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Abstract
Reliable information about the uncertainty of pre-
dictions from deep neural networks could greatly
facilitate their utilization in safety-critical applica-
tions. Current approaches for uncertainty quantifi-
cation usually focus on in-distribution data, where
a high uncertainty should be assigned to incor-
rect predictions. In contrast, we focus on out-of-
distribution data where a network cannot make cor-
rect predictions and therefore should always report
high uncertainty. In this paper, we compare several
state-of-the-art uncertainty quantification methods
for deep neural networks regarding their ability to
detect novel inputs. We evaluate them on image
classification tasks with regard to metrics reflecting
requirements important for safety-critical applica-
tions. Our results show that a portion of out-of-
distribution inputs can be detected with reasonable
loss in overall accuracy. However, current uncer-
tainty quantification approaches alone are not suf-
ficient for an overall reliable out-of-distribution de-
tection.

1 Introduction
Many state-of-the-art methods for solving perceptual tasks
are based on Deep Neural Networks (DNNs). However, the
lack of interpretability of these networks is still a problem
when DNNs are employed in safety-critical applications, e.g.,
for autonomous driving or in medical diagnosis. In these do-
mains, mistakes are not just a minor annoyance but can have
severe consequences. Therefore, thorough safety analysis and
argumentation are an integral part of the development of such
systems. Unfortunately, the black-box nature of DNNs and
the fact that already slight changes in the input can have dras-
tic effects on the output make this task almost impossible for
complex DNN-based computer vision pipelines.

One approach to address this problem is quantifying the
predictive uncertainty of a DNN for each given input. Re-
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liable uncertainty estimates can be utilized by a safety-
envelope [Weiss et al., 2018] that encapsulates the high-
performance DNN. Whenever the uncertainty of a prediction
is high, the result of the DNN is discarded and the predic-
tion of a verified, lower-performance safety path is used in-
stead. In this context, the performance of different Uncer-
tainty Quantification (UQ) approaches for DNNs have al-
ready been investigated on In-Distribution (ID) data, i.e., data
that is conceptually similar to the data the network has been
trained on [Henne et al., 2020]. However, the viability of UQ
to detect Out-of-Distribution (OOD) inputs, i.e., data that dif-
fers strongly from the training data, is still an open question.
The detection of such inputs is important, as DNNs are not
able to provide a correct prediction for them. For instance,
a network trained to distinguish between cats and dogs will
always output one or the other, and very often with high con-
fidence, even when challenged with an OOD sample, e.g.,
with the image of a car. As it is not feasible to construct a
dataset that guarantees the coverage of all relevant concepts
in sufficient quantity for open world scenarios, approaches to
detect OOD inputs are important to ensure the safety of the
overall system and to detect violations of its operational de-
sign domain.

In this paper, we investigate several state-of-the-art meth-
ods for UQ in combination with popular DNN architectures
for image classification. We use three datasets from different
application domains to train the models and apply them to test
sets containing in- and out-of-distribution samples. We focus
on the trade-off between remaining accuracy and remaining
error under the assumption that inputs with uncertain predic-
tions are handled by a fallback mechanism and therefore ac-
count to neither of them. Since the acceptable remaining error
or minimal performance may vary from application to appli-
cation we highlight the relationship between the two instead
of assuming arbitrary limits.

2 Related Work
Machine Learning in Safety-Critical Domains Arguing
the safety of Machine Learning (ML) algorithms for complex
tasks still remains an open research question. Insufficien-
cies of DNNs on perception tasks include, e.g., susceptibility
towards distributional shifts and lack of interpretability, and
general mitigation strategies for e.g., the incorporation of un-
certainty and proper specification of the data acquisition pro-



cess, as discussed in [Willers et al., 2020]. One way to argue
the safety is by formulating confidence arguments to gather
evidence for the performance of an ML system [Burton et
al., 2019]. To aid the formulation of such arguments, the au-
thors provide an overview of the most common failure cases
and propose assurance claim points to further break down the
task. Another direction in the domain of autonomous ve-
hicles to assure the safety is the creation of a specification
based on formal rules and physical constraints, as it is done
within RSS [Shalev-Shwartz et al., 2018]. As this approach
implicitly requires perfect perception, which in a real-world
scenario is unattainable, PURSS [Salay et al., 2020] has been
proposed as an extension to allow the integration of percep-
tual uncertainty into the otherwise rigid specifications.

