
Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution

4.0 International (CC BY 4.0)

Automation of distributed data management in applied

microservices package for scientific computations

G A Oparin, V G Bogdanova and A A Pashinin

Matrosov Institute for System Dynamics and Control Theory of SB RAS, Lermontov

St. 134, Irkutsk, Russia, 664033

bvg@icc.ru

Abstract. We offer a specialized toolkit for automating both knowledge management when

creating an applied microservices package and data accumulating during its application for

scientific computations in a hybrid computing environment. The decentralized solving of the

declaratively formulated problem is carried out by an active agent group. This group is self-

organized by logical inference on the distributed knowledge base of a subject domain. The

developed toolkit automates the creating and updating of the local knowledge base of the

manager-agent of applied microservices package, as well as the local knowledge bases of

distributed computational agents. Local knowledge bases are formed using a description of the

interface of computational microservices managed by these agents. Microservice ensembles,

corresponding to the active group, are stored in the knowledge base of the manager-agent. The

developed toolkit uses this information for testing microservice in the case of its update. In

hybrid computing, this toolkit provides synchronizing, archiving, and saving of calculated data.

Hybrid infrastructure combines the reliability and availability of using on-premises computers

with scaling to the cloud when peak loads occur. The conducted experiments confirmed the

effectiveness of the presented approach for solving practically significant scientific problems.

1. Introduction

The Applied Microservice Packages (AMP) [1] provides an effective way for distributed scientific

computations. Intelligent AMPs are based on a subject domain (SD) model, which is understood as a

collection of information about SD objects and the relationships between them. The user is allowed to

formulate the problem of finding the desired quantities by given initial values (non-procedural

problem statement, NPS) without previously studying the relationship of applied modules using AMP

agents. These agents deployed in a specific computational field (CF) [1, 2] launch the microservices

implementing applied modules. AMP agents manage by solving the user's problem. Management is

decentralized for NPS and performed by an active group of agents based on pair interactions. This

group self-organizes by the logical inference using a knowledge base (KB) distributed over CF nodes.

Fragments of relations are stored in local KB of agents, reflecting the relationship of applied modules

with input and output parameters. This knowledge identifies neighboring agents involved in pair

interactions. The event management by input data readiness coordinates the behavior of agents both in

the formation of a group and performing joint actions for solving the user problem.

Agents are equivalent in the sense that they have the same behavioral model. Thus, agents deployed on

nodes of a CF are a computational system consisting of a set of equivalent nodes that jointly perform a

common problem and are connected with neighbors through links to a logical network. According to

the definition given in [3], in the most general sense, this network of computational agents is a peer-to-

peer overlay network due to its properties. Combining computational agents into a network, the nodes

of which interact in the P2P computing style [4], provides the ability to create open multi-agent

systems (MAS). The set of functioning agents is dynamical in such MAS [4]. Thus integration a

reliable and scalable P2P system with multi-agent technology provides advantages of both paradigms.

The use of agent architecture jointly with microservice one provides a practical opportunity to

implement the mechanisms of semantic interaction of agents in a P2P network. The HPCATAMP

technology, developed by authors, for creating and using AMP, in which the rights to execute

microservices are delegated to computer network agents, is described in [1]. The new instrumental

basis of this technology is the cloud version HPCSOMAS-MSC of software platform HPCSOMAS-

MS [1]. In this study, we offer AMPDM (AMP Data Management) tools implemented in this version

for automation both knowledge management during the creating of AMP and saving calculated data

during its application. The AMPDM is oriented to automate the AMP usage for solving problems in a

hybrid computing environment. Hybrid cloud infrastructure extends the local user infrastructure with

cloud resources in case of peak loads [5]. The part of the cloud infrastructure hosted at the client

resources on which cloud services are installed is named the on-premises cloud infrastructure.

Developed tools are used in the AMP deployed in a hybrid infrastructure. AMPDM automates the

creation and updating of the local KB of the AMP manager-agent (AMPMA), as well as the local KB

of the distributed computational agent (DCA). Local KBs of DCAs are formed based on a description

of the interface of computational microservices managed by these agents. Information about active

DCA groups, according to NPS, are stored in KB of the AMPMA for using in the process of testing

updated microservices. In the process of hybrid computing, AMPDM provides synchronization,

archiving, and storage of calculated data.

