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Abstract
Deep neural networks were shown to be vulnerable
to single pixel modifications. However, the reason
behind such phenomena has never been elucidated.
Here, we propose Propagation Maps which show
the influence of the perturbation in each layer of the
network. Propagation Maps reveal that even in ex-
tremely deep networks such as Resnet, modification
in one pixel easily propagates until the last layer. In
fact, this initial local perturbation is also shown to
spread becoming a global one and reaching abso-
lute difference values that are close to the maximum
value of the original feature maps in a given layer.
Moreover, we do a locality analysis in which we
demonstrate that nearby pixels of the perturbed one
in the one-pixel attack tend to share the same vulner-
ability, revealing that the main vulnerability lies in
neither neurons nor pixels but receptive fields. Hope-
fully, the analysis conducted in this work together
with a new technique called propagation maps shall
shed light into the inner workings of other adversar-
ial samples and be the basis of new defense systems
to come.

1 Introduction
Recently, a series of papers have shown that deep neural

networks (DNN) are vulnerable to various types of attacks
[Szegedy, 2014],[Nguyen et al., 2015],[Moosavi-Dezfooli et
al., 2017],[Brown et al., 2017],[Su et al., 2019], [Moosavi-
Dezfooli et al., 2016].[Carlini and Wagner, 2017],[Kurakin et
al., 2016],[Sharif et al., 2016], [Athalye and Sutskever, 2018]
However, the reasons underlying these vulnerabilities are still
largely unknown. We argue that one of the most important
facets of adversarial machine learning resides in its inves-
tigative nature. In other words, adversarial machine learning
provides us with key tools to understand current DNNs. As
much as attacks tells us about the security behind DNNs, they
also tells us to what extent DNNs can reason over data and
what do they understand to be, for example, the concept of a
”car” or ”horse”.
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Figure 1: a) Propagation Maps (PMmax) of a successful one-pixel
attack on Resnet shows how the influence of one pixel perturbation
grows and spreads (bright colors show differences in feature map
that are close to the maximum original layer output). b) Average
Propagation Map over the entire set of propagation maps shows the
overall distribution of attacks and their propagation. c) Illustration of
locality analysis.

In this paper, inspired by recent attacks and defenses we
propose a technique called propagation maps that would be
able to explain most of them. Here, giving the constrained
space, we focus on one attack which is puzzling and largely
unexplained, the one-pixel attack. Propagation maps enable
us to show how one pixel perturbation may grow in influence
over the layers and spread over many pixels to cause a final
change in class. Moreover, statistical properties of the prop-
agation reveal many properties of the attacks as well as their
distribution (Figure 1).

Additionally, to further understand the one-pixel attack a
locality analysis is performed. The locality analysis consists of
executing the attack in nearby pixels of a successful one-pixel
attack, i.e., using the same pixel perturbation but different
pixel position. Indeed, the success rate of nearby pixel is



effective and equal among different neural networks (Figure 1),
showing that rather than pixels or neurons, the vulnerability
lies in some of the receptive fields. This reveals an interesting
property shared among DNNs which is independent of the
model or attack success rate.

2 Adversarial Samples and Different Types of
Attacks

The samples that can make machine learning algorithms
misclassify received the name of adversarial samples. Let
f(x) ∈ Rk be the output of a machine learning algorithm in
which x ∈ Rm×n is the input of the algorithm for input and
output of sizes m × n and k respectively. It is possible to
define adversarial samples x’ explicitly as follows:

x’ = x + εx

{x’ ∈ Rm×n | argmax
j

(f(x’)j) 6= argmax
i

(f(x)i), (1)

in which εx ∈ Rm×n is a small perturbation added to the
input.

In adversarial machine learning one wants to search for
adversarial samples. For that it is possible to use the knowl-
edge of the DNN in question to craft samples such as using
back-propagation for obtaining gradient information and sub-
sequently using gradient descent as done by the “fast gradi-
ent sign” proposed by I.J. Goodfellow et al. [Goodfellow et
al., 2014a]. There is also the greedy perturbation searching
method proposed by S.M. Moosavi-Dezfooli et al. [Moosavi-
Dezfooli et al., 2016] and N. Papernot et al. utilize Jaco-
bian matrix of the function learned during training to create
a saliency map which will guide the search for adversarial
samples [Papernot et al., 2016].

However, it is possible to search for adversarial samples
without taking into account the internal characteristics of
DNNs. This type of model agnostic search is also called
black-box attack.

Regarding untargeted attacks, the objective function can be
defined, for example, as the minimization of the soft label for
the outputted class f(x)i. See the complete equation below.

maximize
εx

− f(x + εx)i

subject to ‖εx‖ ≤ L
(2)

The minimization of the difference between the highest soft-
label index and the second highest one is also one of the
other possibilities of objective function for untargeted attacks.
There are many black-box attacks in the literature. To cite
some [Narodytska and Kasiviswanathan, 2017],[Papernot et
al., 2017],[Dang et al., 2017].