Interpretability The lack of interpretability of DNNs is a
hindrance for using them in safety-critical applications, as
it makes thorough safety analyses almost impossible. One
approach to address this problem is the visualization of the
learned features and their interplay with each other [Olah et
al., 2020]. While this only enables qualitative analyses, the
authors suggest that it can aid in gaining a better understand-
ing of DNNs and facilitate other work in this domain. A
different direction is the formation of human-understandable
features in DNNs. For instance, by specifying desired con-
cepts a network can be incentivized to learn corresponding
features which in turn can be used for quantitative analy-
ses [Kim et al., 2018].

Verification of DNNS The ability to verify DNNs would
facilitate any safety argumentation greatly. Approaches con-
cerning the verification include linear approximations of the
learned function in order to subsequently solve them using
existing verification tools [Katz et al., 2017]. The problems
of scalability and the definition of proper specifications, how-
ever, prevent their application to complex perception tasks.
Nevertheless, it is an active field of research and promising
approaches exist, e.g., for the verification of direct percep-
tion utilizing an input property characterizer and an approach
to verification based on assumed guarantees [Cheng et al.,
2019].

Out-of-Distribution Detection In real-world machine
learning applications, the importance of detecting OOD sam-
ples in the test data, which basically indicates distributional
shift from training data, is paramount. It has been recognized
as an important problem for AI safety [Amodei et al., 2016].
Neural Network classifiers tend to incorrectly classify OOD
samples with high confidence. The high-confidence predic-
tions are often the result from the softmax functions, since
these probabilities are computed with the fast-growing expo-
nential function, where minor input addition can lead to sub-
stantial increase in output. In this direction, [Hendrycks and
Gimpel, 2018] proposed a baseline method to detect OOD
samples based on an observation that a well-trained neural
network tends to assign higher softmax scores to ID samples
than OOD samples. This approach was further extended in
ODIN [Liang et al., 2018] by using temperature scaling in
the softmax function [Guo et al., 2017], and adding small
controlled perturbations to inputs such that the softmax score
gap between ID and OOD samples is further enlarged. Here,

while the network is trained with the default softmax, dur-
ing test phase the tempered softmax forces the network to be
sure with its decisions. In [DeVries and Taylor, 2018], the
authors propose Learned Confidence estimates to classify a
sample as ID or OOD sample by appending a confidence es-
timation branch to the network. Similar to this, Metric Learn-
ing [Masana et al., 2018] adds an additional output branch
and maps it into a manifold where the Euclidean distance
from such manifolds is used as a measure of detecting pos-
sible OOD samples. A probabilistic approach given in [Lee
et al., 2018] uses features (lower and upper level) from any
pre-trained classifier and maps them into class conditional
Gaussian distributions under Gaussian discriminant analysis,
which result in a confidence score based on the Mahalanobis
distance. Finally, the most popular method of computing
probabilistic statistics uses the ensembles of predictions of
discriminative classifiers trained on ID data, as proposed by
[Lakshminarayanan et al., 2017]. It has emerged as popu-
lar non-Bayesian approach for predictive UQ, also used for
detecting OOD samples during inference. An alternative di-
rection of approaching the OOD detection problem is the use
of generative model-based methods, which are appealing as
they do not require labeled data and directly model the input
distribution. These methods fit a generative model p(x) to the
ID data, and then evaluate the likelihood of new OOD inputs
under that model as in [Ren et al., 2019], [Serrà et al., 2019].
Moreover, many self-supervised approaches [Hendrycks et
al., 2019], [Mohseni et al., 2020], which also do not need
labeled data, have shown promise in OOD detection, often
with accuracy comparable to supervised methods.

3 Uncertainty Quantification for OOD
Detection

In the previous section, dedicated OOD detection techniques
have been presented. However, it is reasonable to investigate
the usage of UQ for this task as well. The idea is that a DNN
should assign a high uncertainty to OOD inputs, as nothing
comparable has been encountered before.

