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Abstract

Achieving and assuring the safety of systems that
use artificial intelligence (Al), especially machine
learning (ML), pose some specific challenges that
require unique solutions. However, that does not
mean that good safety and software engineering
practices are no longer relevant. This paper shows
how the issues associated with AI and ML can
be tackled by integrating with established safety
and software engineering practices. It sets out a
three-layer model, going from top to bottom: sys-
tem safety/functional safety; “AI/ML safety”’; and
safety-critical software engineering. This model
gives both a basis for achieving and assuring safety
and a structure for collaboration between safety en-
gineers and AI/ML specialists. The model is illus-
trated with a healthcare use case which uses deep
reinforcement learning for treating sepsis patients.
It is argued that this model is general and that it
should underpin future standards and guidelines for
safety of this class of system which employ ML,
particularly because the model can facilitate collab-
oration between the different communities.

1 Introduction

There is a growing recognition of the challenges posed by the
use of artificial intelligence (AI), and more specifically ma-
chine learning (ML), in safety-critical systems. These chal-
lenges have been recognised by the AI community and there
have been several influential publications, e.g. on “concrete
problems in Al safety” [Amodei et al., 2016], which have
drawn the community’s attention to the potential for harm
arising from undesirable, and unanticipated, learnt behaviour
of ML-based systems.

In parallel, the safety community has been considering the
impact of Al and ML on system safety with an emphasis on
autonomous systems (AS), e.g. including the “gaps” in engi-
neering processes that arise from the use of Al and ML [Bur-
ton et al., 2020]. In practice, development of safety-critical
systems is strongly influenced by standards but they are slow
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to produce and often substantially lag technological devel-
opments. This situation is beginning to change, particularly
related to autonomous vehicles (AVs) and, for example, the
British Standards Institution (BSI) has an active programme
developing Publicly Available Specifications (PAS) for AVs
and in the USA a standard, UL 4600 [ANSI & UL, 2020],
has recently been published.

Thus, both communities are very active but our experi-
ence, e.g. through the Assuring Autonomy International Pro-
gramme (AAIP), suggests that the initiatives in the safety
community are having limited impact on the AI community,
and that the safety community is struggling to come to grips
with the subtleties and complexities of ML. Part of the reason
for this is the absence of common terminology and a frame-
work that enables the two communities to collaborate. The
intent here is to provide a model and some terminology which
can facilitate greater collaboration.

Against this background, the paper is organised as follows.
Section 2 reviews some of the rather “disconnected” activities
in the AI and safety communities, and identifies foundations
for our collaborative model. In section 3 the model is pre-
sented, showing how long-established safety-critical software
development principles can support “Al safety” activities,
which in turn support system/functional safety. This model
is illustrated in section 4 using a case study from healthcare.
Section 5 presents a discussion, particularly considering how
the model might be developed and utilised to support collab-
oration between the Al and safety communities and this leads
into the conclusions in Section 6.

2 Safety of AI: Two Communities

This section aims to identify both differences in views of the
Al and safety communities and a basis on which to build
the collaborative model. Both communities run regular “Al
Safety” events. However, the attendance at such events is
skewed, so they don’t really act as a meeting of minds. Rather
than viewing this as a sociological problem, it is more helpful
to consider the differences in technical viewpoints between
the communities to build the collaborative model.

The AI community viewpoint is considered first, then the
safety perspective is introduced in two parts. First, we con-
sider broad safety processes, then we consider “good prac-
tice” in safety-critical software engineering.



2.1 “Al Safety”

There is a growing interest in “Al safety” and many Al prac-
titioners and researchers have sought to identify and address
potential problems. We start with a seminal paper which sets
out “concrete problems in Al safety” [Amodei et al., 2016]
arising from the use of reinforcement learning (RL). A brief
introduction to RL is given in section 4.1; here all we need to
know is that with RL the system learns by getting “rewards”
from interaction with the environment and seeks to maximise
its reward to achieve the desired behaviour, represented as a
“policy”. The paper uses a cleaning robot as an example and
identifies undesirable (in safety terms, hazardous) behaviours
for the robot. The description of these undesirable behaviours
given here is intended to be general in terms of Al technolo-
gies and their applications:

1. Avoiding negative side effects — ensuring that the be-
haviour meets safety constraints; from a safety perspec-
tive this equates to avoiding hazards;

2. Avoiding reward hacking — ensuring that the behaviour
doesn’t get a high reward by “gaming” and producing
solutions that are valid in some literal sense but don’t
meet the designer’s intent;

3. Scalable oversight — this concerns the ability of the hu-
man to interact with the system both to monitor it and to
respond to requests for confirmation of decisions prior
to actions being taken;

4. Safe exploration — when the system needs to try new
things to learn a better solution, how can negative out-
comes (i.e. new hazards) be avoided;

5. Robustness to distributional shift — how the system
adapts to changes in the operational environment, e.g.
for a medical diagnosis system which is developed us-
ing an Asian population but deployed in Europe.

These problems can arise from a number of underlying
causes, e.g. inappropriate reward functions and mis-specified
feature spaces. Work at DeepMind [Leike et al., 2018] iden-
tified similar problems to [Amodei et al., 2016] but also high-
lighted the “reward-result gap”, where the agent fails to con-
verge on an optimal policy. Their proposed research direction
focuses on “reward modelling” and points out a number of
approaches including leveraging existing data, imposing side
constraints and adversarial training, to achieve “agent align-
ment”. The “desiderata” (desirable properties) for their work
are that the results are: scalable, economic and pragmatic. It
also rests on two assumptions (slightly rephrased):

e It is possible to learn user intentions to sufficiently high
accuracy;

e For many learning tasks, evaluation of outcomes is eas-
ier than producing the correct behaviour.

Other work considers the issues of mis-specified feature
spaces [Bobu er al., 2018]. When training robots based on
physical human-robot interaction the robot may not have a
rich enough hypothesis space to capture everything the user
cares about so the robot may “misinterpret” user input and
learn inappropriate actions. The proposed solution includes

using relevance of inputs (to the robot’s set of hypotheses)
and only learning from relevant inputs, thus reducing the im-
pact of mis-specified feature or objective spaces.

Further, there is considerable interest in the problem of
“adversarial” resilience for RL with many proposed solution
approaches, e.g. [Behzadan and Hsu, 2019]. This is un-
doubtedly relevant in some application domains, and needs
to be addressed in a complete approach to using Al in safety-
critical contexts, but it is outside the scope of this paper.

More philosophically, the challenges of “Al Safety” arise
because systems are developed using “narrow” or “specific”
Al so they do not have an understanding (semantic model)
of real-world objects that would be achieved by Artificial
General Intelligence (AGI). Whilst AGI is a distant prospect,
some work on AGI safety is producing interesting results, e.g.
causal influence diagrams that bear a resemblance to the mod-
els used in safety engineering and thus might be a route to
bridging between these communities [Everitt et al., 2019].

2.2 System Safety/Functional Safety

System safety is a relatively long-established discipline, gen-
erally believed to have originated in US military projects in
the 1940s. There are now well-established processes which
include hazard identification and risk assessment to guide the
design to produce acceptably safe systems. Although not uni-
versally accepted, in many industries, e.g. healthcare [NHS
Digital, 2018], it is common for the results of the develop-
ment and safety processes to result in the production of a
safety case, a structured argument, supported by evidence,
intended to justify that a system is acceptably safe for a spe-
cific application in a specific operating environment [Kelly
and Weaver, 2004].

System safety has evolved and the term “functional safety”
is often used for safety processes addressing computers and
software. Many of the standards for functional safety provide
requirements for product design and for the system, software
and hardware development processes. They often use safety
integrity levels (SILs) to rank the (potential) risk posed by
the system and vary the requirements with SIL, for example
requiring higher levels of redundancy and diversity in the sys-
tem architecture at higher SILs (higher risk).

System and functional safety have continued to evolve but
generally lagging behind technology developments [McDer-
mid, 2017] - this lag is perhaps most apparent with the intro-
duction of Al and ML into systems. Although there are some
emerging standards such as UL4600 [ANSI & UL, 2020] gen-
erally they set requirements “around” the AI/ML elements but
are not clear about what form of evidence would be needed
to show that these requirements are met.