A microservice-based approach, a hybrid environment, and synchronization of data installed on both

cloud resources and on-premises computers make our technology closer to the dew computing (DC)

technology. DC oriented to the full use of the potential of on-premises resources and scalability of the

cloud [7]. DC is based on the concept of microservice in a vertical hierarchy of distributed computing

[8]. The DC categories underlined in [9] by the resource used within this paradigm, are supplemented

by a new one – AMP in Dew. In this case, on-premises computer resources such as agents,

microservices, and a user-selected data set (in a synchronized folder) have a cloud copy. The identity

of these resources is maintained using AMPDM. The proposed approach is demonstrated by the

example of the AMP developed with its use for solving problems of the qualitative study of binary

dynamic systems (BDS) based on the Boolean constraint method (BCM [10]). The relevance of

research is due to the widespread use of BDS as models of gene regulatory networks in bioinformatics.

The conducted experiments confirmed the effectiveness of the presented approach to solving

practically significant scientific problems.

2. Related work

The creation and application of peer-to-peer computing networks [11] and also the study of methods

of its construction are actively developing in recent years [12]. Computer services are moving from

traditional Internet services to a peer-to-peer cloud (P2P Cloud), which is reflected in a wide range of

scientific studies. The integration of cloud computing and P2P systems is used to overcome the

problems that arise in these paradigms. The advantages of P2P networks, discussed in detail in [3, 11,

12], are scalability, communication costs minimization, self-organization, and adaptability.

Distribution and decentralization of such networks provide fault tolerance and load self-balancing

[13]. In [12], the study of the P2P networks application is given, in particular, their use for parallel

computing and the creation of fault-tolerant systems was noted. One of the problems in cloud

computing is the use of centralized approaches for servicing discovery, monitoring, and load

balancing. Therefore, many decentralized mechanisms for storing data in the cloud are based on P2P

protocols [14]. Currently, most P2P systems operate with a simple content exchange, which is

significantly different from the functionality of the services exchange. A review of several works

devoted to the development of research related to the integration of P2P networks and cloud

computing (for example, [15-17]) to support such functionality is given in [14]. An efficient and

scalable P2P Cloud approach to providing cloud services using a structured P2P based on a distributed

hash table was proposed in [15]. This approach is used for storage, discovery, and sharing of services.

In [16], a prototype of a P2P cloud system is proposed, namely, a fully distributed IaaS Cloud

infrastructure. The authors note that, unlike the Volunteer Computing system, P2P Cloud does not

have central coordination or central task repository. In [17], an approach is proposed to provide a

highly accessible storage service in a mixed P2P Cloud. Mentioned above approaches [15-17] are

oriented for the provision of storage services based on the P2P network, as noted in [14]. Although

approaches, similar [15-17], are successfully used in the past two decades in integration with the

cloud, studies related to its use as the basis for the provision of software as a service (SaaS) are still

rare [14]. The following idea was proposed in [14], P2P Cloud approach (central server - primary

administrator and set of nodes – super peers) provides remote executing of service in SaaS form

hosted on peers.

Unlike the above works, our idea is to integrate the advantages of a P2P network into multi-agent

technology to organize decentralized management of service-oriented scientific computing in AMP.

The rights to execute computational microservices are delegated to agents. The problem solution is

based on the semantic interaction of P2P network agents deployed on the nodes of the CF. Unlike

[14], the hybrid cloud infrastructure is formed by the HPCSOMAS-MSC software platform based on a

template similar to the "on-premises pattern" [6]. This pattern expands the scope of management tools

by installing on the cloud resources special management agent of HPCSOMAS-MSC, CRA (Cloud

Resource Agent). This approach requires the preliminary installation of additional software and DCA

agents implemented as services under the capabilities of the resource and the class of problems. The

installed agent controls computations only on its resources. The service-oriented computing paradigm

contributes to the advancement of distributed systems and their applications significantly. Therefore,

both tools for creating, deploying, and updating services are needed, as well as tools for automating

data management during the development and application of AMP.

