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Abstract

In the paper we consider the problem of allocation of network resources
in telecommunication networks using both utility and reliability. We
suggest a scalar utility maximization problem subject to capacity con-
straints and within the pre-defined reliability level. This problem is
proposed to be solved by a penalty method. We present the results of
numerical results on various test problems for the method.

1 Introduction

The current development of information technologies and telecommunications gives rise to new control problems
related to efficient transmission of information and allocation of limited network resources. All these problems
are determined on distributed systems where the spatial location of elements is taken into account. Due to
strong variability and increasing demand of different wireless telecommunication services, fixed allocation rules
usually lead to serious congestion effects and inefficient utilization of network resources despite the presence of
very powerful processing and transmission devices. Hence, one has to find more flexible allocation mechanisms
instead of the fixed allocation ones. These mechanisms are based on proper mathematical models; see e.g.
[CW03, SWB06, WNH10]. For example, solution methods for network resource allocation based on optimization
formulations of network manager problems and decomposition techniques were presented in [KKL18, KK19].

In addition, wireless networks should be reliable with respect to various attacks. The most commonly seen
attack in wireless networks are eavesdropping in which attackers aim at acquiring important/private information
of users, jamming and distributed DoS attacks which attempt to interfere and disrupt network operations by
exhausting the resources available to legitimate systems and users. These attacks may lead to degrading the
network performance and quality of service (QoS) as well as losing important data, reputations, and revenue;
see e.g. [ZJT13, MZA13, ZJT13, LHW17].

In this paper we consider a problem of telecommunication network links allocation among users under reliabil-
ity control of network connections. For this problem we suggest a penalty method with respect to links capacity
and reliability level constraints. We present the results of numerical results on test problems for the method.

2 Problem Description

We begin our description from the basic optimal flow distribution problem in wireless telecommunication networks
from [KMT98]. For a fixed time period we are given a network that contains a set L of transmission links (arcs)
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and accomplishes some submitted data volume transmission requirements from a set I of selected pairs of origin-
destination vertices. Denote by xi and αi the current and maximal value of data transmission for pair demand
i ∈ I, respectively, and by cl the capacity of link l ∈ L. For the sake of simplicity we suppose that each pair
demand is associated with a unique data transmission path, hence each link l is associated uniquely with the set
Nl of pairs of origin-destination vertices, whose data transmission paths contain this link. For each pair demand
i we denote by ui(xi) the utility value at the data transmission volume xi. Then the problem of the total utility
maximization of the network is written as follows:

max →
∑
i∈I

ui(xi)

subject to ∑
i∈Nl

xi ≤ cl, l ∈ L,

0 ≤ xi ≤ αi, i ∈ I.

If the functions ui(xi) are concave, this is a convex optimization problem over a polyhedron.
In order to extend the model and take into account the reliability of connections we now suppose that the

reliability depends on arc flow volumes. More precisely, let µl(fl) denote the non-reliability of arc l at its flow
volume fl. Hence, we have to add the second goal:

min →
∑
l∈L

µl(fl)

where
fl =

∑
i∈Nl

xi, l ∈ L,

and obtain a vector optimization problem. The scalarized goal version with some weights will take the form

min → σ1

∑
l∈L

µl(fl)− σ2

∑
i∈I

ui(xi),

but the choice of right weights σ1 and σ2 for so different goals seems too difficult here. For this reason, it is
better to determine the pre-defined non-reliability level βi for each connection i ∈ I and to maximize utility
under all these constraints. That is, the origin-destination vertices require some desired level of their reliability
to work. This problem is now formulated as follows:

max →
∑
i∈I

ui(xi) (1)

subject to ∑
i∈Nl

xi = fl, l ∈ L, (2)

∑
l∈Li

µl(fl) ≤ βi, i ∈ I, (3)

fl ≤ cl, l ∈ L, (4)

0 ≤ xi ≤ αi, i ∈ I. (5)

If the functions µl(fl) are convex, this is a convex optimization problem.

3 Solution Method

Usually, the functions ui(xi) and µl(fl) in problem (1)–(5) are smooth, hence we can apply a number of well
known smooth optimization methods; see e.g. [DR68, PD78]. However, these problems have large dimensionality
and inexact data, hence their solution methods should be rather simple and provide some desired accuracy within
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an acceptable time interval. Therefore, the penalty based methods are suitable here; see e.g. [FM72, GK81]. We
impose penalties only on binding constraints in (2)–(3). Set

X = {x | 0 ≤ xi ≤ αi, i ∈ I},
F = {f | 0 ≤ fl ≤ cl, l ∈ L},
W = X × F,

and define the penalty functions

Φ1(x, f) =
∑
l∈L

[∑
i∈Nl

xi − fl

]2
and

Φ2(x, f) =
∑
i∈I

[∑
l∈Li

µl(fl)− βi

]2
+

.

We take positive penalty parameters τ1 and τ2 and define the penalized problem

max
(x,f)∈W

→ Ψ(x, f, τ), (6)

where τ = (τ1, τ2),

Ψ(x, f, τ) =
∑
i∈I

ui(xi)− τ1Φ1(x, f)− τ2Φ2(x, f). (7)

Denote by (x∗(τ), f∗(τ)) a solution of problem (6)–(7). If each τi is positive, increasing, and tending to +∞,
then the corresponding points (x∗(τ), f∗(τ)) will tend to a solution of problem (1)–(5). Moreover, this is the
case for some approximations of points (x∗(τ), f∗(τ)). In order to find these approximate solutions of problem
(6)–(7) we propose to apply the gradient projection method; see e.g. [DR68, PD78].

