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Abstract. A high level of team situational awareness is essential during complex, large-
scale missions of autonomous mobile robots. When a situation appears that needs inter-agent
interaction for cooperative decision-making, the basic understanding of the current conditions
ought to be identical within the group. To achieve this requirement, all emergent information of
acute importance must be promptly shared among team members. It is a non-trivial problem
for large-sized and distributed robotic teams, especially under hard communication constraints.
The problem considered in this paper is to find an efficient emergency broadcasting strategy for
search and survey operations of the robotic groups providing the fastest way for any agent to
aware the remaining team in case of any unexpected changes. A number of simple ruled-based
heuristics is proposed to treat the problem. The comparison between the suggested approaches
is made regarding both the quality of the obtained solutions and the working speed.

1. Introduction
The rapid evolution of the robotics technologies in recent years has led to the significant reliability
improvement of research, military, and commercial autonomous vehicle systems. Currently, the
coordinated use of autonomous mobile robot teams seems to be one of the most promising and
ambitious technologies to provide an efficient solution to a range of problems, that are either
too difficult or too costly to solve using traditional techniques.

However, an extensive range of fundamental problems still needs to be solved in order to
achieve high-performance cooperative teamwork in a hostile and ever-changing environment [1].
In these circumstances, the ability to quickly and effectively react to unexpected changes and
emergent events becomes the first challenge on the way to real-world applications. This problem
can be decomposed into two components: decentralized broadcasting to share crucial data among
the group and team decision making to manage them properly [2]. The latter problem we have
extensively addressed in our previous works [3, 4], this work is focused on the former one.

In this paper, we present a distributed broadcasting problem for mobile robot teams under
communication constraints. The problem is to find the shortest route for the starting aware
agent to consecutively share some emergent information with the rest unaware team members,
which are keeping their prescribed routes. As a first approximation, we propose here a more
abstract and simplified discrete model of the problem and suggest several strategies to treat it.
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The remainder of the paper is organized as follows. The mathematical statement of the
distributed broadcasting problem is given in the next section along with short discussion on its
classification aspects. A number of construction heuristics to solve the problem are proposed in
Section 3. Section 4 provides an in-detail description of the problem software implementation
techniques, including data sets generation schemes. The results of computational experiments
are explored in Section 5. The last section concludes the paper.

2. Problem statement
In general, search and survey robotic missions require a group of mobile agents to visit a set
of locations inside the operational area to perform some interaction or research activities. As
the operational field is usually large compared to both sensing and manipulating capabilities of
each robot, it is commonly-accepted to allocate tasks among the group to manage the job in a
distributed way.

As the robots spread across the area, the current group strategy may become inefficient or
even disadvantaging due to the dynamic mission conditions. For instance, an agent may find
the object of search in no time or become aware of some information that is crucial for mission
success [5]. In that event, this agent should decide if it is time/resource-worthy to warn the rest
of the group, or it is more reasonable to let other robots finish their prescribed routes. If the
shared information is crucial enough, other informed agents discontinue their work to join the
broadcasting task implementation.

In this situation, communication constraints become a significant limitation. It is a problem
for many real-world autonomous platforms, whether it is a micro-robotic swarm system with low
range communication equipment or full-scaled underwater vehicle group, which communication
abilities are limited due to the environmental properties. There is usually no all-seeing supervisor
for global broadcasting, whereas inner-vehicle communication channel could be established only
for close-enough agents [6].

Summarizing the above, the broadcasting problem is to find a route for the starting agent
and future informed agents to achieve the fastest data distribution among the group. As
unaware group members are non-stationary and time-dependent, even if their future positions
are prescribed and known, it still lays an additional layer of complexity to the routing problem.

Let the graph G = (V,E) of m vertices be a connected graph representing the operational
field. Each vertex vi, i = 1, ...,m of G is a particular location of interest, and each existent edge
eij = 1 corresponds to a path between adjacent locations. For the sake of simplicity, let the
graph G be unweighted, undirected, and static.

The mission is carried out by the group of n homogeneous agents (robots) a1, a2, ..., an. Each
agent i travels across the graph G on a discrete-time T = {T0, T1, T2, ...} by the prescribed route
Ri, which is known in advance. Route Ri = (ri0, ri1, ..., riq) is a path graph with cycles as agents
may stay on the same vertex rik = rik−1 for some time doing time-consuming activities. At any
point in time, any number of agents can be located within the same vertex v.

We denote the state of i-th agent at j-th time moment as a list of its current vertex and
status ai(Tj) = 〈vij , sij〉. The agent status sij ∈ {0, 1} displays if agent i is aware (s = 1) at the
time moment j. All agents are unaware at the beginning of the mission si0 = 0, i = 1, ..., n.

