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Abstract. Action rule mining is an extension of the widely used task
of learning classification rules. In addition to information expressed in a
standard classification rule, an action rule suggests a course of action.
If performed, this action will increase the probability that the class of
the instance will change to the desired value. Such rule can either be
interpreted as a recommendation for an action, or as a counterfactual
explanation for the class assigned to the instance. In this paper, we report
on a new implementation of action rules discovery that is available in
Python (ActionRules package) and on a new experimental method for
learning action rules from large datasets (RandomForestRules package),
which is based on extraction of classification rules from Random Forests.
The paper can serve as a manual for using the created packages or as a
guide for researchers who would like to extend them, providing also guide
to action rule discovery. The text also includes performance evaluation
of reduction trees, which speed up the mining process.
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1 Introduction

An action rule describes how an action (a change in the value in one or more
flexible attributes) could impact the classification of a given object. Similarly as
standard classification rules [5], action rules can also be learnt from data [9]. In
addition to choosing the attribute serving as the predicted class, the required
additional settings from the user is a designation of a subset of attributes as
‘flexible’; the remaining attributes are considered as ‘stable’. Also, the user needs
to set which target class values are desired (wanted).

Considering the well-known Titanic dataset1, an example of a generated ac-
tion rule is: “If attribute ‘Sex’ is ‘female’, attribute ‘Embarked’ value ‘Southamp-
ton’ is changed to ‘Cherbourg’, attribute ‘Passenger Class’ value ‘3’ is changed
to ‘1’, then ‘Survived’ value ‘0’ is changed to ‘1’ with support: 5%, confidence:
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58% and uplift: 6%.” This action rule can either serve as recommendation for a
course of action to take to increase the probability of survival, or more fittingly
on this retrospective dataset, a counterfactual (“what if”) explanation for the
classification.

To the best of the author’s knowledge, the only publicly available implemen-
tation of action rules is LISp-Miner2 developed at the University of Economics
in Prague, which is primarily focused on Windows users who use it via a Graph-
ical User Interface. In this paper, we introduce an alternative implementation of
action rule mining for Python.

The ActionRules package3 covered in this paper implements the action rules
algorithm as described in [9] with a performance improvement by a reduction
tree described in [10]. We also describe its experimental extension available as
RandomForestRules package4, which extracts classification rules from tree en-
sembles generated by Random Forests. The packages are accompanied by several
Jupyter Notebooks, demonstrating different use cases of the software. The pack-
ages are available under an open license (MIT).

The structure of the work is the following. In Section 2, we motivate the prob-
lem of action rule mining. Section 3 gives the details of the algorithmic approach
used. In Section 4, we present a proposal for a new method for extracting asso-
ciation rules from Random forests. Section 5 describes the new implementation
of action rules, which is the main contribution of this paper. Section 6 describes
the attempted performance improvements: reduction trees and extracting action
rules from Random Forests. In the conclusions, we summarize the contributions.

2 Background

Algorithmically, there are two principal approaches to action rule mining [4]: a
rule-based approach and the object-based approach.

The rule-based approach is divided into two independent steps. In the first
step, classification rules are mined by any suitable association rule mining algo-
rithm (for example Apriori [2] modified for Classification Association Rules [7]).
In the second step, action rules are generated from the classification rules.

In the object-based approach, action rules are discovered directly from the
source dataset. Specific algorithms include LERS (Learning from Examples based
on Rough Sets) or ERID (Algorithm for Extracting Rules from Incomplete De-
cision System) with atomic action sets [4].

In the software package introduced in this paper, we adopt the rule-based
approach, which is in our opinion more modular. There is a range of highly
performing association rule mining algorithms that can be adopted for the first
step of classification rule mining.

2 https://lispminer.vse.cz/
3 https://github.com/lukassykora/actionrules
4 https://github.com/lukassykora/randomForestRules
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2.1 Phase 1: Classification Rule Mining

In the first step of the rule-based approach, classification rules are mined. A
formal representation of a classification rule containing four conditions is:

r = [(a1 ∧ b1 ∧ c1 ∧ e1)⇒ d1], (1)

where a1, b1, c1, e1 are values of features (attributes) in the antecedent of the
rule, and d1 is a value of the target variable predicted by the consequent of the
rule.