Instead, for advice on the safe use of AI and ML, one has
to turn to the research community rather than standards. Ini-
tiatives such as the AAIP have pioneered work on safety of
autonomous systems employing Al and ML. Two particularly
important contributions are an ML lifecycle [Ashmore er al.,
2019] and an assurance process known as AMLAS [Picardi et
al., 2020] that builds on the ML lifecycle. The ML lifecycle
has three stages, and identifies desiderata for each stage:

1. Data management — including collecting, pre-processing
and analysing data to be used for model learning;



2. Model learning — including the model selection and
choice of hyper-parameters used to control the learning
process;

3. Model verification — including the use of mathematical
analysis and testing.

As an example of the desiderata, robustness in model learn-
ing considers the model’s ability to perform well in circum-
stances where the inputs encountered at run time are different
to those present in the training data, e.g. due to environmen-
tal uncertainty, such as flooded roads, which is analogous to
“distributional shift” in [Amodei et al., 2016]. This shows the
possibility of reconciling the viewpoints of the two commu-
nities to provide common terminology to underpin a collabo-
rative model.

2.3 Safety-Critical Software Engineering

There are many good practices in developing safety-critical
software, some of which are reflected in standards such as
IEC 61508 Part 3 [IEC, 2010]. These include use of for-
mal methods for specifying requirements, coverage criteria
for testing, and traceability from specifications to programs
to assist in verification. The required practices also vary with
SIL, for example with more stringent requirements for test
coverage at higher SILs. It is not possible to cover all of these
practices here but we use two of them to illustrate our points
here.

First, all programming languages have constructs which
can lead programmers to make mistakes. This has led to the
definitions of so-called “safe subsets” of programming lan-
guages, e.g. the C language [Hatton, 20041, which restrict the
use of the language so as to avoid the most error-prone con-
structs. These subsets are well-defined and it is practicable to
use tools to help police their use.

Second, static analysis assesses a program without execut-
ing it. This can identify “undesirable features” in programs,
including indexing outside array bounds and dividing by zero,
that could lead to undefined behaviour. Even if such “undesir-
able features” are not “unsafe”, their presence may undermine
the results of other analyses or test results, so static analysis
is of broad utility in showing the integrity of programs. Lan-
guage subsets and static analysis are not disjoint concepts and
some of the most powerful tools combine the two, e.g. [Mc-
Cormick and Chapin, 2015].

These practices address conventional programming lan-
guages but ML models are programs too and the collaborative
model explores their relevance for ML.

3 The Collaborative Model: An “Al
sandwich”

The collaborative model aims to provide a structure that links

the different world views of the Al and safety communi-

ties. The Al elements are in the middle, with safety elements

above and below — hence the “sandwich” analogy.

3.1 The Model

The collaborative model, see Fig. 1, has three layers which
we number top-down. The intent of the layers is:

System Safety/
Functional safety

“Al/ML Safety”

Safety Critical
Software Engineering

Figure 1: The Collaborative Model

1. System safety/functional safety — application of a clas-
sical safety process to understand hazards, produce de-
rived safety requirements and to gather evidence from
layers 2 and 3 into the safety/assurance case;

2. AI/ML safety — developing the ML systems to meet
their performance objectives and satisfaction of the
ML lifecycle desiderata as well as the derived safety
requirements, and providing evidence to support the
safety/assurance case;

3. Safety-critical software engineering — application of
good software engineering practices to the development
of the AI/ML software.

ML systems are generally developed in an agile manner, often
with daily builds as new training data becomes available; this
is reflected in the iterative loop between the top two layers.
However, for simplicity, the description of the layers ignores
the iteration.

3.2 Layer 1: System Safety/Functional Safety

The system safety/functional safety layer has three major el-
ements:

1. Hazard analysis — use of hazard analysis techniques or
domain knowledge to identify hazards and to estimate
the associated risks;

2. Derived safety requirements (DSRs) — based on the iden-
tified hazards, establishing requirements for the ML and
other elements of the system so that their contribution to
hazards is controlled or their role in mitigating hazards
is clearly defined;

3. Safety/assurance case — arguments for the safety of
the system, supported where appropriate by evidence
from the ML layer that the software meets the relevant
desiderata and derived safety requirements.

