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Abstract
The longer than twenty-two-year success marching of the IEEE 802.11

communication technology continues in the next years with new standard
editions having transfer rate in the multi Gbit/s range. Realistic evalua-
tion of the WiFi controller supervised hot zone service level becomes more
and more critical because of the very high number of frames transmitted
per unit of time. Online evaluation of the content transmission efficiency on
radio channel is affected by several conditions including environment reflec-
tion characteristics, multipath influences, movement behaviour of the users
and time dependence of the mobile terminals population in the service area.
Based on our anterior investigations we found that in special places of the
coverage area with WiFi hot zone service high ratio of transmitted frames are
temporarily control and management frames even in case of communications
with low level of the radio signals. To scan and evaluate IEEE 802.11/n/ac/ax
channel usage efficiency we developed a complex scanner and evaluator tool
based on neural network stick hardware. The software prototype developed
utilize Long-Short Term Memory and Gated Recurrent Unit functions to de-
termine periodically the percent of data frames of the total transmitted radio
frames. Constant number of frames and constant time intervals, respectively
are applied as two basic approaches of our evaluation methods. Advantages,
weaknesses and usability cases in practice of the proposed solutions will be
given in the paper.

Keywords: Internet of Things (IoT), Wireless Fidelity (WiFi) Hot Zone, Qual-
ity of Service (QoS), Recurrent Neural Network (RNN), Long-Short Term
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Memory (LSTM), Gated Recurrent Unit (GRU), Convolutional Network,
routing, clustering, time series classification.
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1. Introduction

Due to the advantageous properties of IEEE 802.11 (WiFi) wireless technology,
it has been present with unbroken popularity in the access environment of net-
work infrastructures for over twenty years of its development. Several stable ver-
sions (a/b/g/n/ ac/ad/ax) have been used recently for SOHO and other corporate
LANs. Apart from its security aspects, each newer standard has been designed to
improve communication efficiency and enhance the user experience. There has been
relatively little comprehensive research on the complex analysis of frame streams
by category, since measurement and processing require mathematical proficiency
in addition to technological knowledge. It is also cumbersome to interpret traf-
fic which is grouped by over seventy subtypes of the three main types of WiFi
frames. Access to these has only recently become possible with a public software-
based protocol analyzer. Using this changed feature, we performed WiFi network
measurements, and analysis by traffic type.

The further structure of the paper is as follows: the second section lists some
of the related neural network applications used for wireless networks. In the third
section, we introduce the most important features of IEEE 802.11 transmission
technology. Introducing the neural network stick and using it for fast data process-
ing is discussed in the fourth section. The fifth section deals with the deep learning
analysis of IEEE 802.11n/ac/ax traffics. The last section provides a summary of
the analysis work described and its possible continuation of the research work.

2. Related work

In recent years, many application of neural networks (NNs) have been used in
wireless networks. This is because using NNs allows us to, among other things,
map the input data to predictions or classes, e.g. error rate prediction, signal
classification, to predict throughput. NNs can be used to model non-linear systems
to ensure quality of service (QoS), predict device location, and more. The use
of NNs can be divided into two main parts: supervised learning; unsupervised
learning. The most common types of supervised NNs used in wireless networks
are Multilayer Feed-Forward NNs (ML-FFNNs), and Recurrent NNs (RNNs). The
methods described in this paper relate to supervised learning and RNN. ML-FFNNs
can learn the relationship between the given inputs and their corresponding outputs
through the training process. Using the resulting NN model, it is possible to
evaluate outputs for new inputs. RNNs are similar to ML-FFNNs except that they
also have a cyclic nature. This allows us to introduce time stamps, which make it
possible to model time dependent systems; i.e. the output for the following input
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example may depends on the previous examples. Use of RNNs in WiFi frame type
ratio regression has not been used till now as we know.