3. Data types in AMP

Scientific computations processes have unique requirements that are different from business work

processes [18], for example, requirements arising from multivariate computations. Organizational

requirements common to various SD include a user interface, reuse of computing components, end-

user transparent runtime environment, support for local distributed computing, and pipeline-parallel

computing, scalability, and fault tolerance. High-level management of both metadata and calculated

data obtained during the computational experiments are required to fulfill all these requirements. The

creation of AMP for scientific computing and the organization of the computing process is based on a

multi-agent approach.

Figure 1 shows a diagram of the data exchange during the computation process in AMP. Compared to

earlier studies [19], the management of computations is simplified. The top-level of control is

comprised of AMPMA. These agents are the advanced version of the previously developed Problem

Statement Agent (PSA, [20]). Along with providing an interface for NPS, these agents have

significantly extended functionality, in particular, the data management services discussed in the next

section. DCAs are at a lower level of management. The DCA is the modification of Distributed Solver

Agents (DSA [20]) by including the functionality of running Computational Microservice (CM),

which was previously the prerogative of individual computing agents.

The computational process begins with the NPS in the user interface provided by the AMPMA agent.

A Dew user within the DC paradigm performs NPS on a Dew-AMPMA agent installed on an on-

premises resource. NPS input and output parameter names are selected from the AMPMA agent

parameter vocabulary. These vocabularies may vary depending on the specific AMPMA. The steps for

solving the problem are described in detail in [20]. At the first stage, the conclusion about the problem

solving possibility is made based on logical inference on the DCA agent KB distributed across the

nodes of the CF. This KB stores, in particular, fragments of interconnections of parameters and

computational modules. The NPS and the corresponding active group of agents are stored in the

AMPMA local KB. This data is duplicated on other AMPMA to provide fault tolerance computing. At

the stage of joint actions, only agents of the active group operate, to which AMPMA transmits input

data. The active group then performs a decentralized problem solving, regardless of the intervention of

the AMPMA agent or user. This queue can arise both if the DCA is a member of different active

groups or take part in multivariate computations. If the reserves of the local infrastructure and the

private cloud are exhausted, AMPMA calls the CRA in the case of the option of using an additional

cloud resource was set in the user profile. DCA agents, analyzing task queue, decide on the need for

the request to AMPMA and reaction in cases of both allocating the resources and request failure. Data

management in the computation process is carried out by the AMPDM system.

Figure 1. The scheme of the data exchange during computations.

4. AMPDM system design

AMPDM is intended for AMP developers, users, and administrators. Automation of data management

using AMPDM is carried out both at the stage of development of AMP and the stage of its application,

also in computational microservices updating. The composition of AMPDM is shown in figure 2.

Automation of Data management is provided using the services of the AMPMA and several wizards

of the MSCDT (Microservices Creation Deployment Testing, [6]) system:

 Authorization manager manages user authorization and the provision of access to agents,

computing microservices, and services for viewing computation results.

 File manager manages the download, editing, and backup copying of user files by AMPMA

agents. Data exchange is performed using the HTTP protocol.

 Synchronization manager manages the synchronization of local KB, calculated user data of

DSA agents, and NPS formulated on AMPMA.

 Creation wizard automates the creation of new services based on ready-made standard

templates and filling its local KB.

 Configuration wizard automates the setup of agent parameters, the organization of the

relationship between computing agents and microservice functionality.

 Test wizard automates the testing of a deployed package and the interaction of agents and

microservices. The user can send test tasks to microservices or their ensembles and check the

result.

 Update wizard automates updating agents and microservices from local and external

repositories.

Figure 2. The composition of the AMPDM.

Managers are accessed through the AMPMA web interface.

4.1. Backup copying and synchronization

Backup copying of the results is needed in the following cases:

 The results take up much space, and their long-time storage on a computing resource is

inappropriate.

 The results are significant, and there is a danger of their loss when stored on a single

computing resource.

 Computations are carried out on the temporarily allocated resource, which must be disabled

after experiments.

 Regular work is required with these results on the user resource.

The user can install the Dew-AMPMA on his computer and configure it to synchronize the results of

computations and input files from the available AMPMA agents, by request, schedule, or the fact of

data change. A user who has direct access to two or more AMPMA agents at once can configure them

to back up or synchronize the computation results from one to the other, and mutually between them.

The administrator can also configure AMPMAs so that user files are moved to agents available to

these users, where data storage will be more efficient. Synchronization in the computation process is

carried out for the following objects:

 Files uploaded by the user,

 Files created as a result of computations,

 Database, in which information is stored about completed tasks, including the NPS, its launch

time and data, active group, and other information needed later.