Let g(x, f) = (gx(x, f), gf (x, f)) denote the gradient of Ψ(x, f, τ) where τ is fixed. At the current point (x, f)
we find the points

x̃ = πX [x+ λ′gx(x, f)], (8)

f̃ = πF [f + λ′′gf (x, f)], (9)

where λ′ > 0, λ′′ > 0. The next iterate (xnew, fnew) can be found from (x̃, f̃) after inserting a proper line-search
if necessary. That is, we set

xnew = ηx̃+ (1− η)x,

fnew = ηf̃ + (1− η)f, for η ∈ (0, 1].

The partial derivatives of Ψ(x, f, τ) are written as follows:

gxi(x, f) = u′
i(xi)− 2τ1

∑
l∈L

∑
j∈Nl

xj − fl

αil,

where

αil =

{
1, if i ∈ Nl,
0, otherwise,

and

gfl(x, f) = 2τ1

(∑
i∈Nl

xi − fl

)
− 2τ2

∑
i∈I

[∑
s∈Li

µs(fs)− βi

]
+

µ′
l(fl)γil,

where

γil =

{
1, if i ∈ Nl,
0, otherwise;
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for all i ∈ I and l ∈ L. By using these formulas the main steps in (8)–(9) decompose into single-dimensional
problems:

max
0≤yi≤αi

→
{
gxi

(x, f)(yi − xi)−
1

2λ′ (yi − xi)
2

}
, i ∈ I,

and

max
0≤vl≤cl

→
{
gfl(x, f)(vl − fl)−

1

2λ′′ (vl − fl)
2

}
, l ∈ L,

respectively. Their solutions can be found by explicit formulas.

4 Numerical Experiments

As part of the work, a numerical study of the considered method was carried out on test examples. The method
was implemented in C++ with a PC with the following facilities: Intel(R) Core(TM) i7-4500, CPU 1.80 GHz,
RAM 6 Gb.

We took the linear functions of arc non-reliability:

µl(fl) = µ0,lfl, µ0,l > 0, l ∈ L,

and logarithmic functions of connection utilities

ui(xi) = u2,i log(u0,i + u1,ixi), uj,i > 0, j = 0, 1, 2, i ∈ I.

The coefficients µ0,l, u0,i, u1,i, and u2,i were determined on the basis of trigonometric functions:

µ0,l = | cos(l)|+ 1,

u0,i = 2 ∗ | sin(2i)|+ 1,

u1,i = | sin(i+ 1)|+ 1,

u2,i = 3 ∗ | sin(2i)|+ 1.

The maximal flow cl along arc l was selected in the segment [1, 10] depending on the arc number as follows:

cl = 10 ∗ | cos(l + 2)|+ 1.

The maximal flow αi for connection i was selected in the segment [1, 7] depending on the connection number as
follows:

αi = 7 ∗ | sin(i− 1)|+ 1.

The upper non-reliability bound βi was selected in the segment [1, 5] depending on the connection number as
follows:

βi = 3 ∗ | cos(i− 1)|+ 1.

The parameters τ1, τ2, λ
′, and λ′′ were fixed as follows:

τ1 = 0.9, τ2 = 0.9, λ′ = 0.009, λ′′ = 0.009.

The distribution of the available arcs across the connections was chosen either uniformly or according to the
normal distribution law. We took two versions of the gradient projection method. The first does not involve any
line-search, the second involves an Armijo type line-search.

Let us introduce the additional notations:
ε is the accuracy of a solution of the problem;
Tε is the total solution time (in seconds) of the penalty method containing the gradient projection method

without line-search;
Tε,ls is the total solution time (in seconds) of the penalty method containing the gradient projection method

with line-search;
Iε is the number of iterations of the penalty method containing the gradient projection method without

line-search;
Iε,ls is the number of iterations of the penalty method containing the gradient projection method with line-

search.
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Table 1: Calculations for |I| = 620, |L| = 310 and different ε

ε Tε Iε Tε,ls Iε,ls
10−1 0.031 280 0.063 400
10−2 0.094 914 0.219 1250
10−3 0.156 1310 0.313 1780
10−4 0.219 1729 0.422 2377

The penalty method was stopped if the norm difference between two sequential iterates appeared less than
the accuracy. In Table 1, the numerical results are given for the case where |I| = 620, |L| = 310 and for different
values of the accuracy ε.

Note that the working time was less than one second. We can also observe that similar results were obtained
for fixed ε and |L| and different |I| (see 2), and for fixed ε and|I| and different |L| (see 3).

Table 2: Calculations for ε = 10−2, |L| = 310 and different |I|

|I| Tε Iε Tε,ls Iε,ls
310 0.032 626 0.079 863
620 0.094 914 0.219 1250
930 0.157 869 0.328 1192
1240 0.203 809 0.406 1110

Table 3: Calculations for ε = 10−2, |I| = 310 and different |L|

|L| Tε Iε Tε,ls Iε,ls
310 0.032 626 0.079 863
620 0.047 559 0.109 775
930 0.109 538 0.203 746
1240 0.109 519 0.235 719

From the experiments we conclude that the version of the penalty method containing the gradient projection
method without line-search appeared somewhat better than that with the line-search. In general, the method
attained a solution with low accuracy quickly enough, but the additional analysis and selection of parameters
for more effective implementation of the method are necessary.
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