Each discovered rule is accompanied by values of support and confidence that
express its quality.

The support of a rule ant ⇒ d1 (denoted as sup(ant ⇒ d1)) is a number
of transactions (rows in training data set) that match both the antecedent and
consequent of the given rule.

The confidence of a rule ant⇒ d1 (denoted as conf(ant⇒ d1)) is expressed
as sup(ant ⇒ d1)/sup(ant). It corresponds to a ratio between the number of
transactions that satisfy the antecedent as well as the consequent to the number
of transactions that satisfy the antecedent of the rule (denoted as sup(ant)).

2.2 Phase 2: Generation of Action Rules

In the second step, action rules are formed from a subset of discovered classifi-
cation rules.

An action rule can be represented as:

r = [(ω) ∧ (α→ β)]⇒ [φ→ ψ], (2)

where ω is a fixed condition (set of stable attributes), which describes the
object, (α→ β) is the proposed to change to a subset of user-designated flexible
attributes and (φ→ ψ) represents the implied change to the target attribute.

The quality of action rules can be represented using the following mea-
sures. Let r be an action rule, which was generated from two classification
rules r1 and r2. We compute the support of the action rule r as sup(r) =
min(sup(r1), sup(r2)). The confidence of the action rule r is computed as conf(r) =
conf(r1)∗conf(r2). These definitions were adopted from [4] and simplified. Note
that other somewhat different definitions can also be found in the literature [11].
Uplift is a measure used to predict an incremental response to an action [8].
We propose to adapt this measure for the purpose of evaluating an action rule
r as follows: uplift = P (decision|treatment) − P (decision|no treatment). The
instances are divided into two groups : control and exposed. Exposed group
(treatment) is exposed to the recommended action whereas control group (no treatment)
is suppressed from the recommended action. The decision expresses the classi-
fication of the instances.

Note that the definitions of support and confidence for action rules are dif-
ferent from these definitions for classification rules.



2.3 Example

Below is an example of two classification rules discovered from the Titanic
dataset.

r1 = [(Sex : female ∧ Embarked : S ∧ Pclass : 3)⇒ Survived : 0],

with support 10% and confidence 55%. (3)

r2 = [(Sex : female ∧ Embarked : C ∧ Pclass : 1)⇒ Survived : 1],

with support 6% and confidence 86%. (4)

Rule r1 can be interpreted as follows: women who embarked on a voyage in
Southampton in the third class did not survive with probability of 55%. Rule r2
can be interpreted as follows: women who embarked on a voyage in Cherbourg
in the first class survived with probability of 86%.

Based on these two classification rules, the following action rule can be gen-
erated:

r = [(Sex : f) ∧ (Embarked : S → C) ∧ (Pclass : 3→ 1)]⇒ [Surv. : 0→ 1],

with support 5 %, confidence 59 % and uplift 5.7%. (5)

This action rule can be interpreted as follows: women who travelled from
Southampton in the third class would have increased their chances of survival if
they had changed their boarding place to Cherbourg and had paid extra money
for the first class.

3 Action Rule Generation with Rule-based Approach

In the following, we will outline the phase 2 of the rule-based approach for action
rule generation, in which the algorithm attempts to form action rules from all
pairs of classification rules.

The process is the following:

– Discovered classification rules are (conceptually) represented as a table where
each condition in the antecedent is a column. There is also one column for
consequent (target variable).

– Conditions in the antecedent are divided into stable and flexible. Stable
conditions do not allow any change of their state (no action can be taken).
Flexible conditions allow changing their state (the action can be taken).

– The table of classification rules is divided into two tables. The first table Xβ

contains classification rules without the desired state. In the second table
Xα, there are classification rules with the desired state.



– Classification rule pairs are created as a Cartesian product of the rows in
these two tables Xβ × Xα. Each of these rowcount(Xβ) ∗ rowcount(Xα)
classification rule pairs is a candidate for an action rule. The action rule
candidate is therefore formed from a rule predicting other than a desired
class state before and a rule predicting a desired class state after.