Some supervised NN applications in wireless networks are summarized in the
section below. Battiti et al. have created an ML-FFNN-type NN that can predict
the x and y coordinates of a given device location based on RSSI signal intensity
values from three APs [1]. Ahmad et al. have examined various modular ML-FFNN
networks that can handle situations where the signal is not available from certain
APs [2]. Shareef et al. wanted to determine the position of a mobile device (WSN
localization) based on RSSI signals from three APs using NNs. Three different
types of NNs were used: ML-FFNNs, Recurrent NN, Radial NN. According to the
research, Radial NNs are the most accurate, but more expensive in terms of memory
and computing, while ML-FFNNs are the least intensive [3]. The application from
Laoudias et al. assigns one of the 100 reference regions to a mobile node location
based on RSSI values from 10 APs. Radial Basis NNs provided the most accurate
results, performing better than ML-FFNN with CRNN [4]. Taok et al. claim
that the localization with Ultrawide Band (UWB) radio signals using ML-FFNN
provides accurate results, as the adapted radio signals are more robust to multipath
interference and noise [5].

Altini et al. worked on localization with Bluetooth signals using multiple NNs,
each NN specific to a different positional orientation of a user, and each NN is a ML-
FFNN [6]. Li et al. researched localization of non-GPS Bluetooth phones connected
to GPS beacons using Recurrent NN. This method provides GPS coordinates for
the non-GPS phones [7]. Ju and Evans developed application of ML-FFNN for
MANET QoS routing, the network takes delay and packet loss as inputs, and
predicts link load and max. link bandwidth as outputs. The routing protocol uses
these two metrics to predict incremental throughput [8]. Barabas et al. studied
load balancing routing, predicting traffic characteristics using ML-FFNN for the
links that use the actually available transfer rate and delay. These predictions are
useful for deciding which alternative routes to take when traffic is excessive [9].
Zhi-yuan et al. used wavelet NN to decide what primary and secondary nodes will
be chosen for MultiPath load balancing in MANETs [10].

Baldo and Zorzi proposed usage of ML-FFNN to predict delay, throughput, and
reliability using the SNR and error rate as inputs [11]. Katidiotis et al. took signal
strength and link quality as input to predict max. throughput using ML-FFNN.
Past max. throughput values have also been used to predict future throughput
values [12]. Tumuluru et al. consider that the spectrum consists of slots. Each slot
has a past status, which is either busy or idle. The recorded past status of these
slots is used by an ML-FFNN to predict future slot status [13]. Moustapha and
Selmic evaluated fault detection in WSN using a recurrent NN. Deploying an RNN
on each node that takes input data from adjacent nodes as well. The data sensed
by the node is compared with the output of the RNN. If the difference between
the two is greater than a set value, the sensor is declared faulty [14]. Capka and
Boutaba researched mobility prediction in cellular networks using an ML-FFNN.
Use of past mobile terminal-AP connectivity to predict which AP would take over
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management of the service [15]. Stegmayer and Chiotti proposed a model based
on a Time-Delayed Neural Network (TDNN) that has the capability of learning
and predicting the dynamic behavior of nonlinear amplifiers which part of wireless
transmitters. The purpose of the model is to speed up system deployment by
reducing modeling time [16].

3. Behavior aspects of the IEEE 802.11n/ac/ax tech-
nology

The IEEE 802.11 transmission technology further continues the success story of its
development. The most important technological features of the latest three stan-
dard versions are summarized in Table 1.

Viewpoint /
Feature

IEEE 802.11n HT
(High

Throughput)

IEEE 802.11ac
VHT (Very High

Throughput)

IEEE 802.11ax
HEW (High

Efficiency W-less)
Freq. domain 2,4 | 5 GHz 5 GHz 2,4 | 5 | 6 GHz
Modulation OFDM; DSSS/CCK OFDM; DSSS/CCK OFDM; 1024-QAM
Ch. Bw 20 | 40 MHz 20 | 40 | 80 | 160 MHz 20 | 40 | 80 | 160 MHz
Max. Tx rate 600 Mb/s 6,93 Gb/s 11 Gb/s

Max. range indoor: 70 m | out-
door: 250 m ∼ 80 m ∼ 40 m

MIMO 2 Tx | 3 Rx antennae 4 Tx | 4 Rx antennae multiuser
Backward
compatibility Yes Yes Yes

Table 1: Most important features of IEEE 802.11n/ac/ax technolo-
gies

The IEEE 802.11 standard is basically a WiFi communication technology that
operates in the bottom two layers of the OSI reference model. In our case, we will
describe the key elements of the physical layer of the 802.11n/ac protocol, as this
technology was available for us to measure wireless traffic. The task of the physical
layer is to appear the bit sequence in its original, error-free state on the receiving
node where the bit sequence was transmitted on the medium between the two
communicating devices. In our case, the medium in question is the electromagnetic
field.

