
Gathering Malware Data through
High-Interaction Honeypots

(DISCUSSION PAPER)

Angelo Furfaro1[0000−0003−2537−8918], Francesco Lupia2[0000−0003−0775−6890],
and Domenico Saccà1[0000−0003−3584−5372]

1 University of Calabria, Rende(CS), Italy
{angelo.furfaro, domenico.sacca}@unical.it

2 OKT srl, Rende(CS), Italy
francesco.lupia@okt-srl.com

Abstract. The widespread and ever increasing number of services and
devices which expose their interfaces to the Internet make the cyberspace
a fertile ground for malware activities. Hence there is a strong demand
for cybersecurity solutions ensuring their safe operation. Honeypots are
networked computer systems purposely designed and crafted to mimic
regular services, operating systems and devices with the goal of capturing
and storing information about the interactions with attacking entities
and we repute them a crucial technology in the study of cyber threats and
attacks. We presents the main features of EMPHAsis, a data streaming
analytics system based on high-interaction honeypots, which enables the
collection and analysis of relevant data about intercepted malware.

Keywords: Honeypots · Cybersecurity · Data collection · data stream-
ing analytics.

1 Introduction

The era of Internet of Things with billions of connected devices has created
an ever larger space for cyber attackers to exploit. In particular, there is a
widespread amount of automated bots scanning and probing the Internet to
search for vulnerable hosts. This has resulted in the need for fast and accurate
detection of possible system vulnerabilities and attackers by means of the pro-
cessing of the high-velocity, high-volume data from various sources to discover
anomalies and/or attack patterns as fast as possible to limit the vulnerability
of the systems and increase their resilience. Such data, generated in a real-time
data stream, need a big data streaming analysis [13, 9]: the output must be gen-
erated with low-latency and any incoming data must be reflected in the newly
generated output within seconds. In other words, big data streaming analytics

Copyright © 2020 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0). This volume is published
and copyrighted by its editors. SEBD 2020, June 21-24, 2020, Villasimius, Italy.



tools must be able to identify new information, incrementally build models and
access whether the new incoming data deviate from model predictions.

Even though many big data streaming analytics tools have been developed in
the past few years, their usage in the field of cybersecurity is not immediate and
calls for new approaches as pointed out in [5]. The main issue is how to access in
real time to valuable data on possible attackers, typically log files and security
alerts generated by operating systems and applications across various hosts and
systems. A crucial point is to provide computer systems with software tools to
identify suspicious event log activity, such as repeated failed login attempts, ex-
cessive CPU usage, large data transfers and immediate alert IT security analysts
when a possible Indicator of Compromise (IoC) is detected.

It should be noted that the techniques and attack methods employed by
malwares are typically very simple, In fact, the most used attack method is often
brute-forcing login credentials of servers and, consequently, the most heavily
attacked services are Telnet, FTP and SSH services. There are many tools used
in computer security to catch such malicious actions and one effective solution
involves the usage of honeypots. Honeypots [12] are decoy systems which aim
at emulating real services on the net in order to detect and attract malicious
agents. These emulated services are publicly displayed and their access is made
voluntarily simple to facilitate attackers’ intrusions. This is done for example
by configuring accounts and services with weak credentials. After accessing the
service, all the activities of the malicious agents are subject to monitoring and
logging and become the object of study by specialists in the sector, in order
to be able to reconstruct with extreme precision the behavior of the attacker
and thus be able to prepare prevention measures to reduce the risk of future
attacks. Furthermore, it is possible to obtain valuable information concerning
the behavior of the attacker, the actions carried out on the target system and
the types of vulnerabilities exploited to complete the malevolent activity, which
can be subsequently shared with the academia and industry researchers.

Here we present the main features of EMPHAsis, a distributed system con-
ceived to support malware detection by acting as a high-interaction honey-
pot [11]. The system is able to collect and disseminate information about new
threats that proliferate every day on the Internet by providing researchers with
fresh data that could help them to devise possible countermeasures against ma-
licious traffic. In addition to its detection, logging and monitoring capabilities,
EMPHAsis is capable to capture different malware binaries and to exploit ex-
ternal services for analyze them.

2 System Architecture

While malware’s actions may vary depending on the targeted system, there are
only few points of interest that need to be observed and analyzed: network
information, the commands executed, processes created, kernel drivers loaded
and the files created or modified by the malicious agent. Each attacker’s action
is processed by EMPHAsis according to the functional architecture depicted
in Figure 1 discussed next. The system operates by constructing dynamically



Agent1 Agentn

Storage

Core

Management and gui tools

Proxy Scheduler Sandbox Proxy Scheduler Sandbox

Fig. 1. EMPHAsis architecture

virtual environments (sandboxes) to which all traffic generated by the attacker
is redirected out. Each environment is equipped with several specialized probes,
whose goal is to monitor in a completely transparent way to the malicious entity,
specific critical events that occur in the attack scenario at hand. All the data
collected by the probes is eventually stored and indexed for subsequent use (e.g.,
in order to devise appropriate countermeasures) and possible disclosure.