– The algorithm loops through all candidates. If there are no pairs left, the
algorithm finishes, and returns the saved action rules.

– On each loop, all the stable antecedent pairs and flexible antecedent pairs
are checked. If the conditions given in Section 3.1 are satisfied, the pair is
changed to an action rule and saved.

3.1 Conditions for Validation of Classification Rules Pairs

There are several approaches to check whether a pair of classification rules sat-
isfies the conditions and can be used for generation of an action rule.

Baseline approach The approach, which we consider as a baseline, is described
in [4].The same stable attribute needs to be present in both rules and their values
must be the same. Flexible attributes of both classification rules must be present
in both rules and their values must be different.

Values of the target attribute in the consequent must comply with the user
setting. For example, when generating action rules for the Titanic dataset, we
would like to change the target state from Survival: No to Survival: Yes, but not
in the opposite way.

Extended action rules An alternative approach described in [9] may generate
more action rules, because it allows to generate candidates from the input classi-
fication rules even if they have missing values. For example, this approach would
generate rules such as: “If any ‘Pclass’ value is changed to ‘1’, then ‘Survived’
value ‘0’ is changed to ‘1’.”

3.2 Speed Up by Reduction Tree

A pre-processing step for speeding up the phase 2 of action rule mining is de-
scribed in [10]. This step is implemented in the software package introduced in
this paper.

This approach is based on the splitting of the table of all classification rules
to multiple small tables, which allows pruning the search space. For each stable
attribute, one table with rules is generated, since the values of stable attributes
must always be the same in the state before and the state after in the action
rule candidate pair. Some tables can be eliminated because they do not contain
the desired target value, or they do not have enough variability, see Figure 1.



Fig. 1: Reduction tree for baseline action rules mining. Desired class d is ‘1’,
stable attributes are a and b, and flexible attributes are c, e and f . Each row
represents one classification rule.



4 Extraction of Action Rules from Random Forest

A challenge for classification rule mining are datasets containing many features
and many rows. In this case, association rule classification algorithms used in
phase 1 of action rule generation can fail due to excessive combinatorial com-
plexity.

Random Forest [3] is a classification learning method that produces an en-
semble of decision trees. The target class is selected by voting. This method is
known for its ability to process very large multidimensional datasets.

Classification rules can be extracted from a Random Forest model and used
as an input to phase 2 of action rule generation. The proposed algorithm for
generation of action rules from Random Forests based on this principle is outlined
in the following:

– Features in the input data are subject to one-hot encoding. This replaces
each multinominal column with n distinct values with n−1 binary columns.

– Random Forest classifier is learnt on the recoded dataset.

– All decision trees are extracted from the Random Forest Classifier.

– Extracted decision trees are transformed to classification rules.

– Classification rules not meeting minimum support and minimum confidence
thresholds are removed.

According to preliminary experiments, extraction of classification rules from
a Random Forest is much faster on datasets, which are difficult to process for
association rule mining algorithms, such as Apriori. The disadvantage of this ap-
proach is that the the standard algorithm for inducing Random Forests is neither
deterministic nor exhaustive. Association rule mining algorithms guarantee that
a complete set of rules valid with respect to user-set minimum confidence and
minimum support thresholds is found. Furthermore, there is no random element
involved in association rule mining.

5 Implementation

The ActionRules package allows two ways of operation. Either the complete
mining workflow can be executed, using Apriori for phase 1, or only action rule
generation (phase 2) can be initiated from classification rules supplied as a data
frame.

The ActionRules package and RandomForestRules package are available in
PyPi (Python Package Index). They can be installed by the following commands:

pip install actionrules-lukassykora

pip install randomForestRules-lukassykora



5.1 ActionRules package

The package for action rules mining uses PyFIM5 library as a default option for
classification rule discovery. The PyFIM package returns an exhaustive list of
classification rules used as input for action rule generation.

The ActionRules package uses the same general machine learning workflow
as Scikit-Learn [1], a popular data mining library.

Instantiate model object

Firstly, the model is instantiated.