Often requirements for AI/ML systems are articulated at a
high level, e.g. to perform better than a human, and it can be
difficult to map down to concrete requirements on the AI/ML
components (the semantic gap [Burton et al., 2020]). This
is an open issue for reconciling conventional systems engi-
neering with AI/ML, but it is not always so difficult when
considering DSRs, see the case study in section 4.



3.3 Layer 2: “AI/ML Safety”

The “AI/ML safety” layer is intended to encompass the ML
software development including verification and has three
major elements:

1. Model alignment — meeting the design intent which is
informed by the hazard analysis, as the intent, inter alia,
is to avoid hazards;

2. Data collection and ML model development — these are
the first two stages of the ML lifecycle [Ashmore et al.,
2019] and are informed by the derived safety require-
ments;

3. Satisfaction of the ML lifecycle desiderata — show-
ing that the relevant desiderata have been met, includ-
ing verifying satisfaction of the derived safety require-
ments and production of relevant evidence to support the
safety/assurance case.

The term “model alignment” is used as a generalisation of
“agent alignment” and is intended also to include the avoid-
ance of problems such as distributional shift.

3.4 Layer 3: Safety-Critical Software Engineering

This layer incorporates good practices from safety-critical
software engineering to ensure the integrity of the code; for
brevity only two elements are illustrated:

1. Coding standards — the use of guidelines/rules to avoid
the more error-prone constructs in programming lan-
guages, supporting ML model development;

2. Static Analysis/verification — the use of static analysis
tools to help identify undesirable features in programs
so they can be eliminated, supporting satisfaction of ML
desiderata.

There are many different static analysis tools; an example is
presented in section 4.

4 The Case study

The case study used to illustrate the collaborative model
is from healthcare, particularly the use of RL to derive
“optimal” policies for treatment of sepsis, which is a life-
threatening condition and a major cause of fatalities in hos-
pitals. The case study is from our previously published work
[Jia er al., 2020], but extended here to address the three lay-
ers in the collaborative model. Key aspects of the case study
are introduced against each layer in the model, with the great-
est emphasis placed on the middle layer as this is where the
approaches of the Al and safety communities come together.
Before presenting the case study, we first give a brief intro-
duction to RL; this is not intended to be an exhaustive discus-
sion of what is a very complex topic but enough to enable the
case study to be understood. More details on the RL approach
can be found in [Jia et al., 2020].

4.1 Reinforcement Learning

RL is a very powerful ML technique which is widely used
in complex decision making tasks to find an “optimal” pol-
icy. It consists of an agent interacting with its environment by

performing actions and receiving feedback from the environ-
ment [Sutton and Barto, 2018]. Often the environment is rep-
resented using a Markov Decision Process (MDP). A policy
defines the agent’s behaviour and maps the perceived states
of the environment to actions for the agent to take. There
are many different RL algorithm and the case study uses a
widely used modern RL algorithm known as double deep Q-
Networks (double DQN) [Mnih et al., 2015].

4.2 Sepsis Case

Sepsis is a life-threatening organ dysfunction caused by a
dysregulated host response to infection. It is estimated that
one in five deaths worldwide is caused by sepsis [Gallagher,
20201, but the optimal treatment strategy for sepsis remains
unclear [Marik, 2015]. Evidence suggests that current prac-
tices in the administration of intravenous fluids and vasopres-
sors are suboptimal [Waechter et al., 2014]. Consequently,
researchers have used RL to learn the optimal treatment strat-
egy, e.g. [Raghu et al., 2017].

