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Abstract. Efficient searching in a number of strings is a common task in
computer science and radix-trees are often used as a compact storage for
string saving. One variant is the Adaptive-Radix-Tree (ART). ART has
adaptive node sizes for more compact and cache-friendly memory layout.
Graphical Processing Units (GPUs) can be used as hardware accelerator
for massively parallel tasks and in addition they use very fast memory.
We propose a parallel approximate search in the ART on CPU and GPU
to optimize the throughput of queries and speed up applications that de-
pends on these algorithms. Thereby we use the edit distance to compare
two search keys in the tree and select appropriate values. We use the CPU
for experimental comparison with the GPU, which have several thousand
cores and modern processors typically have four to several dozens cores,
but theses cores and RAM are more flexible. We propose several varia-
tions of the CPU algorithm like fixed vs. dynamic memory layouts and
pointer vs. pointer-less data structures. In our experimental evaluation
with OpenCL on ROCm 3.0, AMDs platform for GPU-Enabled HPC
and Ultrascale Computing, the speedup and throughput of the GPU im-
plementation for the approximate search in comparison with the best
CPU variant are in the maximum up to factor 4.16 depending on the
size of the tree and batch size. The speedup between the best and the
worst CPU algorithm is up to factor 11.67, depending on tree and batch
size.

Keywords: Adaptive-Radix-Tree(ART) · CPU acceleration · GPU ac-
celeration · OpenCL · edit-distance · parallel · approximate search

1 Introduction

Modern multicore processors have many cores and further techniques of paral-
lelism. Furthermore GPUs have a higher computing power and are much more
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optimized for parallel processing. They have up to several thousand cores, but
these cores are different from the CPU ones. They are more specialized to per-
form a single operation on multiple data [1] (SIMD). Also a graphics card con-
tains multiple gigabytes of very fast high-bandwidth memory, but data transfers
and fixed memory hierarchies can have negative implications on the performance
if not considered during algorithm design. In computer science, key-value pairs
are often used, e.g. indices in database or as tags in geographic information re-
trieval systems [17]. These algorithms benefit from an efficient and fast access to
the values by a certain key. The keys are often strings in most times. An efficient
data structure for string keys is the PATRICIA-tree [15] and the more general
radix tree, which is a memory-efficient storage for the keys and widely used for
indexes. The memory-efficient storage is the big advantage of radix trees in com-
parison to other structures like the skiplist, where keys are stored independently
from each other. One variant of the radix tree is the Adaptive-Radix-Tree [12]
(ART), which has adaptive node sizes and a lower memory consumption than
the other variants because the shared prefix of multiple keys is only stored once.

Besides searching for an exact matched key, an approximate search is inter-
esting as well. Approximate searches are widely used to retrieve information from
databases and dictionaries. Also an approximate search can be used to find an
optimal sequence alignment and matching parts of DNA sequences [10]. For an
approximate search in ART, we need a metric to distinguish string keys. There
are several different approaches like for example the Jaccard-Coefficent [6], the
Cosine-Similarity [16] and the Edit-Distance [13]. The Jaccard-Coefficent uses
set operations on sets of n-grams in comparisons. This n-grams can be for ex-
ample, words or characters. The Cosine-Similarity is based on the frequency of
words in a text. The edit distance represents the number of insert, replace and
delete operations, which are required to transform a string into another [13] and
is hence very intuitive for humans. Because the edit distance is a widely used
metrics for string similarity, we propose approximate search algorithms to de-
termine edit distances between a search term and a given set of keys and we
use ART in order to avoid multiple computations for shared prefixes. These al-
gorithms are using CPU and GPU acceleration and are optimized for massively
parallel execution.

Our contributions are

– highly efficient approximate search algorithms for ART on CPU and GPU,
– variants of these algorithms on the CPU, including pointer versus pointer-

less data structure and using fixed versus dynamic memory allocation,
– the most efficient GPU variant with pointer-less data structure and using

fixed memory allocation, and
– an extensive experimental evaluation and analysis of these algorithms.

First we look at related work in Section 2. Next the ART is explained in
Section 3.1 and then the concept of the searches is described in Section 4. Finally
we present a comprehensive experimental evaluation in Section 5 and conclude
in Section 6.