Code 1 Instantiate model object

1 from actionrules.actionRulesDiscovery import ActionRulesDiscovery
2

3 actionRDiscovery = ActionRulesDiscovery()

Fit model to training data

In the next step, the model is fit to training data. In this case, Titanic dataset
is used. All features are pre-processed to be nominal.

In the example listing below, the stable attribute is Age, flexible attributes
are Embarked, Fare and Pclass, the consequent is set to Survived. Minimum
confidence is set to 55% and minimum support to 3%. These thresholds are used
only for generating classification rules (phase 1). Desired class for Survived is
1. Mining of extended action rules is not enabled (is nan=False) and reduction
trees are used to speed up phase 2 (is reduction=True). Both the minimum
number of stable attributes and the minimum number of flexible attributes in
action rules is set to 1.

Code 2 Fit model to training data

4 actionRDiscovery.read csv(”data/titanic.csv”, sep=”\t”)
5 actionRDiscovery.fit(stable attributes = [”Age”],
6 flexible attributes =
7 [”Embarked”,
8 ”Fare”,
9 ”Pclass”],

10 consequent = ”Survived”,
11 conf=55,
12 supp=3,
13 desired classes = [”1”],
14 is nan=False,
15 is reduction=True,
16 min stable attributes=1,
17 min flexible attributes=1)

5 http://www.borgelt.net/pyfim.html
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Predict & Evaluate

This is the last step of the action rule mining workflow.

Code 3 Predict & Evaluate

18 new/˙data = [[’32-48’, ’S’, ’very high’ ,’3.0’]]
19 df˙new˙data = pd.DataFrame(new data, columns = [”Age”,
20 ”Embarked”,
21 ”Fare”,
22 ”Pclass”])
23 actionRDiscovery.predict(df new data)

As a result, the application returns a table with recommended actions (marked
with *).

Table 1: Titanic - prediction. Recommended actions are marked with *.
Age Embarked Embarked* Fare Pclass Pclass* Sex Target Uplift

32-48 S C very high 3 1 female Survived 6%
32-48 S - very high 3 1 female Survived 3%

5.2 ActionRules package combined with RandomForestRules
package

The example below shows how to use the package RandomForestRules together
with the ActionRules package. The dataset Audiology 6 is used for demonstra-
tion. Mining with Apriori using PyFIM fails on this dataset with the following
setting: minimum support: 0.5%, minimum confidence: 50% and unlimited length
of final itemsets.

6 http://archive.ics.uci.edu/ml/datasets/audiology+(standardized)
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Code 4 ActionRules package combined with RandomForestRulespackage

1 from randomForestRules import RandomForest
2 from actionrules.actionRulesDiscovery import ActionRulesDiscovery
3 import pandas as pd
4

5 df = pd.read˙csv(”data/audiology.csv”)
6

7 randomForest = RandomForest() # Initialize
8 randomForest.load pandas(df) # Load
9 randomForest.fit(antecedent = cols, consequent = ’binaryClass’, supp=0.005, conf=50) # Fit

10 frame = randomForest.get˙frame() # Get dataframe with classification rules
11

12 actionRulesDiscovery = ActionRulesDiscovery() # Initialize
13 actionRulesDiscovery.load pandas(frame) # Load classification rules
14 actionRulesDiscovery.fit classification rules(stable attributes = stable col names, # Fit
15 flexible attributes = flex col names,
16 consequent = ’target’,
17 conf col = ’confidence’,
18 supp col = ’support’,
19 desired classes = [1])
20 print(actionRulesDiscovery.get action rules representation()) # Print the result