At some instant time moment (without loss of generality, let it be T1) random agent x
became aware of some crucial information sx1 = 1. Since becoming aware, any agent receives
two abilities:

(i) To drop its prescribed routes to become a subject of control;

(ii) To make other unaware and neighbouring (sharing the same vertex) agents aware

skj = max
i=1,...,n

{sij |vij = vkj}. (1)



The starting x-th agent has to decide if it is possible to make each other agent of the group
aware in h < q time steps (h is an evaluation of the time/resource-worthy period).

Thus, the final broadcasting problem is to find the solution group route in the matrix form
A = {ai(Tj)}, i = 1, ..., n, j = 1, ..., h such that:

• Each agent is unaware when the mission starts ai(T0) = 〈vi0, 0〉, i = 1, ..., n;

• Unaware agents travel by their prescribed routes until becoming aware {vij = rij |sij = 0};
• The random x-th agent became aware at T1, ax(T1) = 〈vx1, 1〉;
• Aware agents make other unaware and neighbouring agents aware (1);

• All agents should become aware not later than h,
∏n

i=1 sif = 1, f ≤ h.

• As there are could be various ways to build an acceptable matrix A, those with lesser f
would be preferable, minf (A).

There is also an alternate acceptance criterion to make all agents aware and gather them at
some specific vertex vR (rendezvous location) not later than h, vif = vR, i = 1, ..., n , f ≤ h.
This criterion, actually, makes the problem significantly harder and will be considered in our
future works.

Problem classification. As we did not find any direct analogues of the proposed problem in
the literature, we still discovered a number of agent-based problems that share some common
features with it. Such graph models with static or mobile agents affecting each other states
under specific rules are often used to model the information distribution in communication and
social networks [7, 8] and even infection disease transmission [9, 10]. The modern concept of
burning graphs is also built around similar ideas [11].

And the first-hand problem of the shortest (temporally in our case) group route construction
refers to a numerous vehicle routing problem variations. Furthermore, the standard travelling
salesman problem can be represented as a subproblem of the distributed broadcasting problem,
in which unaware agents standstill on the same vertices for the whole mission and do not join
the broadcasting task after becoming aware. It follows here-from that the proposed problem is
also NP-hard. With the absence of the actual delivering process, it can be classified as some
kind of time-dependent multiple travelling salesman problem (mTSP). It should be noted that
the term dynamic cannot be applied here as mission conditions are still deterministic [12].

Among other things, one may also note, that the aware agents’ behaviour is similar to one
in a playground chasing game of tag, more specifically, its team variations (so-called vampire or
werewolf tag).

3. Solving methods
In this section, we propose several strategies to build the group route A providing fast data
broadcasting. The matrix representation A = {ai(Tj)}, i = 1, ..., n, j = 1, ..., h of the solution is
apparently too big for efficient route generation straight in this form, as it contains a vast amount
of both non-key and excessive information. For this reason, at first, we have suggested using
numerical vector P = {x, p1, ..., pn−1}, pi ∈ {1, ..., n}, encoding the order of agent activation
(becoming aware and, therefore, controllable). But, as this data structure can be interpreted in
multiple ways, we have switched to a schedule form of representation.

Currently, we encode a solution as the list of agent actions in their arising sequence
P = {p1, ..., p2n−1}, pi ∈ {0, 1, ..., n}, pi 6= x. The requirement for the next action command
arises for an unaware agent when it becomes aware and for an aware agent when it activates an
unaware one (usually, both events happen simultaneously). The action command pi > 0 refers
to an index of the unaware agent to be activated next by the current one, while pi = 0 means
that the current agent has no one more to activate, and his broadcasting task is finished.



Two requirements should be met for the schedule P to be both feasible and acceptable:

(i) Each agent (except starting agent x) should be included in the schedule P once and only
once, {pi 6= pj | pi > 0

∨
i 6= j}, card{pi | pi > 0} = n− 1, pi 6= x.

(ii) The number of 0-values ahead of any z-th element of P may never exceed the number of
positive elements, prod{pi | pi = 0

∨
i ≤ z} ≤ prod{pi | pi > 0

∨
i ≤ z}, z = 1, ..., 2n− 1.

The second requirement ensures the permanent availability of aware agents during the
broadcasting task. The matrix solution A can be easily generated from the schedule form
P by replacing agent sub-routes after their activation moment with the shortest paths to the
unaware agents they are commanded to activate.

Using the representation form P , we have suggested five different construction heuristics to
build and further compare group routes for the distributed broadcasting problem.