In [Osawa et al., 2019] the authors, i.a., compare Bayesian
UQ methods wrt. to their performance of detecting OOD
samples. Although their results are promising, the chosen
task is not as complex, because the defined datasets for ID
and OOD are very dissimilar. The performance of different
uncertainty quantifiers to distinguish samples from more sim-
ilar distributions have been investigated in [Pawlowski et al.,
2017]. Their findings are promising and also encourage fur-
ther research in that area.

3.1 Predictive Uncertainty Quantification of DNNs
A common approach to probabilistic UQ for neural networks
is to rely on Bayesian methods (e.g., variational Bayes or
Markov chain Monte Carlo), where the posterior distribu-
tion over the network parameters is computed. However, ex-
act Bayesian inference is usually intractable, thus the pos-
terior can only be computed approximately. Recently, non-
Bayesian methods gained in popularity, which often allow for
simpler implementation and faster training. In this work, we
focus on methods for predictive UQ that are fast to train, rea-



sonably easy to implement and suitable for large-scale prob-
lems often seen in image classification tasks.

A straightforward approach to UQ is to interpret the classi-
fication scores as probabilities, e.g., by applying the softmax
function to the prediction scores. However, modern DNNs
tend to be not well calibrated, i.e., the predicted probability
for an input sample does not represent the true accuracy of the
network. This is especially true for DNNs with high model
capacity and lack of regularization [Guo et al., 2017]. One
approach for DNN calibration is to learn a scaling of the pre-
dicted probabilities using a validation set, where the parame-
ters of the DNN are fixed.

In addition to that, softmax probabilities viewed alone are
often overconfident for OOD samples [Gal and Ghahramani,
2016]. Nevertheless, for a given network ID samples tend to
have greater softmax values than OOD samples, which can be
used as a baseline for OOD detection [Hendrycks and Gim-
pel, 2018].

Deep Ensembles Ensembles of deep neural networks, i.e.
deep ensembles, is a well-known method to improve predic-
tion accuracy. However, deep ensembles can also be used
as a non-Bayesian uncertainty estimator [Lakshminarayanan
et al., 2017]. A number of randomly initialized neural net-
works are trained independently on the same training data. To
compute the predictive distribution, the individual prediction
probabilities of all neural networks in the ensemble are aver-
aged. Additionally, [Lakshminarayanan et al., 2017] propose
to use proper scoring functions as loss functions and adver-
sarial training to smooth the predictive distributions.

Monte-Carlo Dropout MC-Dropout can be interpreted as
a form of ensembles with shared network parameters or
alternatively, as approximate Bayesian inference [Gal and
Ghahramani, 2016]. Usually, dropout is used during training
for regularization to prevent overfitting. However, dropout
can also be used during inference to estimate the predictive
distribution. The empirical predictive mean and variance are
calculated from multiple stochastic forward passes, where
each forward pass can be seen as sampling from a posterior
distribution over the network weights. Since MC-Dropout
does not require any change in the network architecture, it is
easy to implement and to use with existing architectures.

Learned Confidence A different, sampling-free approach
to estimate uncertainty is proposed in [DeVries and Taylor,
2018] where the network learns an explicit confidence score
as second optimization objective. A confidence layer is added
after the last network layer, in parallel to the class prediction
layer. The optimization objective is then the sum of the clas-
sification loss and the confidence loss.

Evidential Deep Learning Evidential Deep Learn-
ing [Sensoy et al., 2018] is inspired by the Dempster-Shafer
theory and another sampling-free approach. For classification
tasks the parameters of a Dirichlet distribution are learned,
from which the total evidence for each of the classes and the
epistemic uncertainty regarding the prediction as a whole can
be calculated. The authors also conducted some experiments
regarding OOD detection and showed that their method
generally assigned higher uncertainties to OOD inputs.

4 Evaluation
In the following, the previously presented UQ methods, Deep
Ensembles (DE), Monte-Carlo Dropout (MCDO), Learned
Confidence (LC), and Evidential Deep Learning (EDL), are
compared to each other and to the default softmax confi-
dences, which serve as a baseline. The task, hereby, is to
classify images correctly and confidently.