First, we re-implemented the work from [Raghu et al.,
2017] using double DQN. The state space for the MDP in-
cluded patients’ demographics, Elixhauser premorbid status,
vital signs, laboratory values, fluids and vasopressors re-
ceived. The action space for the MDP is discretised into 25
possible actions with 5 possible choices for intravenous flu-
ids and vasopressors respectively, as shown in Table 1. Table I
also shows the detailed dose ranges and dose medians for the
five vasopressor choices; this is important as the case study
focuses on the safety of vasopressor administration. Note
that vasopressor dosage is shown in mcg/kg/min of Nore-
pinephrine equivalent. The maximum dosage change occurs
when the recommendation changes from action O to action 4,
or vice versa, in the following step to treat the same patient.
This change is 0 to 0.786 mcg/kg/min, as 0.786 mcg/kg/min
is the median of the fourth quartile and is considered to be a
dangerous dose change in one step in clinical practice. A sud-
den major change in vasopressor dosage can result in acute
hypotension, hypertension or cardiac arrhythmias [Fadale et
al., 2014] [Hospira UK Ltd, 2018] [Allen, 2014] (hypoten-
sion can arise from rapidly decreasing doses, with hyperten-
sion or arrythmias arising from rapidly increasing doses).

Next, we evaluated the original learnt policy and discov-
ered that it contains far more of these sudden major changes
when recommending the vasopressor dosage than are found
in the clinicians’ treatments based on the real data — MIMIC
III [Johnson et al., 2016] (here we refer to these treatments as
the clinician policy for ease of comparison). These results are
shown in Fig. 3a. Thus the initial learnt policy raises some
safety concerns and we used the collaborative model to guide
us develop a safer learnt policy.

Layer 1: Hazard and Derived Safety Requirements
This layer is largely the province of the safety and domain
specialists, i.e. clinicians in this case.

In an ideal world, the hazard analysis would be based on
a clinical pathway (a model of the treatment process, includ-
ing key decisions). For brevity, we illustrate the approach
in terms of a single hazard identified using domain knowl-
edge. The hazard is defined as: “sudden change in vasopres-



Table 1: Dosage Actions (from [Jia et al., 2020])

Dose of vasopressor (mcg/kg/min)
No.: 0 I 2 3 4
Range: 0 | (0.002,0.079) | (0.08,0.2) | (0.201,0.449) | (0.45, 1.005)
Median: 0 0.04 0.135 0.27 0.786
Dose | 0 0 1 2 3 4
of |1 5 6 7 8 9
v 2 10 11 12 13 14
fluid | 3 15 16 17 18 19
4 20 21 22 23 24
sor dosage”.

It can be seen from Fig 3a that the original learnt policy is
“less safe” than the clinician policy, specifically 35% of the
patients have a sudden major change in the learnt policy as
opposed to 2.6% in the clinician policy. This can be viewed
as an example of the hazard and it is visible when evaluat-
ing the learnt policy, which is consistent with the assumption
in [Leike et al., 2018] that “evaluation of outcomes is easier
than producing the correct behaviour”. It can also be seen
as showing a failure to achieve “model alignment” and this
triggers an iteration around the first two layers of the collab-
orative model, producing explicit DSRs.

In a normal safety analysis a systematic approach would
be taken to identify causes of hazards, and there are many
approaches to identifying and representing hazard causes,
e.g. SHARD for software-intensive systems [Pumfrey, 1999].
However, what we are interested in here is understanding the
potential causes of the hazard across the layers in the Collab-
orative Model, and we adapt the well-known “bow-tie” dia-
gram for this purpose. This enables us to show causes and
consequences of the hazard derived from an understanding of
the potential limitations at each layer, see Fig. 2.

Insufficient safety
constraints derived

Insufficiently
thorough

Acute hypotension

Sudden change of
p dosage

System recommends
sudden change

k ion or
Cardiac arrhythmias

Implementation
defects
Figure 2: Bow-tie showing Hazard, Causes and Consequences

In Fig. 2 the consequences are the clinical outcomes de-
scribed previously. The proximate cause of the hazard is
“System recommends sudden change” (in excess of 0.75
mcg/kg/min) which has three potential causes relating to the
three layers in the model in Fig. 1. The “Insufficient safety
constraints derived” reflects inadequacy in hazard analysis;
if a hazard is missed or misunderstood then the system de-
veloped might not be safe. The “Insufficiently thorough de-
velopment” means failure to meet the safety constraints and
the desiderata for ML including avoiding relevant “Al Safety”
problems such as those identified in [Amodei er al., 2016]
and [Leike et al., 2018]. This can also be seen as a failure to
achieve “model alignment”. The “Implementation defects”
refers to code-level problems, such as “divide by zero” that
can have unpredictable effects.