It is important to note that ε should be small enough to
not allow an image to become a different class. Such a trans-
formation would invalidate the adversarial sample creation
because it is not a misclassification. Since most attacks use
perturbations which comprise of the whole image, ‖εx‖ ≤ L
is a good optimization constraint. However, it is also possible
to look the other way around and deal with few perturbed
dimensions. In this case, the constraint changes to a L0 norm
which actually counts the dimensions of the the perturbation,

i.e., the total number of non-zero elements in the perturbation
vector. The complete equation is as follows:

maximize
εx

f(x + εx))

subject to ‖εx‖0 ≤ d,
(3)

where d is a small number of dimensions (d = 1 for the
one-pixel attack).

3 Recent Advances in Attacks and Defenses
The question of if machine learning is secure was asked some
time ago [Barreno et al., 2006],[Barreno et al., 2010]. How-
ever, it was only in 2013 that Deep Neural Networks’ (DNN)
security was completely put into question [Szegedy, 2014]. C.
Szegedy et al. demonstrated that by adding noise to an image
it is possible to produce a visually identical image which can
make DNNs misclassify. This was counter-intuitive, since the
DNNs that misclassified had a very high accuracy in the tests
rivaling even the accuracy of human beings.

Recently, the vulnerabilities of neural networks were shown
to be even more aggravating. Universal adversarial perturba-
tions in which a single crafted perturbation is able to make
a DNN misclassify multiple samples was also shown to be
possible [Moosavi-Dezfooli et al., 2017]. Moreover, in [Su
et al., 2019] it was shown that even one pixel could make
DNNs’ misclassify. Indicating that although DNNs have a
high accuracy in recognition tasks, their ”understanding” of
what is a ”dog” or ”cat” is still very different from human
beings. In fact, adversarial samples can be used to evaluate the
robustness of a DNN [Moosavi-Dezfooli et al., 2016].[Carlini
and Wagner, 2017].

Although much of the research in adversarial machine learn-
ing is conducted under ideal conditions in a laboratory, the
same techniques are not difficult to apply to real world sce-
narios because printed out adversarial samples still work, i.e.,
many adversarial samples are robust against different light
conditions [Kurakin et al., 2016]. In fact, in [Athalye and
Sutskever, 2018] the authors go a step further and verify the
existence of 3d adversarial objects which can fool DNNs even
when viewpoint, noise, and different light conditions are tak-
ing into consideration.

There are many works in attacks and defenses but the reason
behind such lack of robustness for accurate classifiers is still
largely unknown. In [Goodfellow et al., 2014b] it is argued
that DNNs’ linearity are one of the main reasons. If this is
the case, perhaps hybrid systems that can leverage the non-
linearity that arise from complex models by using evolutionary
based optimization techniques such as self-organizing clas-
sifiers [Vargas et al., 2013] and neuroevolution with unified
neuron models [Vargas and Murata, 2017] would make for a
promising investigation.

4 One-Pixel Attack
One-Pixel Attack investigated the opposite extreme of most
attacks to date. Instead of searching for small spread perturba-
tion, it focus on perturbing just one pixel. This vulnerability to
one-pixel is a totally different scenario, i.e., neural networks



that are vulnerable to usual attacks may not be vulnerable to
one-pixel attack and vice-versa.

To achieve such an attack in a black-box scenario the au-
thors used differential evolution which is a simple yet effective
evolutionary (DE) algorithm [Storn and Price, 1997]. A candi-
date solution is coded as a pixel position and its related pertur-
bation. The DE search for promising candidate solutions by
minimizing the output label of the correct class (Equation 2).
In this paper, we use the same differential evolution settings as
the original paper [Su et al., 2019]. However, here we define a
successful attack as an adversarial attack made over a correctly
classified sample. As a consequence, adversarial attacks over
already misclassified samples will be ignored.

5 Propagation Maps

Perturbation on the input image propagates throughout the neu-
ral network to change its class in adversarial samples. How-
ever, much of this process is unknown. In other words, how
does this perturbation cause a change in the class label? What
are the internal differences between adversarial attacks and
failed attacks if any?

Here, to walk towards an answer to the questions above we
propose a technique called propagation maps which can reveal
the perturbation throughout the layers. Propagation maps con-
sists of comparing the feature maps of both adversarial and
original samples. Specifically, by calculating the difference
between the feature maps and averaging them (or getting their
maximum value) for each convolutional layer, the perturba-
tion’s influence can be estimated. Consider an element-wise
maximum of a three dimensional array O for indices a, b and
k to be described as:

Ma,b = max
k

(Oa,b,0, Oa,b,1, ..., Oa,b,k), (4)

where M is the resulting two dimensional array.
Therefore, for a layer i, its respective propagation map PMi

can be obtained by:

PMi = max
k

(|FMi,k − FMadv
i,k |), (5)

where FMi,k and FMadv
i,k are respectively the feature maps

for layer i and kernel k of the natural (original) and adversarial
samples.

