–20], examples of synthesis of functionally stable automatic systems for 

stabilization of motion of dynamic objects based on the solving inverse problems of 

dynamics are presented. To evaluate the quality of such systems, it is necessary to 

evaluate their resilience and the characteristics of the transients. 



 

Fig. 6. Block diagram “Statement of the problem” 

The system of matrix differential Eq. 1 can be represented as a structural diagram 

(Fig. 7). 

To solve the problem, we assume that the programmatic movement is asymptoti-

cally stable. 

The following conditions are imposed on this class of controlled dynamic systems. 

1. There is a subspace R  Rm × Rn  and a unique function U : R × Ξ → Rm such 

that for any pair of points {X, Z}  R and the point {ξ}  Ξ, the identity is satisfied 

 ]),,,(,[ zxUXFZ  , (3) 

i.e., Eq. 1 can be solved with respect to control on the subspace R. 

The condition (3) guarantees the existence and uniqueness of an ideal programmat-

ic control law of the form Un = Un(Xn, Ẋn, Ξ), which ensures the accurate implementa-

tion of programmatic movement provided Xn(t0) = X0; P(t) = 0; (Xn(t), Ẋn(t))  R 

],[ 0 Tttt . 

2. The following restrictions are imposed on the initial and constant external dis-

turbances [1–4, 18, 19]: 

 ,)(;)()( 000 pn CtPtXtX    (4) 



where δ0, Cp are positive parameters. 

3. There is a Hurwitz matrix Г with prime eigenvalues γi 

 XX  , (5) 

where X(t0) = X0 is the determined initial vector of state; 

 

Fig. 7. Structural diagram of functionally stable control system by the method of inverse dy-

namic problems 

γi are the roots of the characteristic equation of the system, ni ,1 , for any X  Rn, 

the condition holds: 

 RtXXtXX nn  )))(()(,(  , 0tt  . (6) 

4. For t  [t, ∞], the control law 

 ]),(,[),(  nn XXXXUXtU  . (7) 

For any disturbances that satisfy the condition (4), the movement X(t) (X(t0)  R) 

asymptotically approaches a determined programmatic movement Xn(t), i.e., it pro-

vides the asymptotic stability of the programmatic movement in general. 

From the expressions (1), (3), (6), we find 

 ))(()(]),(),([ tXXtXXtUtXF nn   . (8) 

Thus, we can write it down 

 )()( 0XXtXX n   . (9) 



Due to the selection of the Hurwitz matrix Г, the required transient process is pro-

vided [1–4, 14]. For the system (9), the roots of the characteristic equation determine 

the stability of the system in general. If Re γi < 0, ni ,1 , the roots have negative real 

parts, the trivial solution of the system is unstable. When the roots do not have a posi-

tive real part, but at least one with a zero real part, the system is on the limit of stabil-

ity. 

According to the condition (6), the matrix is chosen with prime eigenvalues, then 

there are positive numbers C and γ such that 

 .,)()()()(,Re 0
)(

00
0 ttetXtXCtXtX

tt
nni 

  (10) 

Thus, the programmatic movement in general will be asymptotically stable. 

4 Results and Discussions 

Let us give an estimate of the maximum time of the transient process 

Case 1. external influences are absent π(t) = 0. 

Let the law of control that guarantees for any ξ  Ξ, π(t)  Qπ (ε is the closeness of 

real and programmatic movements [4, 6, 18, 19], starting from the end time moment 

tn > t0) be synthesized, i.e., 

  )()( tXtX n , ntt  . (11) 

The expression (11), given the expression (10), can be represented in the form: 

 


 )(
0

0)()(
tt

n
netXtXC , (12) 

hence 

 )()(ln)( 000 tXtX
C

tt nn 


 . (13) 

Denote as Tn = tn – t0 the time of the transient process in the system. 

The time Tn of the transient process can be estimated using the expression (13) 
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
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
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Case 2. External disturbances occur π(t)≠ 0. 

Let the controlled object be described by the equation 

),(]),(),([)( ttUtXFtX    X(t0) =X0, t  [t0, tn]. Moreover, X  QX, 

Xnn QXXtX  )()( . 



The control U is of the chosen form: ]),(,[),( nn XXXXUXtU   , 

t  [t0, ∞). 

The equations of the closed-loop system have the form: 

)()]()([)()( ttXtXtXtX nn   . 

Suppose that Xn(t) and Ẋn(t) both lie on sets QX and QẊ with stocks δ1 and δ2, re-

spectively (Fig. 8), when 

  )(,)( 002001 tXXCtXXC nn  , (15) 

or given .0  

 0)( 001  tXXC n , (16) 

 0)( 00
1

2 


tXXC n . (17) 

 

Fig. 8. Graph of transient processes in a functionally stable system of recovery control by the 

method of inverse dynamic problems 

Let us introduce the denotations 

 ])(,)(min[ 00
1

2001 tXXCtXXCX nn 


 , (18) 



 ),min(1   xCC  , (19) 

 )()( tXtX n . (20) 

Given the accepted denotations, the following condition can be obtained 

  CCtXXetXtX n
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n
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00
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Hence, given (20), it follows:  


 
CCetXXC

tt
n

1)(
00

0)( . 

Solving the obtained inequality with respect to t = tn, we find 
)(
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1 0)(
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The time of the transient process: 
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Comparing the expression (23) with the expression (14), we can conclude that in 

the presence of external disturbances, the time of transient process increases 
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With great disturbances (increase in Cπ), the time of transient process increases 

significantly. 

To reduce the time of the transient process in the system, it is necessary to increase 

γ by means of an appropriate choice of control. 

5 Conclusions 

For a multidimensional controlled object, satisfying det C ≠ 0, the structure of the 

control algorithm does not explicitly contain the equation of motion of the object. The 

proposed approach to the construction of control algorithms allows obtaining algo-

rithms without using detailed equations of the controlled process. Moreover, it is suf-

ficient to use as a mathematical model the generalized equations that reflect the fun-

damental laws of motion. 

 To synthesize the aircraft control algorithms, complete nonlinear equations of mo-

tion can be used without linearizing them. The resulting algorithms are also nonlinear. 

Their structure is adequate to the structure of mathematical models of controlled pro-



cesses, and the parameters of these algorithms are determined by the parameters of 

mathematical models of assigned motion trajectories. 

In essence, the construction of aircraft motion control algorithms along the as-

signed trajectory has two aspects. The first one is related to the direct formation of the 

vector of the required control force f*[x], and the other is related to the calculation of 

the values of the elements of the vector of the control function Un(t) that creates the 

necessary force f*. The calculation relations according to which f* and Un(t) are calcu-

lated form the contents of the motion control algorithm. 

The coefficients of the control system are determined by the basic parameters of 

the motion of the object, as well as by the parameters of the assigned program trajec-

tory. This allows changing the parameters of the programmatic trajectory in the object 

movement. 
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