Random order. First one is a construction heuristic that generates random vector-solution P
concerning two feasibility conditions mentioned above. We consider this approach, which is a
priori ineffective, not as a real solution technique but as one to compare with.

Simple greedy heuristic. The second method is also a trivial, but working and reasonable in
many cases, approach. In this heuristic, the action list P is built in such way, that agents are
always commanded to activate the temporally nearest (as quickest to reach) unaware agent if
any.

Experimental results have shown that the simple greedy approach has two observable
drawbacks. Firstly, it works poorly in the situation, when several single agents are travelling
diversely far away from the rest of the team. Secondly, it underperforms in areas with a
vast amount of dead-ends. To answer these weaknesses, we have proposed two different
modifications of the greedy heuristic, which we have called Near-and-far and Smart greedy
heuristic, respectively.

Near-and-far heuristic. This method has a similar greedy structure but is probabilistic. Each
time an action command should be generated for an aware agent, heuristic picks either the
nearest unaware agent with probability b or the farthest unaware agent with probability 1− b.
The probability b is changing with time according to the balance of aware and unaware agents
in the group. From the mission start, b parabolically decreases from 1 to 0.65 (experimentally
defined values) towards the time when the quarter of agents is aware. Then it returns to 1 by
the moment of 50/50 ratio and stays on its level until the end of the broadcasting task.

Smart greedy heuristic. Smart greedy heuristic utilizes an alternative conditional check against
its simple version. It picks the nearest agent not among all still unaware agents, but among
those of them, which he can reach quicker, than any other aware agent in the group. If there
are no such agents at all, the current agent receives action command ”0”.

Branching heuristic. All previously suggested approaches have the common feature as being
centralized: the starting agent generates the straight global solution A and shares it with other
agents (alongside with the main broadcasting data) to abide by it. Branching heuristic is our
attempt to build a decentralized broadcasting technique for the problem. The main idea here is
to assign each aware agent a personal subset of unaware agents as its activation task. Each time
an aware agent activates an unaware one, it divides his subset into two halves and assigns one
of them to the newly activated agent. The main problem here is to build an accurate clustering
rule as both spatial and temporal conditions should be considered. For this work, we use the
standard single-linkage clustering with the metric being average distance in time.



4. Software implementation
The proposed problem and the heuristics suggested above have been software-implemented as
the additional module for our simulation framework ”Multiobjective Mission Planner” to run a
series of simulation studies (figure 1).

Figure 1. The main window of the developed module within the simulation framework.

To start the problem solving, specification data can be either imported (from the main
framework or specific data file) or user-generated through the graphical interface. While
generating, we represent graph vertices as a set of two-dimensional points in the plane of W ×H
size (figure 2a). Then we use one of two different methods to generate edges based on this set.

First is a standard Delaunay triangulation, in which we remove 10% of the longest edges
both to create a more complex environment and to prevent fast travelling through the graph,
especially by the graph borders (figure 2b). The second method is an approach to simulate
complex non-regular areas and indoor environments. To do this, we choose the neighbourhood
size S = (αWH/n)1/2 and connect each pair of vertices with Euclidean distance less than S.
We use parameter α = 2 for big neighbourhoods and α = 1 for small neighbourhoods (figures
2c and 2d, respectively). Then we complete the graph construction by adding edges of minimal
possible total length sum to provide the graph connectivity.

Up to that moment, we keep the graph in the form of the adjacency matrix. This type
of representation is easy to implement, follow and modify during the graph construction
stage. As soon as the final graph state is confirmed, we convert it into the adjacency list
L[i][j], i = 1, ...,m, j = 0, ..., L[i][0] as it is much more convenient structure for pathfinding
procedures. We keep the total number of adjacent vertices for each vertex i as 0-th element
L[i][0] since it is a frequently used value.

As there are usually a large number of single runs on the same graph (different combinations
of prescribed routes, starting agents and solution methods), we suggest building an additional
distance matrix D of m ×m size to speed up further calculations significantly. To do this, we
run the standard Dijkstra algorithm on each vertex i of the graph to find a distance D[i][j] to
each other vertex j.

For initial group route construction, we propose using three route generating schemes. First
one is a ”random agent movements”, where each time-step agent either chooses to move on a
random adjacent vertex or to loiter (standstill on the same vertex). The probabilities for both



Figure 2. Three different graph generation schemes: a – initial set of vertices; b – reduced (red
edges are removed) triangulation; c – big neighbourhoods; d – small neighbourhoods.

loitering and returning to the previously visited vertex are reduced here to prevent an agent
from looping (Algorithm 1).