There are four DSRs arising from the bow-tie diagram:

DSRO: reduce changes in vasopressor dosage of more than

0.75 mcg/kg/min between treatment steps for an individual
patient closer to clinician policy (maps to “System recom-
mends sudden change”);

DSR1: accurately identify hazards, hazards causes and
safety constraints (maps to “Insufficient safety constraints de-
rived”);

DSR2: (a) meet the desiderata for the ML lifecycle [Ash-
more et al., 2019] and (b) show satisfaction of safery con-
straints arising from DSR1, (maps to “insufficiently thorough
development”);

DSR3: avoid implementation deficiencies that could give
rise to unintended behaviour (maps to “Implementation de-
fects”).

DSR1, DSR2 and DSR3 are intended to support DSRO,
and should guide the development of the ML in the middle
layer in Fig. 1. Our focus here is on DSR1 and DSR2, in
order to satisfy DSRO, as this shows most clearly the links
between the concerns of the safety and Al communities.

Evidence that the DSRs have been met should form part
of the safety case. Safety arguments are often produced
graphically, e.g. using the Goal Structuring Notation (GSN)
[Kelly and Weaver, 2004]. For brevity, we do not set out
the safety argument here, but discuss the evidence needed to
meet DSRO in the following two subsections. The evidence
for DSR1 comes from layer 1 in Fig. 1. In a full development
it would rest on the rigour of the hazard analysis process and
the suitability of domain knowledge; for the purpose of this
paper we assume that an appropriate hazard has been identi-
fied, based on clinical knowledge, hence DSR1 is satisfied.

Layer 2: “AI/ML Safety”

— Modified policy
— Clinician policy

10 {/— optimal policy
— Clinician policy

o o °

°

Vasopressor dose absolute change

°

0 500 1000 1500 2000 0 500 1000 1500 2000
Patients index Patients index

(a) Original learnt policy (b) Our modified policy with

safety constraint

Figure 3: Performance of Learnt Policies (from [Jia er al., 2020])

We start with DSR1 and consider what can contribute to
this hazard, from an “Al safety” perspective, which involves
understanding some of the details of the RL process. First,
the MDP only depends on the current state, that is, given the
current state, the future state does not depend on the cumu-
lative history of past states. If the current state in the MDP
doesn’t capture the dose delta or relative dose change com-
pared with the previous dose, there is no guarantee that the
agent will learn an optimal policy avoiding the sudden ma-
jor dose change. This is an example of mis-specified feature
spaces [Bobu et al., 2018] and is corrected by extending the
state space to enable the agent to take into account the differ-
ence between the current step and the previous step in terms
of vasopressor dose while learning the policy.



Second, the process of learning an optimal policy is to min-
imise the cost function. If the cost function incorporate the
safety constraint, then it can guide the agent to learn a safer
policy. Thus, the cost function was modified to include an ad-
ditional safety constraint “penalising” large changes in dose
(specifically those over 0.75 mcg/kg/min between dose rec-
ommendations) which is one of the approaches suggested in
[Leike er al., 2018]. Therefore, two changes were made in
order to guide the agent to learn a safer policy by altering the
state space to include dose delfa and by adding a regulariza-
tion term in the cost function to “penalise” sudden changes,
see [Jia et al., 2020] for more details, including the explicit
cost functions used.

After the implementation of these two alterations we have
learnt a new modified policy and Fig.3b shows that the mod-
ified policy has fewer sudden major changes compared to the
original learnt policy shown in Fig. 3a (the rate of such sud-
den major changes of vasopressor dose has been reduced by
77.5%). Particularly, we found that only 7.87% of patients
have this sudden major change in the modified policy, which
is much closer to the 2.6% in the clinician policy. Therefore,
this is considered to be much safer and to support DSR1 and
hence DSRO, improving the “model alignment”.

