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Abstract. The study of functional associations between ncRNAs and
human diseases is a pivotal task of modern research to develop new
and more effective therapeutic approaches. Nevertheless, it is not a triv-
ial task since it involves entities of different types, such as microRNAs,
lncRNAs or target genes. Such a complexity can be faced by representing
the involved biological entities and their relationships as a network and
by exploiting network-based computational approaches able to identify
new associations. However, existing methods are limited to homogeneous
networks or can exploit only a limited set of the features of biological enti-
ties. To overcome the limitations of existing approaches, we proposed the
system LP-HCLUS, which analyzes heterogeneous networks consisting of
several types of objects and relationships, each possibly described by a
set of features, and extracts hierarchically organized, possibly overlap-
ping, multi-type clusters that are subsequently exploited to predict new
ncRNA-disease associations. Our experimental evaluation shows that,
according to both quantitative (i.e., TPR@k, ROC and PR curves) and
qualitative criteria, LP-HCLUS produces better results.

Keywords: non-coding RNA (ncRNAs) · diseases · cancer · heteroge-
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1 Introduction
High-throughput sequencing technologies and recent, more efficient computa-
tional approaches, have been fundamental for the rapid advances in functional
genomics. Among the most relevant results, there is the discovery of thousands
of non-coding RNAs (ncRNAs) with a regulatory function on gene expression.

In parallel, the number of studies reporting the involvement of ncRNAs in
the development of many different human diseases has grown exponentially. The
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first type of ncRNAs that has been discovered and largely studied is that of mi-
croRNAs (miRNAs), classified as small non-coding RNAs in contrast with long
non-coding RNAs (lncRNAs), that are ncRNAs longer than 200nt. While miR-
NAs primarily act as post-transcriptional regulators, lncRNAs have a plethora of
regulatory functions [10]. However, the number of lncRNAs for which the func-
tional and molecular mechanisms are completely elucidated is still quite poor
and experimental investigations are still too much expensive for being carried
out without any computational pre-analysis. In the last few years, there have
been several attempts to computationally predict the relationships among bi-
ological entities, such as genes, miRNAs, lncRNAs, diseases [1,11,13,15]. Such
methods are based on a network representation of the entities under study and
on the identification of new links among nodes in the network. However, most
of them are able to work only on homogeneous networks (where nodes and links
are of one single type) [5], are strongly limited by the number of different node
types or are constrained by pre-defined network structures.

In this discussion paper, we describe the method LP-HCLUS [2], that is able
to overcome these limitations. In particular, it can discover new ncRNA-disease
relationships from heterogeneous attributed networks (i.e., consisting of differ-
ent biological entities related by different types of relationships) with arbitrary
structure. This ability allows LP-HCLUS to investigate the interactions among
different types of entities, possibly leading to increased prediction accuracy.

LP-HCLUS exploits a combined approach based on hierarchical, multi-type
clustering and link prediction. As we will detail in the next section, a multi-type
cluster is actually a heterogeneous sub-network. Therefore, the adoption of a
clustering-based approach allows LP-HCLUS to base its predictions on relevant,
highly-cohesive heterogeneous sub-networks. Moreover, the hierarchical organi-
zation of clusters allows it to perform predictions at different levels of granularity,
taking into account either local/specific or global/general relationships.

2 Method

In the following, we introduce the notation and some useful definitions.

Definition 1 (Heterogeneous attributed network). A heterogeneous at-
tributed network is a network G = (V,E), where V is the set of nodes and E is
the set of edges, and both nodes and edges can be of different types. Moreover:

– T = Tt ∪ Ttr is the set of node types, where Tt is the set of target types, i.e.
considered as target of the clustering/prediction task, and Ttr is the set of
task-relevant types. Only nodes of target types are clustered and considered
in the identification of new relationships.

– Each node type Tv ∈ T defines a subset of nodes in the network, i.e., Vv ⊆ V .
– Each node type Tv ∈ T is associated with a set of attributes Av = {Av,1, Av,2,
..., Av,mv}, i.e., nodes of the type Tv are described by the attributes Av.