In more details, the EMPHAsis architecture consists of several modules each
of which is in charge of performing a specific task. The core is the most im-
portant module which plays the role of coordinating the operations between all
the other modules of the system. Furthermore, it provides a graphical environ-
ment for managing the system, to help real-time monitoring and to visualize
the collected data. When a connection attempt reaches the system, the agent
module checks whether there is a configured service to handle the request. If a
suitable service exists, a virtual trap environment is built and executed on the
fly and all the attacker’s traffic is then redirected out to it. The upper part of
Figure 2 shows the main steps performed by the agent module in response to
an attack. In more detail, as a preliminary step the proxy component notifies
a new connection arrival to the core module while collecting also information
about the geographical origin of the attack. Then, it continues by performing
payload detection and if a suitable service is found, the request is handled and
the scheduler component is allerted. The scheduler is the main responsible for
the virtual trap environment setup. After receiving an alert from the proxy, it
prepares and starts the sandbox and then injects one or more probes directly into
the isolated environment. These probes will monitor all the actions performed
by the attacker (or malware) inside the sandbox. In particular, in the lower part
of Figure 2 is shown an example of a specific case where four probes are in place
and used for monitoring networking events, commands executed in the system



Proxy

1. Notifies connection

Scheduler

Sandbox

3. Probe injection

2. Virtual trap enviroment setup

4. Attacker's traffic redirection

Attacker

Agent

Network

Probe

Shell 

Probe

FileSystem

Probe

Network traffic

Interception
Shell commands

Interception
Filesystem changes

Interception

Exposed service (e.g., SSH)

Logged events are sent to the database

Process 

Probe

Process creation

Interception

Sandbox

Fig. 2. Agent module

shell, process creations, and changes to the filesystem. It should be noted that
the concrete implementation of these probes poses technical challenges. Indeed,
one needs to use specific tools and instruments according to the type of operating
system used by the emulated guest machine. Our probes support a custom 32-
bit Linux kernel and we rely on QEMU-KVM to emulate this platform. Further
implementation details can be found in [6]. It is interesting to notice that our
implementation of the agent exploits a fake interactive session where attacker’s
traffic is man-in-the-middle proxied. This is achieved by using a custom shell
implementation.

The storage module comprehends one or more nodes in a redundant config-
uration whose role is to offer all standard operations for storage and subsequent
consultation of the collected data. An attack can produce a significant amount
of information, which therefore needs to be properly cataloged and organized
for subsequent consultation. To this end, our system exploits appropriate com-
ponents for the storage and processing of such information, making it suitable
for the production of detailed reports and in characterizing the threats detected.
Additionally, the above processing can be customized by the user for the spe-
cific resources she is most interested in. In particular, an individual storage node
uses both a MongoDB NoSQL database [1] and an Elasticsearch database [3].
The MongoDB holds the users’ credentials required to access the control and
the data analytic dashboard, stores the configuration (including custom kernel
images and the probes) which will be downloaded by the agent module during
the initialization phase of the sandboxes. and stores the captured malware sam-



Fig. 3. Main panel of the EMPHAsis dashboard

ples. The system will then send over all the security events described above to
the Elasticsearch database. Such events can be visualized by the built-in dash-
board (see section 3) which exploits a Kibana instance for advanced filtering
mechanisms.

A key aspect in order to achieve effective results (in terms of number of
malicious actions logged and malware instances intercepted) concerns the correct
positioning of the honeypots in the infrastructure to be protected. Thus, there
is significant motivation for studying the best possible locations where agent
modules (and honeypots in general) can be deployed in a network. Interestingly,
EMPHAsis agents can be deployed both behind or outside the perimeter of
the network, therefore allowing to detect also potential insider threats. In any
case, deploying honeypots in a production environment can be problematic since
it could expose the network to far greater risks than the threats from which
it is intended to be protected. Towards this end, it is essential to study and
analyze the way honeypots interact with the rest of the system before the actual
deployment. This could be done by using virtual simulation environments, such
as the one described in [7] which allow to reproduce multiple operating systems
as well as networks in a realistic and controlled way.

3 Collected Data

All of the security events collected through the probes are sent to the storage
module and stored in the Elasticsearch database allowing for fast real-time access
through the dashboard. More precisely, we construct a single index which is
shared by every probe of any agents running in the system. Figure 3 shows the
main panel of the dashboard which displays the information about the active
sandboxes, under the control of the core module, and the number of intercepted
attacks. The lower part of the panel reports some statistics about the last five
days of operation: the percentage of sandboxes launched, grouped by their type,



and the top-10 IP addresses from where the majority of connections to the
sandboxes have been established.

Fig. 4. Shell log tab

It is possible to inspect the details specific to each sandbox and to access the
data collected by the active probes. Figure 4 shows a panel, for a given sand-
box, which is organized in more tabs each of which reports specific information
according to the following categories: shell, network, filesystem and processes.

For those sandboxes related to services based on interactive sessions, e.g. ssh

or ftp, the flow of messages exchanged (i.e. commands executed and responses)
between the attacking entity and the sandbox, is available in the shell logs tab
(the one active in the panel of Figure 4). Figure 4 depicts a scenario where the
attacker, once logged as the admin user, successfully attempted to download a
shell script from a remote host and then executed it inside the sandbox shell
environment.