2 Related Work

In many papers approximate searches, GPU acceleration and trees are a research
topic, but the focus is different. Papers like [10] describe the basics of approx-
imate algorithms and the calculation of the edit distance. A problem for most
tree structures on GPUs is that pointers aren’t optimal for GPUs. Approaches
to handle pointer data structures exist in [11] and [14]. The contribution in [14]
describes a tree structure for fast copying of different types of trees. A common
and widely used tree is the B+. The authors of [7] have focused on this tree and
optimize their algorithms for GPGPU. It is used wherever the order of elements
and parallel computing are important. Another tree structure is FAST [9], which
is a binary and architecture sensitive tree. It is optimized for low latency and uses
thread and data-level parallelism and explore them on CPU and GPU. Therefore
the sizes for page, cache line size and SIMD width are variable. GPU LSM [4] is
a data structure for dynamic dictionaries on GPU. It has support for fast inser-
tion and deletion based on the LSM-tree. For retrieval lookup, count and range
queries are supported. For the Adaptive-Radix-Tree the GPU-based radix tree
(GRT) [1] variant has been developed, which is written in CUDA and supports
exact and range based search. A mapping is used by the search algorithm to
transfer the tree structure to the GPU memory. The authors of [3] compare the
Adaptive-Radix-Tree with Judy, two variants of hashing via quadratic probing
and three variants of Cuckoo hashing in an extensive experimental evaluation.
The results are that hash tables perform better in OLAP and OLTP scenarios,
but for range queries ART is significantly faster. In comparisons with a B+-tree
ART is slower in performing range queries. ART is two times faster than Judy,
which is also an adaptive radix tree variant, but ART needs the double space
of memory. Besides trees hash tables are an important data structure. There-
fore [2] introduces an algorithm for building large hash tables in real time. For
this purpose, they used a data-parallel approach and build the tables on GPU.
They also applied their hashing methods to graphic applications. In comparison
to the discussed works we consider an GPU accelerated approximate search in
ART as our main contribution, which hasn’t been considered for this data struc-
ture in the existing literature to the best of our knowledge. This includes the
development of different parallel variants for modern CPU and GPU features.

3 Basics

3.1 The Adaptive-Radix-Tree

The Adaptive-Radix-Tree (ART) [12] is a tree designed for in-memory-databases.
ART has four different node types with three different memory representations
for an efficient memory layout for different node sizes. Nodes are created at the
deepest possible level of the tree; this is called lazy expansions. Further path
compression is used to reduce the size of the ART and to speed up the search.
We present an example ART in fig. 3. The tree contains 10 keys and two node
types Node4 and Node16 are used. These types contain a maximum of four and



16 children. All inner nodes except one have a shared prefix of length one. The
leafs contain numbers as values.

Nodes are only created if they are required and superfluous nodes with only
one child are removed. If the maximum number of children is exceeded, a bigger
node is used. If the number is lower than the minimum, a smaller node is chosen.
Path compression uses a hybrid approach. In every node there is space to store
a fixed number of characters. If this space is exceeded, a modified approach is
applied. Instead saving subsequent characters, the length of the string is saved.
This length is used by the search algorithm to jump over characters in the search
term and to select the next character for the branch decision. This approach leads
to wrong results in some cases, because a wrong search term is marked as correct
even if different characters are in the missing part of the string. This problem
can be avoided if the complete key is also saved in the leaf. Hence if the search
ends in a leaf node the whole key has to be compared. [12]

3.2 Edit-Distance

The edit distance can be calculated with a simple algorithm. For two keys u,v
with the length m and n, a matrix M can be calculated where the initial case
is M0,0 = 0,Mi,0 = i, 1 ≤ i ≤ m,M0,j = j, 1 ≤ j ≤ n. Then the further cells can
be determined by applying the rules given in fig. 1a.

I f ui = vj
then

Mi,j = Mi−1,j−1

e l s e

Mi,j = min


Mi−1,j−1 + 1

Mi,j−1 + 1

Mi−1,j + 1

end i f
1 ≤ i ≤ m, 1 ≤ j ≤ n

(a) Rules for computing the edit dis-
tance
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(b) Edit distance example and example
computation of one cell

Fig. 1. Rules and an example matrix for the edit distance

Without backtracking, the algorithm requires only the last column to com-
pute the next. This will be used to reduce the memory consumption. We can
reduce the size further and can use only one column and a variable for compu-
tation, but this takes away the possibility to revert the last computation if a
branch occurs.