– R is the set of all the possible edge types.
– Each edge type Rl ∈ R defines a subset of edges El ⊆ E.
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Fig. 1. A hierarchy of overlapping multi-type clusters: (a) emphasizes the overlapping
among multi-type clusters; (b) shows their hierarchical organization.

Definition 2 (Hierarchical multi-type clustering). A hierarchy of multi-
type clusters is defined as a list of hierarchy levels [L1, L2, . . . , Lk], where each
Li consists of a set of overlapping multi-type clusters. For each level Li, i =
2, 3, .. . . . k, ∀ G′ ∈ Li ∃ G′′ ∈ Li−1, such that G′′ is a subnetwork of G′ (Fig. 1).

According to these definitions, we define the task considered in this work.

Definition 3 (Predictive hierarchical clustering for link prediction).
Given a heterogeneous attributed network G = (V,E) and the set of target types
Tt, the goal is to find:

– A hierarchy of overlapping multi-type clusters [L1, L2, . . . , Lk].
– A function ψ(w): Vi1×Vi2→[0, 1] for each hierarchical level Lw (w ∈ 1, 2, ..., k),

where nodes in Vi1 are of type Ti1 ∈ Tt and nodes in Vi2 are of type Ti2 ∈ Tt.
Each function ψ(w) maps each possible pair of nodes (of types Ti1 and Ti2)
to a score representing the degree of certainty of their relationship.

In this paper LP-HCLUS has been used to solve the task formalized in Definition
3, by considering ncRNAs and diseases as target types. Hence, we determine two
distinct set of nodes denoted by Tn and Td, representing the set of ncRNAs and
the set of diseases, respectively. In the following subsections, we will describe the
main steps executed by LP-HCLUS (see Fig. 2 for a general overview).

2.1 Estimation of the strength of the relationship

In the first phase, we estimate the strength of the relationship among all the
possible ncRNA-disease pairs in the network G. In particular, we aim to com-
pute a score s(ni, dj) for each possible pair ni, dj , by exploiting the concept of
meta-path. According to [14], a meta-path is a set of sequences of nodes (in-
volving both target and task-relevant types) which follow the same sequence of
edge types, and can be used to fruitfully represent conceptual (possibly indi-
rect) relationships between two entities in a heterogeneous network. Given the
ncRNA ni and the disease dj , the relationship between them can be consid-
ered “certain” if there is at least one meta-path which confirms its certainty.
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Fig. 2. General workflow of the method LP-HCLUS.

Therefore, by assimilating the score associated with an interaction to its degree
of certainty, we compute s(ni, dj) as the maximum value observed over all the
possible meta-paths between ni and dj . Formally:

s(ni, dj) = max
P∈metapaths(ni,dj)

pathscore(P, ni, dj) (1)

where metapaths(ni, dj) is the set of meta-paths connecting ni and dj , and
pathscore(P, ni, dj) is the degree of certainty of the relationship between ni and
dj according to the meta-path P . In order to compute pathscore(P, ni, dj), we
represent each meta-path P as a finite set of sequences of nodes. If a sequence
in P connects ni and dj , then pathscore(P, ni, dj) = 1. Otherwise, following
the same strategy introduced before, it is computed as the maximum similarity
between the sequences which start with ni and the sequences which end with dj
(see Fig. 3). The intuition behind this formula is that if ni and dj are not directly
connected, their score represents the similarity of the nodes and edges they are
connected to. The similarity between two sequences seq′ and seq′′ is computed
according to the the attributes of all nodes involved in the two sequences: fol-

lowing [6], if x is numeric, then sx(seq′, seq′′) = 1− |valx(seq
′)−valx(seq′′)|

maxx−minx
, where

minx (resp. maxx) is the minimum (resp. maximum) value, for the attribute x;
if x is not a numeric attribute, sx(seq′, seq′′) = 1 if valx(seq′) = valx(seq′′), 0
otherwise. In this solution there could be some node types that are not involved
in any meta-path. In order to exploit the information conveyed by these nodes,
we add an aggregation of their attribute values (the arithmetic mean for nu-
merical attributes, the mode for non-numerical attributes) to the nodes that are
connected to them and that appear in at least one meta-path.