Figure 3 shows the user profile, synchronization, and backup settings performing by the file manager

of the external (not located on the user's local computer) AMPMA. The interface is designed to set the

synchronization mode, by command or by time, indicating the frequency of synchronization, for

downloading data, changing the password, mail, and for subscribing to notifications.

Figure 3. APMA interface for user settings. Figure 4. Dew-APMA interface.

DC paradigm based data synchronization is used when restoring communication after the Internet

disconnecting. This synchronization is performed between the user's Dew-AMPMA and the specified

external AMPMA. The synchronized data search is based on the file modification time stored in the

update table of APMA.

The Dew-AMPMA must be pre-connected to external AMPMA (figure 4). This connection provides

the ability to exchange data, requests for solving the problem through Dew-AMPMA, synchronize

files between these agents, and back up the computation results.

4.2. Updating and testing of microservices

To update computational microservices, the MSCDT system update wizard is used. The update is

performed in case of changing the application module, based on which the microservice is

implemented. As a result, the microservice interface may remain the same or change. In the first case,

the update wizard calls the AMPMA agents on which the microservice is registered. Each AMPMA

agent checks whether the microservice is currently activated as part of active groups of agents that

perform computations on the user's current request. If the microservice is involved in the computation

process, AMPMA blocks updates until it is completed. Then AMPMA puts the microservice into an

unavailable state, and the update wizard replaces it in the AMPMA repository. In the second case,

modification of the distributed AMP KB is additionally required. User request for NPS is blocked until

the update and testing are done.

Autonomous testing of the functionality of the updated microservice and then end-to-end testing [22]

of the AMP is carried out using the testing wizard. The end-to-end testing is aimed at verifying the

correctness of solving problems involving this microservice by the test NPS and data stored in the

system, which provided by the developer. During end-to-end testing with the presence of test NPS in

the system, the test wizard automates the launch of these NPS and verifies the results of this launch.

Test wizard automates the processing of the following situations:

 The test results are correct, but the composition of the active agent group has changed. This

composition for the tested NPS is updated after the user confirms this action.

 Test results are incorrect. The user receives a list of NPS given these results.

 The results are not obtained, because, during the assembly of the active group, the agent

managing the updated microservice did not wait for the input data. This situation arises when

the interface of the updated microservice changes in such a way that it makes it necessary to

include some of its input parameters in the NPS. The user receives a list of such incomplete

NPS.

Conducting end-to-end testing in semi-automatic mode (in the absence of test NPS, for example, when

creating AMP), the user performs the request for the NPS in the APMA interface. Upon receiving the

correct results, AMPMA saves the test NPS and data in its KB.

5. The example of using the AMP

The developed tools are tested on the example of creating and using AMP for a qualitative study of

BDS based on the Boolean constraint method [10]. All computing microservices implemented based

on this approach can be divided into the following groups:

 Microservices for creating Boolean models,

 Microservices for checking the feasibility of Boolean constraints (SAT and 2QBF solvers),

 Microservices for pre- and post-processor processing.

Microservices for creating Boolean models implement the following capabilities:

 Construction of the function of a one-step transition 1 according to the description of the

BDS dynamics equations,

 Construction of the k-step transition function k based on the function 1 ,

 Construction of the model for verifying the presence of a specific dynamic property in the

BDS based on the function 1 or function k , and the property specification.

The correct functioning of these microservices is verified by the satisfiability checking of the obtained

Boolean models of the dynamical properties for a specific previously studied BDS by SAT or 2QBF

solvers. If obtained on the model basis conclusions about the presence of verified dynamic properties

coincide with the results obtained earlier for the same BDS, then the model is constructed correctly. In

the same way, models for synthesizing the control laws of dynamic objects are tested. As a test for the

AMPDM system, BDS of small dimension is chosen to reduce the time for subsequent testing when

updating microservices.