4.1 Experimental Setup
To provide a comprehensive comparison, we trained each
of the UQ methods on three different model architectures.
VGG16 [Simonyan and Zisserman, 2015] as a standard net-
work architecture, SqueezeNet [Iandola et al., 2016] for its
small size and suitability for embedded systems, and the re-
cently introduced EfficientNet [Tan and Le, 2019] as a high-
performing and efficient architecture. The model variant B0
for EfficientNet was adopted for our use-cases. All models
use dropout regularization to allow the application of MCDO.
Each deep ensemble consists of 5 networks and the number
of sampling steps for MCDO has been set to 50. Increasing
the number of members or sampling steps further lead only
to minor improvements. For LC the last dense layer of each
model is replaced by a prediction and a confidence branch,
which then are concatenated again to form the final predic-
tion, as in [DeVries and Taylor, 2018]. Additionally we set
the hyperparameters for the loss function of LC to λ = 0.1
and β = 0.3, which generally showed the best results in our
experiments. For EDL, using softplus as evidence function in
combination with the expected cross entropy loss employing
the digamma function, as described in [Sensoy et al., 2018],
yielded the best results and is used in all experiments pre-
sented in this paper.

As training datasets we used CIFAR-10, German Traffic
Sign Recognition Benchmark (GTSRB) [Stallkamp et al.,
2011], and NWPU-RESISC45 [Cheng et al., 2017]. CIFAR-
10 contains small images separated into 10 different classes,
e.g., automobile, truck or dog. GTSRB is a collection of
German traffic signs. The number of classes amounts to 43.
NWPU-RESISC45 has larger aerial images which are cate-
gorized into 45 different classes, e.g., forest, freeway or rail-
way station. Additionally, we used images from CIFAR-100
as OOD samples for CIFAR-10 and Belgium Traffic Signs
(BTSRB) [Timofte et al., 2014] as OOD samples for GT-
SRB. While CIFAR-100 and CIFAR-10 already have dis-
tinct classes, for BTSRB we only included classes that had
no equivalent in GTSRB. As we found no suitable OOD
datasets for NWPU-RESISC45, we split it into two datasets.
The OOD dataset includes 9 classes, airplane, airport, beach,
harbor, island, lake, river, sea ice, and ship. These are se-
mantically separated from the remaining 39 classes used as
ID dataset. Overall, the ID and OOD dataset pairs are quite
similar to each other, which makes the task of OOD detection
more difficult. This was done purposefully, as it transfers bet-
ter to safety-critical applications, where OOD inputs must be
detected, coming from the exact same sensor in similar envi-
ronments.

We trained the models from scratch using random initial-
izations and used Adam as optimizer. Early stopping has been
applied if the validation loss did not change for several epochs



to prevent overfitting whilst ensuring fully trained networks.
Augmentations have not been applied, to rule out potential
side effects introduced by the specific configuration used.

4.2 Evaluation Metrics
Following the cue of our previous work in [Henne et al.,
2020], similar evaluation metrics have been used in this paper.
It constitutes of maximizing Remaining Accuracy Rate (RAR)
along with minimizing the Remaining Error Rate (RER).
RAR takes into account the number of samples which have
been correctly classified by the classifier as well as declared
confident (“certain” and “correct”) for a given threshold by
the respective UQ method. RER on the other hand is the frac-
tion of inputs that is classified incorrectly but with a high con-
fidence (“certain” and “incorrect”).

All trained networks were evaluated first on a test set with
only ID data. Subsequently, the same model was tested on a
second test set where OOD samples corresponding to 17.65%
of the size of the ID data were added, to obtain a dataset with
85% ID and 15% OOD samples. The amount of ODD sam-
ples was chosen arbitrarily to improve the visual presentation
of the plots. However, it has no impact on the overall obser-
vations since we focus on the relative performance between
best and worst case.