2.2 Construction of a hierarchy of overlapping multi-type clusters

We construct the first level of the hierarchy by identifying a set of overlapping
multi-type clusters in the form of bicliques. To this aim, we perform three steps:

i) Filtering, which keeps only the ncRNA-disease pairs with a score greater
than (or equal to) β. The result of this step is the subset {(ni, dj)|s(ni, dj) ≥ β}
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Fig. 3. Sequences between the ncRNA “h19” and the disease “asthma” according to
a meta-path. Sequences emphasized in yellow (1 and 9) are those starting with “h19”,
while sequences emphasized in blue (4, 5, 6 and 7) are those ending with “asthma”.

ii) Initialization, which builds the initial set of clusters in the form of bicliques,
each consisting of a ncRNA-disease pair in {(ni, dj)|s(ni, dj) ≥ β}.
iii) Merging, which iteratively merges two clusters C ′ and C ′′ into a new cluster
C ′′′. This step regards the initial set of clusters as a list sorted according to an
ordering relation <c that reflects the quality of the clusters. Each cluster C ′ is
then merged with the first cluster C ′′ in the list that would lead to a cluster
C ′′′ which still satisfies the biclique constraint. This step is repeated until no
additional clusters that satisfy the biclique constraint can be obtained.

The ordering relation <c defines a greedy search strategy that guides the
order in which pairs of clusters are analyzed. <c is based on the cluster co-
hesiveness h(c), that corresponds to the average score in the cluster, namely:
h(C) = 1

|pairs(C)| ·
∑

(ni,dj)∈pairs(C) s(ni, dj), where pairs(C) is the set of all the

possible ncRNA-disease pairs that can be constructed from the set of ncRNAs
and diseases in the cluster. Accordingly, if C ′ and C ′′ are two different clusters,
the ordering relation <c is defined as follows: C ′ <c C

′′ ⇐⇒ h(C ′) > h(C ′′).
The approach adopted to build the other hierarchical levels is similar to the

merging step performed to obtain L1. The main difference is that we do not
obtain bicliques, but generic multi-type clusters. Since the biclique constraint is
removed, we need another stopping criterion for the iterative merging procedure.
Coherently with approaches used in hierarchical co-clustering and following [12],
we adopt a user-defined threshold α on the cohesiveness of the obtained clusters.
In particular, two clusters C ′ and C ′′ can be merged into a new cluster C ′′′ if
h(C ′′′) > α, where h(C ′′′) is the cluster cohesiveness. This means that α defines
the minimum cluster cohesiveness that must be satisfied by a cluster obtained
after a merging. The iterative process stops when it is not possible to merge
more clusters with a minimum level of cohesiveness α.

2.3 Prediction of new ncRNA-disease relationships

In the last phase, we exploit each level of the identified hierarchy of multi-type
clusters as a prediction model. In particular, we compute, for each ncRNA-
disease pair, a score representing its degree of certainty on the basis of the
multi-type clusters containing it. Formally, let Cw

ij be a cluster identified in
the w-th hierarchical level in which the ncRNA ni and the disease dj appear.
We compute the degree of certainty of the relationship between ni and dj as:



Fig. 4. TPR@k, Precision-Recall and ROC curves results for the dataset HMDD v3.0,
obtained with the best configuration (α = 0.2, β = 0.4, level = 2).

ψ(w)(ni, dj) = h
(
Cw

ij

)
, that is, we compute the degree of certainty of the new

interaction as the average degree of certainty of the known relationships in the
cluster. In some cases, the same interaction may appear in multiple clusters,
since the proposed algorithm is able to identify overlapping clusters. In this
case, Cw

ij represents the list of multi-type clusters in which both ni and dj appear
and we aggregate their cohesiveness values according to four different strategies:
maximum, minimum, average and evidence combination [9].