Input : Agents initial positions v[i], graph G adjacency list L[j][k]
Output: A group route R[][] of size n× h

1 for i← 1 to n do
2 R[i][0]← v[i];
3 R[i][1]← v[i];
4 for j ← 2 to h do
5 AgentPosition← R[i, j − 1];
6 EdgeIndex← random(1, ..., L[AgentPosition][0]);
7 if L[AgentPosition][EdgeIndex] = R[i, j − 2] and random(1, 2) = 1 then
8 Route[i][j]← Route[i][j − 1];
9 go to 4;

10 end
11 R[i][j]← L[AgentPosition][EdgeIndex];

12 end

13 end
Algorithm 1: Group route generation – random agent movements

For the second strategy, we generate single routes not as a sequence of edge movements, but
as a queue of checkpoints (random vertices of G) for an agent to visit. For each consecutive pair
(i, j) of checkpoints we build the shortest path of D[i][j] length to insert it to the final route
(Algorithm 2).



Input : Agents initial positions v[i], graph G distance matrix D[j][k]
Output: A group route R[][] of size n× h

1 for i← 1 to n do
2 R[i][1]← v[i];
3 AgentPosition ← R[i][1];
4 RouteLength ← 1;
5 while RouteLength < h do
6 Checkpoint← random(1, ...,m);
7 Path[]← FindShortestPath(AgentPosition,Checkpoint);
8 PathLength← D[AgentPosition][Checkpoint];
9 if RouteLength + PathLength > h then

10 PathLength = h− RouteLength;
11 Path[]← CutTheRoute(Path[],PathLength);

12 end
13 R[i][RouteLength]← CopyArray(Path[],PathLength);
14 AgentPosition← Checkpoint;
15 RouteLength← RouteLength + PathLength;

16 end

17 end
Algorithm 2: Group route generation – random checkpoints queue

In the third mixed approach, route for each agent is randomly chosen to be generated by
either the first or the second strategies described above. We also have tried to implement more
intelligent agent behaviour that simulates robot search activities by alternating area exploration
and exploitation strategies. But, as the overall collective behaviour, in this case, wasn’t so
different from the third mixed strategy, we did not use it in the computational experiments.

The difference between three proposed route generation methods is illustrated on the figure
3. These heat maps are constructed for the same initial data (graph G and agents set) and
represent the distribution of the agents’ positions while travelling by the corresponding routes
for the significant time. As can be seen, the mixed strategy delivers more even and realistic
agent distribution by combining the vertex-oriented approach of the random agent movements
(focus on the strongly connected components of G) with edge-oriented features of the checkpoint
heuristic (focus on the graph bottlenecks).

Figure 3. Heat maps for different approaches to group route generation: a – random agent
movements; b – random checkpoints queue; c – mixed strategy.



5. Computational experiments
For the computational experiments we have generated the set of problem instances of the
form ”XY-m(n)”. These instances are divided into nine categories: three types of graph
generation schemes X={T,B,S} for Delaunay Triangulation, Big and Small neighbourhoods,
respectively; three approaches to group route generation Y={R,C,M} (Random agent
movements, Checkpoints queue, Mixed strategy); and we have instances of n = {25, 50, 100}
agents on the graphs of m = {500, 2000, 5000, 10000} vertices for each combination of X-Y.

As solution values may strongly vary based on the initially aware agent, we use only one fixed
starting agent for each instance instead of the average value for combinations of different ones.
Nonetheless, as some methods are randomness-involved, we made 100 launches for each instance
and each approach to obtain both average solutions f and computational time values t.

Statistical results for a number of executed problem instances are presented in table 1.
Solution time values t here are measured in milliseconds (ms) and do not include construction
time to obtain distance matrix D for the corresponding graph G. A note on computation time:
all calculations are running on the single core of 2.667 GHz processor of an Intel Core 2 Duo
E6750 Conroe.

Table 1. Statistical results of computational experiments.