4.3 Results and Discussion
Remaining Accuracy and Error
The results are shown in Figure 1. Due to space restrictions,
the graphs for VGG16 could not be included. Each curve con-
sists of the RAR and RER plotted for each threshold t ∈ [0; 1]
with a sampling step size of 0.001. The blue curves represent
the performance on the ID dataset, the green curves show the
performance on the dataset with combined ID and OOD sam-
ples. Furthermore, the green curves have been normalized
regarding the RAR by the amount of OOD samples. Thereby,
the influence on the accuracy due to additional OOD samples
is eliminated and only the error introduced by them is factored
in. For one, this better represents the application case, as the
DNNs are not supposed to classify OOD samples correctly
and only have to detect them. Second, due to the normaliza-
tion, the behavior regarding the OOD detection can be better
interpreted visually. Given a perfect OOD detection method,
both curves would be the same, as all OOD samples would
be rejected. The black curves show the worst case, i.e., if
none of the OOD samples are rejected. They also have been
normalized like the green curves.

On GTSRB, DE can detect most of the OOD samples, with
a minor loss in accuracy. Although SqueezeNet has a slightly
lower base accuracy, it is slightly better in rejecting OOD
samples. For GTSRB, this also holds for MCDO and soft-
max. EDL on the other hand shows a better OOD discrimi-
nation ability in the other two architectures for higher RER,
but can reduce the error almost completely with the highest
accuracy left. LC performs sub-par with SqueezeNet, which
might be due to the low number of parameters, as we already
noticed in [Henne et al., 2020].

On CIFAR-10 using EfficientNet, all but DE perform
equally with only minor differences. An exception to this are
softmax and MCDO, which for an RER of < 3.5% drop in

a straight line, suggesting that there are no thresholds which
can produce error rates in that range. For error rates < 0.5%,
all but softmax show the same accuracy. Upon further in-
vestigation, we noticed the distribution of classes among the
undetected OOD samples were similar, hinting towards sam-
ples that are universally hard to reject. For SqueezeNet, DE
significantly shows the best performance, followed by EDL.
Softmax and MCDO perform equally and LC again performs
the worst using this architecture. Using VGG16, DE still out-
performs the other methods but the difference is much less
significant. EDL and MCDO more or less perform equally,
with EDL being slightly better for high RER and MCDO be-
ing slightly better for really low RER. LC and softmax also
show similar performance. Softmax again is not able to pro-
duce different RER in lower ranges, however, this can mostly
be attributed to the ID samples.

On NWPU-RESISC45, DE performs the best for Efficient-
Net in terms of maximum RAR achieved. Next, softmax and
MCDO behave similarly but with a slight decrease in RAR.
For RER < 5%, both of these methods show a slight kink in
the curve showing their sensitivity to certain range of thresh-
olds. But even in this range, DE clearly achieves much better
RAR at the cost of < 1% RER. LC tries to achieve close
to 80% RAR, but at the cost of much higher RER. Finally,
EDL performs similarly as others in RER < 5%, but is vastly
outperformed in terms of overall RAR. For SqueezeNet, DE
again performs the best followed by MCDO, EDL and soft-
max in close proximity. Nonetheless, LC as pointed out ear-
lier performs the worst with this architecture. For VGG16, all
the methods perform sub-optimally in comparison to other
architectures with maximum RAR of nearly 75% achieved
by DE. Similar to the trend above, DE is followed by EDL
with comparable RAR, as DE, in RER < 5%. Softmax and
MCDO follow them, but spread over larger RER. LC is not
again able to produce RER in lower ranges and has much
larger RER as compared to similar RAR achieved by other
UQ methods.

Based on the observations above, DE performs best across
all methods and datasets. LC had been originally proposed as
an OOD detection method rather than being an UQ method.
However, LC has shown consistent sub-optimal performance
in almost all the scenarios above, particularly with smaller ar-
chitectures like SqueezeNet or higher resolution dataset, like
NWPU-RESISC45. MCDO and softmax perform averagely
in most cases. Most UQ methods including EDL tend to have
quite competent RAR for lower RER ranges, but on initial in-
vestigation it has been also observed there always exist some
harder sample categories which are almost too difficult to cer-
tainly reject for most UQ methods.