A set of BDS for automated testing in AMPDM was formed in the process of developing computing

services for building Boolean models for a qualitative study of BDS and the laws of their

management. For example, classical examples of gene regulatory networks [22] were used for

searching the equilibrium states [23]. An example from [24] was used for studying the properties of

reachability type [10]. The results of constructing attractor basins were compared with [25], the model

for searching for cycles of the given lengths were tested using examples from [26, 27]. The BDS from

[28] was used for testing the synthesizing of the stabilization output feedback [29]. Stability properties

when analyzing the state space of the shift register were considered in [19] using the example from

[30].

Let us consider the problem of constructing control sequences for BDS with the following dynamics:

),(11 ttt uxFx , (1)

where nBx is the state vector, }10{ ,B , mBu is the input control vector, n and m are

correspondently dimensions of state and control vectors, }21{ ,...,k,Tt is discrete time (tact

number), F (x, u) is a vector function of logic algebra, called the transition function

(nmn BBBF :). For each state nBx 0 and finite sequence),...,,()(110 kuuutu of states of

the control vector u (TtBu mt ,), we define the trajectory))(,,(0 tuxtx of the system (1) as a finite

sequence of states
kxxx ,...,, 10

 from the set nB . The problem statement is as follows. Let two states be

given
nBcc *0 , , where 0c is the initial state, and *c is the final (target) state. It is necessary to

synthesize such a control u(t) (if it exists) that transfers system (1) from the initial state 0c to the final

state *c in k time steps.

In [20], the authors showed that the necessary control),...,,()(110 kuuutu (if it exists) is a solution

of the Boolean equation

0),...,,,,...,(Φ
*

00

11010

xx

cx

kk
k

k

|uuux,xx . (2)

Let us represent the conditions 00 cx and *cxk in the form of Boolean equations. Then (2) takes

the form

0),...,,,,...,(Φ)()(11010**
1

0000
1

kk

ki
k
ii

k
i

n
iiiii

n
i uuux,xxcxcxcxcx ,

where the subscript i denotes the component number of the vectors
*00 ,,, cxcx k

.

This problem is currently one of the most important [31] for studying the dynamics of the behavior of

gene regulatory networks represented by a model discrete in time and state (1). From a theoretical

point of view, this model is essentially a nonlinear model, and existing methods of control theory do

not apply to it [20]. From a practical point of view, the resulting control may be useful for creating

medications [32].

Let us find control sequences of length k=3 for BDS, the dynamics of which is represented by the

following equations [32]:

.,,,,, 1
5

1
36

1
35

1
34

1
5

1
23

1
2

1
12

1
11

 ttttttttttttttt xxxuxxxxxxuxxux (3)

The Boolean model is built for)101100(0 c and)011001(* c in the DIMACS format [33]. When

constructing the function 1 (}1,0{Tt), the encoding of the variables is as follows (table 1):

Table 1. Encoding of Boolean variables.

Variable 0
1x 0

2x 0
3x 0

4x 0
5x 0

6x 0
1u 0

2u 0
3u 1

1x 1
2x 1

3x 1
4x 1

5x 1
6x

DIMACS

format
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

The function 1 in the DIMACS format is represented in figure 5, where “-” is a logical negation, and

“0” separates the disjuncts.

Figure 5. The function 1 for (3) in the DIMACS format.

When constructing a function k based on 1 for the next moment in time (with increasing t to k), the

variable number during encoding increases by n+m. For k=3, substituting 00 cx and *cxk into

equation (2), we obtain for (3) the Boolean model for a search of the control sequence of length k=3

(figure 6).

Figure 6. The Boolean model for searching the control sequence of the length k=3.

After checking the satisfiability of this Boolean model using a computing microservice based on the

AllSAT solver, we obtain three sets of solutions. Post-processing, which consists of choosing values

from these solutions 2
3

2
2

2
1

1
3

1
2

1
1

0
3

0
2

0
1 ,, uuuuuuuuu , gives the following control sequences of length k=3:

{101, 110, 011}, {111, 110, 011}, {100, 110, 011}.