Alternatively, one may wish to see the average over the
filters which exposes a slightly different influence diluted over
the kernels in the same layer. It can be computed as follows:

PMi =
1

nk

∑
k

(|FMi,k − FMadv
i,k |), (6)

where nk is the number of filters.
PMmax and PMavg will be used to differentiate between

Propagation Maps using Equations 5 and 6. Notice that in
order to put the perturbation’s influence in the same scale of
the original feature map, the maximum scale value will be set
to the original feature map when plotting.

6 Propagation Maps for the One-Pixel Attack

To investigate how a single pixel perturbation can cause
changes in class, we will make use of the proposed propa-
gation maps. This will allow us to visualize the perturbations
in each of the layers of the neural network.

For the experiments, Resnet, which is one of the most accu-
rate types of neural networks, is used. Each of the subsections
below investigate a specific scenario.

6.1 Single Pixel Perturbations that Change Class

In Figure 2, the propagation map (PMmax) of a successful
one-pixel attack is shown. The perturbation is shown to start
small and localized and then spread in deeper layers. In the
last layer, the perturbation spread enough to influence strongly
more than a quarter of the feature map. This is the element-
wise maximum behavior which allows us to identify how
strong is the maximum difference in feature maps.

The propagation map based on averaged differences
(PMavg) shows that the difference is concentrated in some
feature maps (Figure 3). Moreover this average difference is
kept more or less the same throughout the layers. In the case
of PMmax, the difference had a sort of wave behavior, some-
times growing in strength, sometimes slightly fading away.
All observed adversarial samples shared similar features of
propagation maps. This is to be expected, since they need to
influence enough in order to change the class.

Surprisingly, one pixel change can cause influences that
spread over the entire feature map, specially in deeper layers.
This also contradicts to some extent the expectation that high
level features will be processed in deeper layers.

6.2 Single Pixel Perturbations that Do Not Change
Class

Successful one-pixel attacks were shown to grow its influence
throughout the layers, culminating in a strong and spread
influence in the last layers. Here we change the position of the
pixel to unable the attack to succeed. Figure 4 shows that in
such a case the influence’s intensity decreases. In fact, in the
last layer it is almost imperceptible the influence. However,
this is not the rule. A counterexample is shown in Figure 5
in which a pixel is changed without changing the class label.
This time however, the perturbation propagates strongly, being
as strong if not stronger than the successful one-pixel attack
observed in Figure 2. One might argue that the influence has
caused the confidence to decrease but not enough to cause
the change. For this case, indeed the confidence decreases
from 99% to 52%. However, Figure 6 has a similar behavior
although the confidence decreases only one percentage (from
100% to 99%).

Thus, qualitatively speaking, unsuccessful one-pixel attacks
not necessarily fail to achieve a high influence in the last layer.
It depends strongly on the pixel position and sample. This
is accordance with saliency maps which show that different
parts of the image have different importance in the recognition
process [Simonyan et al., 2013].



Figure 2: Propagation Map (PMmax) for Resnet using a sample from CIFAR. For this experiment, Equation 5 is used. The sample above is
incorrectly classified as automobile after one pixel is changed in the image. Values are scaled with the maximum value for each layer of the
feature maps being the maximum value achievable in the color map. Therefore, bright values show that the difference in activation is close to
the maximum value in the feature map, demonstrating the strength of the former.

Figure 3: Propagation Map (PMavg) for Resnet using a sample from CIFAR. For this experiment, Equation 6 is used. Values are scaled with
the maximum value for each layer of the feature maps being the maximum value achievable in the color map.

7 Statistical Evaluation of Propagation Maps
In previous sections, single attacks were analyzed in the light
of examples and counterexamples. These experiments were
important to investigate what happens in detail for each of
these attacks. However, they do not tell much about the distri-
bution of attacks. This section aims to fill this gap by investi-
gating the attacks’ distribution and other statistically relevant
data.

By evaluating the average of PMmean over successful at-
tacks, we can observe the attack distribution over the entire
feature map as well as their average spread over the layers
(Figure 7). The successful attacks seem to concentrate mostly
close to the center of the image. In deeper layers, the influence
expands and increase in intensity, specially at its center. This
reveals that the behavior observed in Figure 2 is usual for most
of the attacks.