The evidence to support DSR2 is multi-faceted. DSR2 (a)
can be supported through a development log, and other de-
velopment artefacts to show how the three stages of the ML
lifecycle (indicated in section 2.2) have been implemented ap-
propriately. In general, judgement is needed on sufficiency of
evidence. DSR2 (b) is supported by the performance data,
see Fig.3b, and the comparison with Fig. 3a which show the
results of encoding the safety constraint in the learnt policy.

Layer 3: Safety-Critical Software Engineering

This layer is the province of (software) safety specialists. It
“provides” coding standards to support the ML development
and static analysis techniques to support demonstration of the
integrity of the developed software. The evidence to support
DSR3 comes from the use of the static analysis techniques in
this case.

The software we developed in this case study is written in
Python and uses the TensorFlow library, thus we have cho-
sen Pylint (see: https: www.pylint.org) which supports both
coding standards and error detection to do the static analysis.
Fig. 4 shows a fragment of the report (log file) from running
Pylint on our code (the code module named “deepr]”). The
labels are as follows:

C'" coding convention violation;

R: for “refactoring” to improve the score against some
quality metric;

E: for programming errors, likely a “bug”;

W: for warnings, e.g. minor programming errors or stylis-
tic issues.

Fig. 4 shows the log file for a stage in the development
of the “deepr]” module. The progress in improving the code
module can be seen via the overall rating in Fig. 5. Pylint is
quite “pedantic” (the log files are usually very long), so it is
very hard to get a score of 10 — but it is important to remove
the type F problems (and F' which are fatal and prevent the
analysis from proceeding).

A< W XTS5~ SepsisDeepRLS$ pylint deeprl.py

odule deeprl

0: C0301: Line too long (634/100) (line-too-long)

0: C0115: Missing class docstring (missing-class-docstring)

0: R0902: Too many instance attributes (38/7) (too-many-instance-attributes)

deeprl.py:44:0: R0903: Too few public methods (0/2) (too-few-public-methods)
deeprl.py:140:27: C0321: More than one statement on a single line (multiple-statements)
deeprl.py:185:4: R1720: Unnecessary "elif" after "raise" (no-else-raise)

deeprl.py:329:0: E1101: Instance of 'ConfigProto' has no 'gpu_options' member (no-member)
deeprl.py:371:0: R1711: Useless return at end of function or method (useless-return)
deeprl.py:7:0: WO611: Unused import math (unused-import)

Figure 4: Extract from Pylint Log File

r code has been rated at 3.

/10 (previous run: 1.03/10, +2.75)

Figure 5: Example of Code Rating

The evidence to meet DSR3 is based on the log file, show-
ing that the error count (£) is zero and, desirably, an assess-
ment of the other entries to “sentence” them and to decide
which need to be addressed, and which can be tolerated. For
example, some of the refactoring comments (R) can indi-
cate aspects of the program that are hard to test, and which
may therefore weaken the value of the evidence in support
of DSR2 if not corrected. Others, e.g. C0321, are merely
stylistic and would not undermine the evidence from layer 2
against DSR2.

5 Discussion

Our model provides a “big picture” which allows the view-
points from the Al and safety communities to be reconciled.
The illustration of our model in section 4 has shown that these
viewpoints can be drawn together constructively to improve
the safety of a system employing ML.

It is worth considering the relationship of “AI/ML safety”
issues, e.g. [Amodei et al., 2016] [Leike er al., 2018] [Bobu et
al., 2018] and the ML lifecycle [Ashmore et al., 2019] to sup-
port layer 2 in our collaborative model. As already mentioned
some of these problems and desiderata in the ML lifecycle
overlap, e.g. “distributional shift” and robustness. Further, is-
sues such as the “reward-result gap” and mis-specified feature
spaces can be seen to relate to system safety concerns through
the case study. If a systematic relationship can be established
between the problems identified in the “Al Safety” commu-
nity and desiderata in the ML lifecycle, then this would fur-
ther cement the links between the viewpoints of the Al and
safety communities.