For the end-user, to construct the NPS for searching the control sequence (figure 7), it is necessary to

set the input parameters: dimensions of the state and control vectors, the BDS dynamics description

(3), length k, the initial state 0c and final state *c (respectively, parameters n, m, F, k, CI, CG in

AMP). The control sequence or a set of control sequences (CSLk or ACSLk parameters in AMP,

respectively) should be specified as the output parameter. In the first case, a computational

microservice based on the SAT solver is called up to verify the model satisfiability; in the second case,

the AllSAT solver is used for searching all solutions. The NPS based on proven models is added by

the developer of a computing microservice to the AMPMA KB. When changing the microservices for

constructing the function 1 and k or constructing a Boolean model of the dynamic property, testing

is carried out for all specified NPS using the testing wizard. Microservices for constructing functions

1 and k are included in most NPS to solve the above problems. Therefore, testing automation

significantly, by orders of magnitude, improves the microservice developer productivity in comparison

with manually restarting NPS and verifying its results. After automated testing, a report is issued in

which, for each running NPS, data are provided both for successful completion or failure in the

execution process.

Figure 7. The NPS in the AMPMA interface for searching the control sequence of the length k.

6. Conclusion

The specialized toolkit is developed for automating knowledge management when creating and using

a package of applied microservices and processing calculated data accumulating in the process of

solving problems in a hybrid computational environment. The toolkit automates the creation and

updating of the local knowledge base of both the agent-manager of the package of applied

microservices and distributed computational agents. This toolkit provides various modes of data

synchronizing between local and cloud resources, the updating and testing of computational

microservices. The carried out experiments confirmed the effectiveness of the presented approach for

solving practically significant scientific problems. The automating data management using this toolkit

significantly improves the productivity of both the developer when creating and updating AMP, and

the end-user of AMP in solving problems of qualitative research of BDS.

Acknowledgments

This work was supported by the Russian Foundation of Basic Research, project no. 18-07-00596. The

authors would like to thank the Irkutsk Supercomputer Center of SB RAS for providing access to

cluster computational resources.

References

[1] Oparin G A, Bogdanova V G, Pashinin A A and Gorsky S A 2019 Microservice-oriented

approach to automation of distributed scientific computations Proc. of 42st Int. Convention

on Information and Communication Technology, Electronics and Microelectronics, MIPRO

2019, Opatija, Croatia, May 2019 pp 253-258

[2] Viroli M, Damiani F and Beal J 2013 A calculus of computational fields Advances in Service-

Oriented and Cloud Computing (Comm. in Comp. and Info. Sci. vol 393) ed C Canal and M

Villari (Berlin, Heidelberg: Springer) chapter 10 pp 114-128

[3] Aberer K 2011 Peer-to-Peer Data Management Synthesis Lectures on Data Management 3(2) 1

[4] Gorodetskii V I, Karsaev O V, Samoilov V V and Serebryakov S V 2008 Development tools for

open agent networks J. Comput. Syst. Sci. Int. 47 429-446

[5] Navale V, Bourne P E 2018 Cloud computing applications for biomedical science: A

perspective PLOS Comp Biol 14(6) e1006144

[6] CSCC: Practical Guide to Cloud Computing. [Online]. Available:

https://www.omg.org/cloud/deliverables/CSCC-Practical-Guide-to-Hybrid-Cloud-

Computing.pdf

[7] Skala K, Davidovic D, Afgan E, Sovic I and Sojat Z 2015 Scalable distributed computing

hierarchy: cloud, fog and dew computing Open Journal of Cloud Computing 2(1) 16-23

[8] Ray P P 2018 An introduction to dew computing: definition, concept and implications IEEE

Access 6 723-737

[9] Wang Y 2016 Definition and categorization of dew computing OJCC 3(1) 1-7

[10] Oparin G, Bogdanova V and Pashinin A 2019 Qualitative analysis of autonomous synchronous

binary dynamic systems MESA 10(3) 407-419

[11] Buford J F and Yu H 2010 Peer-to-Peer Networking and Applications: Synopsis and Research

Directions (Handbook of Peer-to-Peer Networking vol 34) ed X Shen and Yu H Buford et al.