Given this distribution for successful attacks, it would be
interesting to contrast them with failed attempts. This would
enable us to further clarify the characteristics of a successful

attack.
To further clarify if there is any explicit difference between

successful and failed attacks, we explicitly calculated the mean
over all the feature maps for the previous successful and un-
successful attacks. The plot is shown in Figure 8. The average
difference is also unable to distinguish between successful and
failed attacks, with both having very similar behavior.

8 Position Sensitivity and Locality
The one-pixel attack works by searching for a one-pixel per-
turbation where the class can be modified (misclassified). This
search process is costly but to what extent is the success of the
attack dependent on its position?

Here the position sensitivity of the attack will be analyzed.
First, we consider an attack in which a pixel is randomly cho-
sen to be perturbed by the same amount that could create an
adversarial sample. The results, which are shown in Table 1,
demonstrate that random pixel attacks have a very low success



Figure 4: Propagation Map (PMmax) for a perturbation that failed to change the class for Resnet using a sample from CIFAR. For this
experiment, Equation 5 is used. The sample above is correctly classified as cat even after one pixel is changed in the image. Values are scaled
with the maximum value for each layer of the feature maps being the maximum value achievable in the color map.

Figure 5: Propagation Map (PMmax) for a perturbation that failed to change the class for Resnet using a sample from CIFAR. For this
experiment, Equation 5 is used. The sample above is correctly classified as horse even after one pixel is changed in the image. Values are
scaled with the maximum value for each layer of the feature maps being the maximum value achievable in the color map.

rate. This suggests that position is important and by disre-
garding it is almost impossible to achieve a successful attack.
Having said that, the attack on nearby pixels (i.e., the eight
adjacent pixels) shows a positive result. In fact, if we con-
sider that this attack is not conducting any search at all but
only taking one random pixel. The results may be considered
extremely positive.

The extremely positive results present in Table1, however,
are in accordance with the receptive fields of convolutional
layers. In other words, every neuron in convolutional layers
calculates a convolution of the kernel with a part of the input
image which is of the same size. The convolution itself is
a linear function in which the change in one input would
cause the whole convolution to be affected. Thus, the result
of the convolution will be the same for nearby neurons in
the same receptive field. Consequently, this shows that the
vulnerable part of DNNs were neither neurons nor pixels but
some receptive fields.

Interestingly, completely different networks have a very sim-
ilar success rate for both nearby attacks. This further demon-
strate that the receptive field is the vulnerable part. Since

neural networks with similar architectures share similar re-
ceptive field relationships, nearby attacks on similar networks
should have similar success rate.

9 The Conflicting Salience Hypothesis
Propagation maps demonstrated that some pixels’ influence
failed to reach the last layer (Figure 4) while others influenced
the last layer enough to cause a change in class (Figure 2).
This analysis share a close resemblance to saliency maps in
which one wishes to discover which pixels are responsible for
a class. In fact, since propagation maps measure the amount
of influence from perturbations, it would be reasonable to as-
sume that they may have a close relationship with disturbance
in saliency maps. Consequently, adversarial samples would
cause enough disturbance in saliency maps to cause a change
in class. Thus, we raise here the hypothesis of a conflicting
saliency from adversarial samples.

If this is true, then what adversarial machine learning is
doing is not fooling DNNs but rather taking away his attention.
It is like a magician that calls attention to his right hand while
his left hand pushes the magic ball. Or like the blinking light



Figure 6: Propagation Map (PMmax) for a perturbation that failed to change the class for Resnet using a sample from CIFAR. For this
experiment, Equation 5 is used. The sample above is correctly classified as airplane even after one pixel is changed in the image. Values are
scaled with the maximum value for each layer of the feature maps being the maximum value achievable in the color map.

Figure 7: Average of PMmean over 318 successful attacks on Resnet from CIFAR dataset, i.e., all successful attacks from 1000 trials.

on the street that calls attention of the driver which suddenly
drive through a red traffic light.

Having said that, propagation maps is a feedforward based
technique to visualize and measure the influence of a perturba-
tion while saliency maps aim to investigate the salient pixels
for a given class with backpropagated gradients. Therefore,
the methods differ in many ways and their relationship, which
might be more complex than what is stated here, goes beyond
the scope of this paper. We leave this as an open question that
should be worthwhile to investigate.

10 Conclusions
This paper proposed a novel technique called propagation
maps and used it to analyze one of the most puzzling attacks,
the one-pixel attack. The analysis showed how a pixel modifi-
cation causes an influence throughout the layers, culminating
in the change of the class. Moreover, a locality analysis re-
vealed that receptive fields are the vulnerable parts of DNNs
and therefore nearby attacks to successful one-pixel attack
have a high success rate. Lastly, a new hypothesis was pro-
posed that could together with the proposed propagation maps
help explain the reason behind adversarial attacks in DNNs.
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