The illustration at layer 3, Safety-Critical Software Engi-
neering, was limited due to space constraints. A decision was
made to focus on code-level issues for the paper, but other
techniques are relevant. For example, several standards pro-
mote the use of formal methods. Whilst full formal speci-
fication of ML systems is likely to be difficult due to the se-
mantic gap [Burton et al., 2020] it may be possible to use par-
tial formal specifications for critical (safety) properties [Salay
and Czarnecki, 2019] which also opens up the opportuni-
ties for more formal verification. Further, all safety-critical
systems should be tested, and there is a need for systematic
approaches to testing for systems employing Al or ML, e.g.
considering how to guide testing based on estimates of resid-
ual risk [Wotawa, 2019]. In general, there is a need to con-



sider good practice in Safety-Critical Software Engineering,
to identify what techniques can be drawn across into AI/ML
development. As ML software tends to be developed in a dy-
namic and iterative fashion this suggests that it would be de-
sirable to draw on work on agile approaches to safety-critical
software development such as [Hanssen er al., 2018] as well.

However, as noted above, most functional safety standards
use SILs (or variants thereof) and alter the requirements for
techniques to apply to each stage of the software development
process based on SIL. The discussion of the ML lifecycle
[Ashmore et al., 2019] identifies multiple ways of address-
ing some of the desiderata, but it is not obvious that these
can be “ranked” in terms of contribution to risk reduction and
hence arranged in SIL-order. Whilst it might be possible to
preserve the SIL concept at layer 3 in the collaborative model,
it is much less obvious how to do this at layer 2. Either this
means the two communities have a long way to go before they
can fully support the notion of SILs for ML-based systems, or
there needs to be an acknowledgement that the SIL concept
is not readily applicable in the context of ML-based systems.

Additionally, standards for safety-critical systems often set
stringent safety targets, e.g. unsafe failure rates of one in 10
million operating hours. In contrast, ML developers are often
content with false positive/false negative rates of the order of
a few percent — in some applications, e.g. autonomous driv-
ing, this might equate to many “failures” per hour! These
figures seem incompatible. However, the safety targets set in
standards are at system level, not algorithm level, so they can
be reconciled, at least in some cases, with suitable system ar-
chitectures including redundancy and diversity. Nonetheless,
more work is needed to show how to bridge this “gap” and to
find ways of demonstrating that AI/ML-based systems meet
the stringent unsafe failure-rate targets that are widely used
for safety-critical systems.

The case study uses RL and it was relatively easy to change
the feature space and to introduce a safety constraint in the
cost function to satisfy the derived safety requirements in a
way that is traceable. With other ML techniques, e.g. un-
supervised learning, it may be less easy to embed the safety
constraint in the learning process and it may be necessary
instead to design the system with a separate “monitor” that
polices the system behaviour against the safety constraint, as
suggested in [McDermid et al., 2019], or to use other forms of
diversity and redundancy as discussed above. Defining run-
time monitors is not always straightforward, so the generality
of our collaborative model across the wide and growing range
of ML techniques remains an open issue.

6 Conclusions

The collaborative model has shown how to link the view-
points of the Al and safety communities, with the DSRs and
evidence flows providing the critical links in Fig. 1. Whilst
the model is abstract, the case study has enabled us to show
that the ideas can be made “concrete” although it has not been
possible to provide full technical detail at all the layers. It
is hoped that this model will help to facilitate broader en-
gagement between the Al and safety communities by giving
a structure in which they can recognise their own viewpoint

and see how it relates to that of the other community.

Due to the speed of development of Al and ML and their
safety-related applications, not least in autonomous vehicles,
the standards are lagging behind the technology — and, ar-
guably, the gap is growing. The collaborative model, or its
future refinements building on more detailed models, e.g. the
ML lifecycle [Ashmore et al., 2019] and assurance processes
[Picardi er al., 20201, should provide a framework for pro-
ducing future standards for safety critical systems using ML.
It remains to be seen whether or not SILs form part of such
standards — their introduction and use has been pragmatic (as
much to manage cost as safety) and, at minimum, the ra-
tionale for their introduction should be reconsidered as stan-
dards for ML-based systems are developed.

However, as noted above, there are open issues, perhaps
one of the most important is whether or not the “Al Safety”
problems can be mapped to the ML lifecycle model and thus
addressed in a unified way with the ML desiderata in the mid-
dle layer of our collaborative model. These open issues can
best be addressed through greater collaboration between the
two communities and they will be a focus in our future work.
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