(Berlin: Springer Science and Business Media) pp 3-45

[12] Kryukov A P and Demichev A P 2018 Decentralized data storages: Technologies of

construction Program. Comput. Software 44(5) 303-315

[13] Daswani N, Garcia -Molina H and Yang B 2003 Open problems in data-sharing peer-to-peer

systems Proc. of the 9th International Conference on Database Theory (ICDT’03) pp 1-15

[14] Achache A, Baaziz A and Sari T 2020 A hybrid P2P network-based remote treatment SaaS

cloud computing IJITEE 9(2S3) 575-583

[15] Zhygmanovskyi A and Yoshida N 2014 Cloud service provisioning based on Peer-to-Peer

network for flexible service sharing and discovery Journal of Computer and

Communications 2 17-31

[16] Babaoglu O, Marzolla M and Tamburini M 2012 Design and implementation of a P2P cloud

https://www.omg.org/cloud/deliverables/CSCC-Practical-Guide-to-Hybrid-Cloud-Computing.pdf
https://www.omg.org/cloud/deliverables/CSCC-Practical-Guide-to-Hybrid-Cloud-Computing.pdf

system Proc. of the 27th Annual ACM Symposium on Applied Computing pp 412–417

[17] Kavalionak H and Montresor A 2012 P2P and Cloud: A marriage of convenience for replica

management Proc. of the 6th International Federation for Information Processing (IFIP)

(Self-Organizing Systems. IWSOS 2012. LNCS vol 7166) ed F A Kuipers and P E Heegaard

(Berlin, Heidelberg : Springer) pp 60–71

[18] Klasky S, Beck M, Bhat V, Feibush E, Ludäscher B, Parashar M, Shoshani A, Silver D and

Vouk M 2005 Data management on the fusion computational pipeline J. Phys.: Conf. Ser.

vol 16 pp 510-520

[19] Bychkov I, Oparin G, Bogdanova V and Pashinin A 2019 Intellectual technology for

computation control in the package of applied microservices Proc. of the 1st Int. Workshop

on Information, Computation, and Control Systems for Distributed Environments, Irkutsk,

Russia, July pp 15-28

[20] Oparin G A, Bogdanova V G, Pashinin A A and Gorsky S A 2018 Distributed solvers of applied

problems based on microservices and agent networks Proc. of the 41st Int. Convention on

Information and Communication Technology, Electronics and Microelectronics (MIPRO) pp

1415-1420

[21] Newman S 2015 Building Microservices (O’Reilly)

[22] Dubrova E and Teslenko M 2011 A SAT-based algorithm for finding attractors in synchronous

Boolean networks Trans. Comput. Biol. Bioinformatics (IEEE/ACM) 8(5) 1393-1399

[23] Oparin G, Bogdanova V and Pashinin A 2019 Automation of microservices creation for

qualitative analysis of binary dynamic systems Proc. of the 1st Int. Workshop on

Information, Computation, and Control Systems for Distributed Environments, Irkutsk,

Russia, July pp 88-98

[24] Vassilyev S N 2002 Attainability and connectedness in an automata network with a general

state switching rule Differ. Equ. 38(11) 1628

[25] Dubrova E 2008 Self-organization for fault-tolerance Self-Organizing Systems. IWSOS 2008.

LNCS vol 5343) ed K A Hummel and J P G Sterbenz (Berlin, Heidelberg: Springer) pp145-

156.

[26] Dubrova E and Teslenko M 2018 A SAT-based algorithm for finding short cycles in shift

register based stream ciphers Proc. of the IEEE International Symposium on Hardware

Oriented Security and Trust, HOST 2018 pp 65-72

[27] Oles V, Panchenko A and Smertenko A 2017 Modeling hormonal control of cambium

proliferation PLoS ONE 12(2) e0171927

[28] Li H and Wang Y 2013 Output feedback stabilization control design for Boolean control

networks Automatica 49(12) 3641

[29] Oparin G, Bogdanova V, Gorsky S and Pashinin A 2019 The synthesis of stabilizing feedback

for binary dynamic systems: a logical approach MESA 10(3) 477

[30] Massey J L and Li R W 1964 Application of Lyapunov’s direct method to error-propagation

effect convolutional code IEEE Trans. IT 10(3) 248

[31] Akutsu T, Hayashida M and Tamura T 2008 Algorithms for inference, analysis and control of

Boolean networks Proc. of the Int. Conf. on Algebraic Biology pp 1-15

[32] Moradi M, Goliaei S, Foroughmand-Araabi M-H 2019 A Boolean network control algorithm

guided by forward dynamic programming PLoS ONE 14(5) e0215449

[33] Satisfiability suggested format. [Online]. Available:

http://beyondnp.org/static/media/uploads/docs/satformat.pdf

http://beyondnp.org/static/media/uploads/docs/satformat.pdf