4 Approximate Search Algorithm

In this section we develop an approximate search for CPUs and GPUs. Further-
more, we optimize the approximate search for better throughput and to handle
bigger trees.

4.1 Memory Organization

If ART is used on a GPU, a tree that is stored in a continuous memory is
required because copying a big chunk of memory is faster than many small pieces
of memory. Nodes are linked by offsets in order to avoid pointers, which would
be invalidated by the transfer on the GPU. An example of the memory mapping
is shown in fig. 2. In this example we traverse the tree with a depth-first-search
algorithm. We reserve memory on the way down and insert the data on the way
up. This is necessary because the offsets of all children have to be known before
saving a node. The complete memory object will grow dynamically because the
size of the tree is unknown. However, the memory object is continuous, so it
has a fixed size and needs to be extended in case of an overflow. Therefore the
overflow has to be detected and a new memory object has to be created. Then
the algorithm copies all data to the new memory object, but the offset remains
unchanged because it is relative to the beginning position of the memory. After
the algorithm finishes, a continuous memory for the tree is created. The root
node is placed at the first address of the continuous memory.

K0

K1

B0 B1

K2

B2 B3

K0 K1 B0 B1 K2 B2 B3

Fig. 2. Mapping of a tree in a continuous memory, red edges are back jumps. We start
at K0 and reserve memory for the node. Then we visit K1 and reserve memory. Then
we reserve memory for B1 and we reach the end of a path. Now we store B0 in the
reserved memory and jump back. The same happens to B1. Then all children of K1

are stored and we store the node in the reserved memory and go to K0. Because K0

has another child K2, we are processing the subtree in K2 in an analogous way.

4.2 Approximate Search on ART utilizing CPUs

The CPU has flexible cores combined with dynamic memory and can calculate
many threads in parallel. To address these advantages, we develop an algorithm



(see fig. 3a), which uses these techniques to calculate the edit distance and to
choose a key that is below or equal this distance. First we can use threads to
run multiple searches in parallel. Furthermore, we have to find out if we can
also use parallelism inside the tree. Because for calculation of the edit distance
only the previous and the current columns are necessary, with dynamic memory,
we can simply copy the column for each branch. Then we start a new thread
with this column and the current position in the tree. We use tasks with an
automatic management of threads to avoid problems with the overhead of thread
start, and stop operation and with an overload if there are too many threads.
If we reach a node, where all edit distance values are above the maximum edit
distance, we prune the whole subtree, and use backtracking in order to visit
not already visited branches of previous nodes. Note that previous columns are
already determined. We only have to reset the position and remove all columns,
except of the previous ones. If we reach a leaf we calculate the edit distance for
the last characters and look at the last element in the column. If it is lower than
or equal to the maximum edit distance, we have found a proper key and we have
to save the value in a list. Because the algorithm runs in parallel, we have to lock
the list and then save the value. Because we search in parallel, we need to lock
the list with a write-lock. This is sufficient, because we require unique search
terms in one batch and hence it does not occur that they reach the same leaf.
Alternatives are that we can use multiple lists and merge them at the end. Please
note that we can’t allocate fixed sized memory for lock free access, because the
result size in each search is different and unknown.

4.3 Approximate Search on ART utilizing GPUs

For the GPU algorithm, please see fig. 3b for an example. Because the GPU has a
different architecture, our algorithm is more complex than the one on the CPU.
We use parallelism for multiple search requests and for root node processing.
Because we don’t have dynamic memory we can’t create or remove columns.
Therefore, we use a static memory buffer with two columns with the maximum
length of a search term and calculate the edit distance alternating the roles of
two columns. First all work-items calculate the edit distance of the root node
in parallel and save this value in a sequential reset buffer. Then all work-items
process the deeper nodes sequentially. To save the progress and to have a proper
ending condition, the maximum path length in the tree is necessary. With this
length, we create a buffer, where we save the number of processed children in
a node for the current path. If we reach a leaf or the maximum edit distance,
we increment the counter for the processed children in the level above. Because
we don’t have a history of the edit distance, we have to jump to the sequential
root and calculate all edit distances again. Then we reach the position again and
we select the next child. To reduce this overhead for long paths we additionally
reserve memory for a reset buffer in the half length of the path.