Figure 5 shows the network log tab, which allows to visualize the information
about the network events relevant to the service exposed by the sandbox. In the
specific case reported in the figure, some ssh login attempts, part of a brute-force
attack directed to gain access as the root user, are visible.

When a malware successfully gain access to a sandbox, from where it is
possible to modify the content of the local filesystem, e.g. from a ssh session,
such modifications are tracked and the relevant events (i.e. filesystem related
system calls invocations) displayed in the filesystem log tab as shown in Figure 6.
Such events are grouped on the basis of the specific path and ordered by the
timestamp of execution.

In a similar way, the processes log tab displays the time intervals when pro-
cesses launched by a malware from inside the sandbox are executed.

The EMPHAsis probes are able to capture and store in the system database
all the files dropped by an attacker (e.g. shell scripts, binary files, source code)
during a session. Before being stored, such files undergo a basic analysis by re-



Fig. 5. Network log tab

Fig. 6. Filesystem log tab

sorting to the malware identification and classification services offered by Virus-
total [14] and those developed by Cythereal [2]. In particular the Cythereal
MAGIC API [2] exploits a state-of-art machine-learning based malware analy-
sis system which is able to identify the belonging family of a malware even in
presence of sophisticated code obfuscation techniques.

4 Conclusions and Future works

We presented the main functionalities of EMPHAsis and it practical applica-
bility for malware capturing, analysis and prevention. EMPHAsis exploits high-
interaction honeypots and has a modular and extensible architecture making it
effective and suitable for various practical deployment scenarios. Currently EM-
PHAsis features the emulation of Linux based systems on top of which the great



majority of Internet exposed services are based on. Moreover, it can be easily
extended to support other unix-based systems. As a future work, we plan to sup-
port also computer systems based on Microsoft Windows or on Apple macOS.
Another important direction of improvement is the integration of EMPHAsis
with more advanced data analysis tools specifically tailored to cybersecurity
events, i.e. the so called security information and event management systems
(SIEM), like IBM QRadar [8] and ElasticSIEM [10], which has been recently
developed on top of Elasticsearch. We also plan to extend the interoperability of
EMPHAsis with other malware analysis tools, like for example cuckoo [4] san-
box, and to integrate in it virtual environment technologies for building more
realistic and complex decoy environments [7], e.g. honeynets, and thus increasing
the effectiveness in capturing more sophisticated malware.

Acknowledgments This research has been supported by the ISCOM - Italian
Ministry of Economic Development under agreement EMPHAsis (CUP B51G17000300006).

References

1. Cuckoo. https://cuckoosandbox.org/.
2. Cythereal, changing the rules of cyber engagement. http://www.cythereal.com.
3. Elasticsearch. https://www.elastic.co/products/elasticsearch.
4. Mongodb. https://www.mongodb.com.
5. Pelin Angin, Bharat K. Bhargava, and Rohit Ranchal. Big data analytics for cyber

security. Security and Communication Networks, 2019:4109836:1–4109836:2, 2019.
6. Michele Bombardieri, Salvatore Castanò, Fabrizio Curcio, Angelo Furfaro, and He-

len D. Karatza. Honeypot-powered malware reverse engineering. In 2016 IEEE In-
ternational Conference on Cloud Engineering Workshop, IC2E Workshops, Berlin,
Germany, April 4-8, 2016, pages 65–69, 2016.

7. Angelo Furfaro, Luciano Argento, Andrea Parise, and Antonio Piccolo. Using
virtual environments for the assessment of cybersecurity issues in iot scenarios.
Simulation Modelling Practice and Theory, 73:43–54, 2017.

8. IBM. QRadar. https://www.ibm.com/security/security-intelligence/qradar.
9. Taiwo Kolajo, Olawande Daramola, and Ayodele Adebiyi. Big data stream anal-

ysis: a systematic literature review. J. Big Data, 6:47, 2019.
10. Mike Paquette. Introducing Elastic SIEM.

https://www.elastic.co/blog/introducing-elastic-siem, 2019.
11. Lance Spitzner. The honeynet project: Trapping the hackers. IEEE Security &

Privacy, 1(2):15–23, 2003.
12. Lance Spitzner. Honeypots: Catching the insider threat. In 19th Annual Computer

Security Applications Conference (ACSAC 2003), 8-12 December 2003, Las Vegas,
NV, USA, pages 170–179, 2003.

13. Nicoleta Tantalaki, Stavros Souravlas, Manos Roumeliotis, and Stefanos Katsavou-
nis. Linear scheduling of big data streams on multiprocessor sets in the cloud. In
Payam M. Barnaghi, Georg Gottlob, Yannis Manolopoulos, Theodoros Tzourama-
nis, and Athena Vakali, editors, 2019 IEEE/WIC/ACM International Conference
on Web Intelligence, WI 2019, Thessaloniki, Greece, October 14-17, 2019, pages
107–115. ACM, 2019.

14. Virustotal. How it works. https://support.virustotal.com/hc/en-
us/articles/115002126889-How-it-works.