3 Experiments

LP-HCLUS has been run with different values of its input parameters. In par-
ticular, following the results obtained in [12], we considered α ∈ {0.1, 0.2} and
β ∈ {0.3, 0.4}. The considered datasets are: i) HMDD v3.0 which stores 985
miRNAs, 675 diseases and 20,859 relationships between diseases and miRNAs;
ii) Integrated Dataset (ID), built by integrating multiple datasets [3,4,7,8],
composed by 7,049 diseases, 70 lncRNA-miRNA relationships, 3,830 relation-
ships between diseases and ncRNAs, 90,242 target genes, 26,522 disease-target
associations and 1,055 ncRNA-target relationships.

We compared LP-HCLUS with the following competitors:
i) HOCCLUS2 [12], a biclustering algorithm that, similarly to LP-HCLUS,
identifies a hierarchy of (possibly overlapping) heterogeneous clusters. It is, how-
ever, limited to work with only two types of objects. Since its parameters have a
similar meaning with respect to LP-HCLUS parameters, we evaluated its results
with the same setting, i.e., α ∈ {0.1, 0.2} and β ∈ {0.3, 0.4};
ii) ncPred [1], a system that was specifically designed to predict new ncRNA-
disease associations. ncPred cannot catch information coming from other entities
in the network and it is not able to exploit features associated to nodes and links.
iii) LP-HCLUS-NoLP, which corresponds to a baseline version of system LP-
HCLUS, without the clustering and the link prediction steps. In particular, we
consider the score obtained in the first phase of LP-HCLUS (see Section 2.1) as
the final score associated with each interaction.

We adopted the 10-fold cross validation on the set of known ncRNA-disease
relationships and, due to absence of negative samples, we evaluated the results in



Fig. 5. TPR@k, Precision-Recall and ROC curves results for the dataset ID, obtained
with the best configuration (α = 0.1, β = 0.4, level = 1).

terms of TruePositiveRate@k curve. Moreover, we also report the results in terms
of ROC and Precision-Recall curves by considering the unknown relationships
as negative examples. We remark that ROC and PR curves can only be used for
relative comparison and not as absolute evaluation measures because they are
spoiled by the assumption made on unknown relationships.

In Figs. 4 and 5 we show some results obtained with the most promising con-
figurations. From the quantitative viewpoint, we can observe that the proposed
method LP-HCLUS, with the combination strategy based on the maximum, is
able to obtain the best performances, for all the considered measures. From a
qualitative point of view, we first performed a comparative analysis between the
results obtained by LP-HCLUS against the validated interactions reported in
the updated version of HMDD (i.e., v3.2 released on March 27th, 2019). We
found 3,055 LP-HCLUS predictions confirmed by the new release of HMDD at
the hierarchy level 1, 4,119 at level 2 and 4,797 at level 3. Next, we conducted a
qualitative analysis of the top-ranked relationships predicted by LP-HCLUS us-
ing ID dataset, selecting only those with a score equal to 1.0. For this purpose, we
exploited MNDR v2.0, which is a comprehensive resource including more than
260,000 experimental and predicted ncRNA-disease associations for mammalian
species. Also in this case, we found some associations in both MNDR and in the
list of predicted associations by LP-HCLUS. A more comprehensive analysis,
reporting several additional examples, can be found in the full paper [2].

4 Conclusions

In this paper, we have tackled the problem of predicting possibly unknown
ncRNA-disease relationships. The proposed approach LP-HCLUS is able to take
advantage from the possible heterogeneous nature of the attributed biological
network analyzed. The results confirm the initial intuitions and show compet-
itive performances of LP-HCLUS in terms of accuracy of the predictions, also
when compared with state-of-the-art competitor systems. These results are also
supported by a comparison of LP-HCLUS predictions with data reported in
MNDR and by a qualitative analysis that revealed that several ncRNA-disease
associations predicted by LP-HCLUS have been subsequently experimentally



validated and introduced in a more recent release (v3.2) of HMDD. As future
work, we will evaluate the performance of LP-HCLUS in other domains.
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