Quality of Uncertainty Estimation
To further assess the novelty detection capabilities of the
methods, we show the ratio of inputs marked as uncertain
for a given threshold. We, thereby, show the comparison for
the three possible cases: ID inputs predicted correctly, ID in-
puts predicted incorrectly and OOD inputs. Corresponding to
each of the three cases we plot, over all thresholds, the frac-
tion of samples having high uncertainty. An ideal method, for
some given threshold, is certain for all correct predictions and
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Figure 1: Remaining Error Rate (RER) vs. Remaining Accuracy Rate (RAR) for EfficientNet and SqueezeNet on the GTSRB, CIFAR-10 and
NWPU-RESISC45 datasets. The plots show the performances first on the ID dataset(blue), then on dataset consisting of the ID and OOD
samples(green). The lower bound (black) represents the worst-case scenario where the network fails to reject none of the OOD sample.
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Figure 2: The ratio of inputs marked as uncertain for the three cases — correctly classified, incorrectly classified, and OOD inputs — over
the range of thresholds for EfficientNet on CIFAR-10.
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Figure 3: Remaining Error Rate (RER) vs. Remaining Accuracy Rate (RAR) for Deep Ensembles on the normalized ID+OOD dataset trained
on GTSRB, CIFAR-10 and NWPU-RESISC45 with EfficientNet, SqueezeNet and VGG16.

uncertain for all incorrect predictions as well as predictions
for OOD inputs. In Figure 2, the uncertainty ratios are shown
only for CIFAR-10 and EfficientNet, but we observe the same
findings in our other considered configurations. Most inter-
estingly, the curves for incorrectly classified and ood inputs
match very closely. Obviously, this raises the question: How
correlated are these two categories and will better UQ meth-
ods be able to better detect novel inputs? This could be sub-
ject for future research. The plots again indicate that very
low error rates can only be achieved at the cost of sacrificing
a lot of accuracy. It is also worth mentioning, that EDL and
LC exhibit a smoother behavior over the range of thresholds,
especially compared to Softmax and MCDO, and therefore,
are less sensitive towards small changes in the choice of a
threshold.

Influence of Model Architecture
While the choice of architecture is important for the perfor-
mance wrt. accuracy, its influence on the OOD detection abil-

ity is not as significant, visually represented by how close
the blue and green curves match. An exception to this are
some configurations with LC, especially with SqueezeNet.
On CIFAR-10, all architectures perform mostly the same
regarding their novelty detection ability and on the easier
dataset GTSRB SqueezeNet has a slight edge. For NWPU-
RESISC45, VGG16 rejects OOD samples slightly better,
however, its baseline accuracy is about 20% lower for all UQ
methods. Figure 3 shows the overall performance of DE for
all architectures on the combined ID + OOD datasets.

5 Conclusion and Future Work
In this paper, we investigated the question, whether un-
certainty quantification is sufficient for detecting out-of-
distribution inputs. To that end, we applied different state-
of-the-art methods and network architectures to three image
classification tasks. While all tested UQ methods assign high
uncertainty to some of the ODD samples, their rejection ca-
pabilities will not suffice for most safety-critical applications,



especially considering that in the real-world even more diffi-
cult OOD inputs can occur. If UQ should be applied, deep en-
sembles consistently showed the best trade-off between per-
formance and remaining error, but mostly due to its better
accuracy baseline to begin with.

A closer look at our results revealed that in many cases
all methods fail on ODD inputs from the same classes. This
hints at the possibility that certain ODD inputs are concep-
tually harder (or even impossible) to identify either by UQ
methods or even in general. However, further research is
needed to provide more evidence. In addition, many novelty
detection approaches have been proposed in recent years. It
would be interesting to see how they perform compared to the
UQ methods presented here. Furthermore, their error patterns
may provide additional insights into the difficulties of OOD
detection in general.

Additionally, it is worthwhile investigating, whether our
findings also transfer to other tasks, e.g., object detection or
instance segmentation, and to other types of input data, for
instance, radar or lidar point clouds. While there are similar
base components at play —object detectors even use the in-
vestigated networks as feature extractors—, the transferabil-
ity of our results is not guaranteed.
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