A major problem is the result buffer, because the number of results is un-
known, but the buffer size has to be known before the executions starts. The
result of a search can be zero to number of leafs in the tree. We limit the amount



of memory and if we detect an overflow, then we abort. This leads to unfinished
executions and missing results. Hence we modify the search algorithm to filter
missing queries and execute them sequentially with enough memory for all re-
sults. Furthermore, we use a three level result buffer shown in fig. 4 to optimize
the fill level. The size increases with the shared level. Level 1 only has space
for a few results and the third level has space for millions of results. Because
sharing memory between work-items require concurrent access, lock and unlock
functionality is indispensable. Therefore atomics are used to increment a counter
and get the old value. This value is used to exclusively access the buffer cell. For
a better bandwidth and GPU usage, multiple threads can be started on the CPU
and every thread gets a chunk of search queries and executes them on the GPU
in parallel. Therefore every thread has separate buffers except of the tree buffer,
which is always shared read-only.
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Fig. 3. Comparison of tree traversal with edit distance in a) CPU and b) GPU algo-
rithms. We search for all keys that have a maximum edit distance of two to the search
term "institute". To visualize the calculation of the edit distance, the columns for the
path to the node with the key "incoming" is provided



5 Experimental Evaluation
kernel
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Fig. 4. A kernel work-item can store the
data of unknown length using different
memory levels. First it uses the level 1
buffer directly and exclusively. If this mem-
ory is full, level 2 memory is used and
shared with all work-items in a work-group.
If this memory is depleted, level 3 buffer is
used. There are two buffers, the first half of
the work groups share the first half and the
second half share the second. If all buffers
are depleted, the work-item tags the search
with an overflow bit and the search is se-
quentially executed afterwards

We evaluate the proposed algorithms
for CPU and GPU in this section.

5.1 Experimental Environment

The experimental evaluation runs on
a Ryzen 1700X with 8 cores and 16
threads and a RX Vega 56 with 8GB
HBM2-memory and 56 compute-units
with 1024 processing elements each.
Therefore 57344 work-items can be
executed in parallel. The local mem-
ory on the GPU is 64KB large. The
evaluation system is equipped with
16GB RAM and an SSD. Ubuntu
18.04 is used as software platform and
we compile the code with the GCC
compiler in version 8. OpenCL accel-
eration is provided via ROCm 3.0.

5.2 Benchmark Data

For our experiments, a compilation of
synthetic and real test data is used.
The load times of a search depends
on various parameters, whereby the
most important ones are the num-
ber of search terms, the number of
branches in a node, the depth of the
tree and the length of the shared pre-
fix. Each of these properties is exam-
ined in this evaluation. For a single
experiment the other properties are
fixed and then the examined property
is changed. We repeat a search mostly
10 times except for single runs that take longer than one hour. These searches
are only repeated three times. If a search takes longer than four hours, we used

https://www.amd.com/de/products/cpu/amd-ryzen-7-1700x
https://www.amd.com/de/products/graphics/radeon-rx-vega-56
https://www.ubuntu.com/desktop
https://gcc.gnu.org
https://www.khronos.org/opencl
https://rocm.github.io



two executions. The duration is measured and the average is calculated and dis-
played in graphs. If the number of search requests isn’t displayed in the graph
of the approximate search, 10,000 requests are made per iteration. The search
terms are created by randomly choosing a key from the dataset, which is modi-
fied by a specific number of characters. Additionally to the described synthetic
data and queries, and for more realistic data we use a data set from the billion
triples challenge (BTC) [5]. This real-world data set contains 19,655,239 triples
with 4,352,096 unique keys and the longest key has a length of 32,628. The re-
sulting tree has a maximal path length of 34. Further the tree and the algorithms
have several important parameters. The maximum edit distance describes, which
max distance between a key in the result and the search term is acceptable. For
the algorithm the maximum path length (MPL) and the maximum search term
length (MSL) are important. The MPL describes the longest path from the root
to a leaf. It is important for the stack, which describes the next child and the exit
condition. The MSL describes the maximum length of a batch of search terms
and is required for the length of the column. The important parameters for the
performance of the CPU algorithm are the number of parallel search terms and
tasks in tree. They describe how many parallel searches are made and how many
parallelism is inside a tree. For the GPU there are the number of GPU threads
and the kernel size. The first parameter describes how many parallel command
queues will be used and the second one, how many search terms are processed
in a kernel execution and will be computed in parallel.