# Instance
Random Greedy Near-and-far Smart greedy Branching
t f t f t f t f t f

1 TR-500(25) 0.8 55 0.8 33 0.8 34 1.1 30 0.8 38
2 TC-500(25) 0.9 46 0.9 27 0.9 28 1.0 25 0.9 33
3 TM-500(25) 0.9 53 0.8 30 0.8 30 1.1 27 0.9 36
4 BR-500(25) 0.8 77 0.9 53 0.9 51 1.3 38 0.8 49
5 BC-500(25) 0.9 56 0.9 31 0.8 32 1.1 28 0.9 40
6 BM-500(25) 0.9 67 0.8 40 0.8 40 1.3 32 1.0 48
7 SR-500(25) 0.9 219 1.0 138 1.1 134 3.0 92 1.0 155
8 SC-500(25) 0.9 135 0.9 78 1.0 81 2.1 76 1.0 80
9 SM-500(25) 0.9 178 0.9 103 1.0 101 2.5 85 1.0 107
10 TR-5000(50) 5.1 222 5.6 106 5.7 97 17.0 91 5.2 124
11 TC-5000(50) 4.8 209 5.3 87 5.4 87 12.3 77 5.0 93
12 TM-5000(50) 5.0 217 5.4 95 5.6 93 14.3 84 5.3 137
13 BR-5000(50) 5.3 290 6.0 152 6.2 147 21.4 120 5.8 172
14 BC-5000(50) 4.9 231 5.6 107 5.7 115 14.1 95 5.7 142
15 BM-5000(50) 5.3 256 5.9 135 6.1 128 16.6 109 5.7 164
16 SR-5000(50) 5.7 1095 9.1 584 9.2 572 113.9 475 7.0 673
17 SC-5000(50) 5.2 779 7.8 377 7.9 394 53.3 359 6.6 414
18 SM-5000(50) 5.5 959 8.5 485 8.6 492 83.3 395 7.0 602
19 TR-10000(100) 16.4 472 19.9 189 26.5 184 231.1 152 18.6 229
20 TC-10000(100) 15.1 365 18.1 122 18.6 117 89.8 102 17.7 202
21 TM-10000(100) 15.7 433 18.4 139 20.3 140 151.2 129 17.9 206
22 BR-10000(100) 17.0 577 21.2 242 28.4 241 248.7 173 19.6 309
23 BC-10000(100) 16.7 409 19.1 142 20.5 164 101.0 118 19.1 228
24 BM-10000(100) 17.5 496 20.4 193 21.6 185 141.0 139 19.6 281
25 SR-10000(100) 26.0 2040 41.4 974 43.8 861 1506.0 676 25.3 970
26 SC-10000(100) 19.8 1430 38.9 636 39.2 661 837.5 600 32.5 727
27 SM-10000(100) 17.0 1297 27.4 586 28.9 494 533.5 365 22.5 754



Despite the apparent advantage of the smart greedy heuristic over the rest approaches, it
should be noted once more, that the solution values f presented in the table 1 are average for
the series of 100 launches. Superior results of the smart greedy heuristic are provided, in the
first place, by its inability to generate low-quality solutions. For instance, both Branching and,
especially, Near-and-far are able to outperform other methods on a single launch (as opposed to
the simple greedy heuristic, which is always equal or worse than its smart analogue). Still they
are also capable of delivering inferior solutions (figure 4). Nonetheless, we believe that more
intelligent use of these methods’ features may allow them to compete with smart greedy evenly.

Figure 4. Solution distribution comparison from the Monte Carlo simulation (5000 launches)
of the ”TM-10000(50)”-instance with different initial group routes and starting agents.

Another characteristic of each solution is its activation timeline. It is a function that follows
the dynamic of unaware agent number with time. Figure 5 displays general outlines of activation
timelines for the proposed heuristics. Weak spots of some approaches can be clearly seen here
(activation speed reduction for the latest agents in 5a and 5d) as the apparent room for further
improvements.

Figure 5. Group activation timeline for the different heuristics comparing to the random
method (figure on the background): a – greedy; b – near-and-far; c – smart greedy; d – branching.



6. Conclusion
This paper presents a new problem of distributed emergency broadcasting for autonomous mobile
robot teams under limited communication. The presented problem is to find the shortest route
for the starting aware agent to share some emergent information with the rest unaware members
of the group and is formulated as the original variation of the vehicle routing problem. As
opposed to the classical travelling salesman problem, clients (unaware robots) here are not
static as they travel through the mission area along the known route on a discrete-time. The
main feature of the problem is that unaware agents after being informed by any aware agent
leave their prescribed routes to join the broadcasting task.

Several simple ruled-based heuristics were designed and proposed to treat the problem. A
series of computational experiments and comparisons among the proposed constructive heuristics
showed that the addition of even simple problem-oriented rules allows standard greedy heuristic
to performs efficiently and ambitious, in terms of both solution quality and computational
efficiency. Nonetheless, it is still an interesting and open problem to find out possible ways
to further improve these solutions in an efficient manner.

Among the future developments we intend to undertake, there is the development of more
advanced meta-heuristic approaches and local search methods to deal with the problem. We
also plan to embed more realistic environment into the problem statement, moving from the
discrete formulation towards continuous time, complex weighted and directed graphs, and
heterogeneous (by speed and communication capabilities) agents. Another extension of this
work is to adjust the proposed constructive heuristics to the alternative problem statement with
the final rendezvous point.
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