Output:
rule 1. [(age-gt-60: t) ∧ (bone: unmeasured) ∧ (history-noise: t → f) ] ⇒
[target: 0 → 1] with support: 0.018 and confidence: 0.561
rule 2. [(age-gt-60: t) ∧ (bone: mild) ∧ (history-noise: t → f) ] ⇒ [target: 0
→ 1] with support: 0.018 and confidence: 0.561
rule 3. [(age-gt-60: t) ∧ (bone: ?) ∧ (history-noise: t → f) ] ⇒ [target: 0 → 1]
with support: 0.018 and confidence: 0.561
rule 4. [(age-gt-60: t) ∧ (ar-u: absent) ∧ (history-noise: f → t) ∧ (o-ar-c:
absent→ normal) ]⇒ [target: 0→ 1] with support: 0.001 and confidence: 0.666
rule 5. [(age-gt-60: t) ∧ (ar-u: absent) ∧ (history-noise: f → t) ∧ (o-ar-c:
elevated → normal) ] ⇒ [target: 0 → 1] with support: 0.001 and confidence:
0.666
rule 6. [(age-gt-60: t) ∧ (ar-u: absent) ∧ (history-noise: f → t) ∧ (o-ar-c: ? →
normal) ] ⇒ [target: 0 → 1] with support: 0.001 and confidence: 0.666

6 Evaluation

The evaluation was run on a notebook Dell Latitude E7470 with configuration
Intel Core i5-6300U 2.40GHz with 8GB RAM. The Titanic dataset is used for
fitting the models.

6.1 ActionRules Package Performance

In this section, we evaluate the effect of the use of extended action rules and
of reduction trees on the performance. We use the ActionRules package for the
whole process of action rules discovery.



Setup The minimum confidence was fixed to 50%, and the minimum support
threshold was varied. The evaluation was performed in four configurations: re-
duction trees enabled/disabled, extended association rules enabled/disabled. All
configurations are always tested three times and the median result is used for
comparison.

Results Results are reported in Figure 2. The left graph shows the performance
for the baseline approach to action rules mining (certainty). The right graph
shows the performance for extended action rules mining (uncertainty). The run-
time of calculation with ‘uncertainty’ is more than 100x higher, but also the
number of found action rules is higher (2443 extended action rules vs. 105 ac-
tion rules). The reduction trees have a consistent positive effect on performance.

Fig. 2: Evaluation of performance of ActionRules package on Titanic dataset.

6.2 RandomForestRules Package Performance

Setup The setting for classification rules discovery was the following: minimum
support 3% and minimum confidence 55% (these thresholds are used just for
filtering of rules extracted from the Random Forest). The package uses the Ran-
domForestClassifier7 from Scikit-learn library. All settings are kept as default,
just for n estimators several values (10,20,30) were tested. The author also sep-
arately evaluates generation of action rules from a passed list classification rules
with the following setting: stable attributes = [”Age”, ”Sex”], flexible attributes
= [”Embarked”, ”Fare”, ”Pclass”], consequent = ”Survived”, desired classes =
[”1.0”].

Results Results are reported in Table 2. As can be seen, only very few unique
classification rules were extracted from the Random Forest models, which re-
sulted in no discovered action rules. The probable reason is that the Random
Forest algorithm creates many duplicate trees (or their parts), which are largely

7 https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.

RandomForestClassifier.html
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Table 2: RandomForestRules vs. APRIORI. on Titanic dataset
Package n estimators Duration Count classif. r. Count action r.

PyFIM (Apriori) 0.5 s 189 13
RandomForestRules 30 225.8 s 11 0
RandomForestRules 20 112.0 s 9 0
RandomForestRules 10 62.6 s 7 0

overlapping. If the PyFIM package that uses the Apriori algorithm was used for
the same task, 13 action rules were discovered.

On the other hand, generating classification rules using RandomForestRules
was successful for the Audiology dataset, where application of association rule
mining to generate candidates was not successful (cf. Section 5.2).

7 Conclusion

In this paper, we described two new Python packages for action rule mining.
The first package ActionRulesDiscovery is primarily intended for mining of ac-
tion rules from classification rules generated with association rule mining (from
class association rules). The second experimental package RandomForestRules
extracts classification rules from Random Forest models. This package can be
combined with ActionRulesDiscovery to facilitate discovery of action rules from
very large multidimensional datasets.

In terms of performance, the approach taken in ActionRulesDiscovery bene-
fits from the use of PyFIM package, which wraps the high performing low-level
implementation of Apriori [6] for generating candidate classification rules. The
ActionRulesDiscovery package is written in Python. The package could be ex-
tended by rewriting the action rule generation algorithm to C or C++, which
would make the mining process faster. The direction of using random forests to
generate action rules is promising, but needs further investigation.
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