5.3 Approximate Search on ART

For better distinction, we introduce a naming schema for the developed algo-
rithms. Dynamic memory allocation is represented by d, fixed memory by f,
pointer based ART structure by p and pointer-less offset structure by l. Hence
we use the following naming schema e.g. CPUp,d represents the developed CPU
algorithm and GPUl,f the GPU algorithm. Further variants are CPUl,d, CPUp,f

and CPUl,f . To get proper evaluation results, we have to fine-tune the settings
for all algorithms. CPUp,d and CPUl,d are much faster if we process as many
queries as possible in parallel: The best configuration uses 250 parallel queries
and spare on parallel computations inside the tree. Because the root node is par-
allelized in GPUl,f , CPUp,f and CPUl,f , the number of parallel queries depends
on the root node type. For performance the optimal number of parallel queries is
up to 5000 for GPUl,f and up to 30 for CPUp,f and CPUl,f . More tasks would
produce more overhead on the CPU and on the GPU the number of executions
is limited by the GPU memory.

The original ART has to be modified for the approximate search, because the
calculation of the maximum edit distance is only possible if all characters of the
shared prefix are saved. The original ART only saves a prefix with fixed length.
By replacing the fixed length prefix for correct results of the algorithm with a
prefix with variable size we have to deal with a higher memory consumption.
The variable size prefix is implemented by a separate buffer, whereby an offset
is used to access single elements in the buffer.
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Fig. 5. Evaluation results of the approximate search implementations

In the experiments (see fig. 5(a-i)), the CPUp,d is the slowest algorithm and
performs worse in comparison to the variants as more queries are processed.
This is independent from the dataset and its properties. We achieve analogous
results for the CPUl,d, but the algorithm has advantages if the length of the
common prefix increases. CPUp,f and CPUl,f have a better performance in all
situations except of a higher branch rate. In this case, the limited parallelism is a
problem and the CPUp,d and CPUl,d are initially faster, but this is changed if the
number of searches is further increased. The GPUl,f is slower at a small number
of queries because the transfer and execution overhead are higher, but if the
number of queries is increased, the algorithm is faster than the other algorithms.
The speedup is up to 4.16 on synthetic data and up to 1.43 on real-world BTC-



data. Because the creation of queries depends on random, the average length of
the used queries varies. As shown in fig. 5h (red line and axis on the right), the
throughput depends on the length of search terms. If the length is increased,
the edit distance calculation increases in the same way and the throughput is
decreased. This effect is more significant if the parallelism is very limited. If the
parallelism is higher, we can compute more long terms in parallel in the same
time. Because of this effect, CPUp,f and CPUl,f are more affected than the
other algorithms and have a non-linear trend.

6 Summary and Conclusions

We introduce approximate search algorithms, which run on CPU and GPU.
Thereby the memory situation is observed: The CPU algorithm uses dynamic
memory allocation and the GPU memory layout is adaptive but static during
a run. The approximate algorithm that runs on the CPU uses tasks as an im-
plementation of parallelism. Tasks provide a solution by splitting the workload
to multiple threads. In contrast, the GPU uses a hierarchical result memory
concept and processes the data in chunks. In our experiments, the approximate
search on the GPU has a higher throughput and speedup compared to the CPU
implementation. Inspired by the approximate search designed for the GPU, we
develop and evaluate CPU variants using pointer versus pointer-less data struc-
tures and using fixed versus dynamic memory allocation. The speedup between
the best CPU and the GPU variant is about 1.43, while the speedup between the
worst CPU variant and the GPU is about 16.41. The current GPU implemen-
tation can only handle trees that fit into the GPU memory. It is promising for
future work to extend the algorithms and enable larger trees to be processed by
investigating compression for ART. Furthermore with OpenCL 2 Fine-Grained
System SVM [8] the original pointer structure could be kept and the CPU and
GPU can share the tree and data directly. Our future work covers also hybrid
approaches with APUs, which are combinations of CPU and GPU on the same
chip with shared memory.
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