In order to avoid eavesdropping and signal interference, and to increase fault
tolerance, several transmission modes have been developed for data transmission
in the electromagnetic field. 802.11n uses HT-OFDM (Higher Throughput Orthog-
onal Frequency Division Multiplexing) technology [17]. As is the case with other
frequency division multiplexing, the given frequency spectrum is again divided into
several smaller channels. The peculiarity of the OFDM is that these channels par-
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tially overlap each other, unlike conventional techniques, where there are smaller
spare frequency bands having separating functionality between the channels [18].

Basically, the task of the media access and control (MAC - Medium Access
Control) sub-layer is to reliably transmit frames to be transmitted even in noisy
environments. Since the transmission medium is not at all as reliable as, say,
on an optical line, “Best effort” transmission would not have been an expedient
mechanism. Therefore, for the sake of reliability, the receiver always acknowledges
the received frames. To conclude, the simplest frame transfer event looks like the
following. The source station sends the desired data with a collision prevention
strategy (CSMA/CA) then the receiving station acknowledges these. If the ac-
knowledgment is not received, the sender retransmits the bit sequence previously
transmitted by itself [19]. The structure of an elementary IEEE 802.11 frame is
shown in the following figure.

Figure 1: Frame structure of IEEE 802.11 transmission technology

The FC (Frame Control) field contains the protocol version, the main and sub-
type of the frame, the distribution system bits, the fragment bit, which indicates
whether the current frame is the last fragment of a longer frame. This field contains
the send-retry bit, the bit to proclaim energy conservation, the bit to indicate more
data. The latter indicates that at least one more frame is currently buffered at the
base station for the mobile station. Other fields are the WEP encryption bit and
the request defining bit, which indicates whether the given data frame is needed
for a well-defined service [20].

The Duration/ID field has a duration length or an identifier function. In the
first case, it specifies the time slice as much time the sending device needs to use
the radio wave channel for transmitting the frame. In the second case, the mobile
station identifies the receipt of its frame buffered by the base station.

The four address fields (Addr.1, . . . , Addr.4) contain the physical addresses of
the destination and source, as well as the recipient and sender addresses. Source ad-
dresses are unique, and destination addresses can be multicast/broadcast addresses.
The Sequence Control field contains the sequence number and the fragment num-
ber. These can help you deal with communication disorder caused by the possible
occurrence of duplicate frames.

The Data section contains the payload bytes. If the frame contains bytes of
data type, this field occupies a significant part of the size of the radio frame [21].

FCS (Frame Check Sequence) enables error checking of the ordinary IEEE 802
standard. The receiver compares the received code number with the code value
calculated from the frame and, if they are the same, records the receipt of the
frame as error-free delivery. The possible discrepancy gives the error rate. At a
large Hamming distance, the frame is damaged and therefore discarded, but can
repair a one-bit error.

118



With this communication technology, it is not enough to talk about just one
kind of frame. The “Type” field in the FC record allows you to distinguish three
frame types: i) Management frames; ii) Control frames; iii) Data frames. There is
also a “Subtype” field, which further subdivides the types into subtypes.

Binary values of
Type field

Binary values of
Subtype field Frame type

00 0000 . . . 1111 Management
01 0000 . . . 0101 Control
01 0110 Extended control
01 0111 . . . 1111 Control
10 0000 . . . 1111 Data
11 0000 . . . 1111 Reserved

Table 2: IEEE 802.11 protocol data element types and subtypes

From the viewpoint of the paper one of the dominantly important subtypes of
management frames is the Beacon frame. Beacon frames are theoretically sent by
base stations at periodic intervals, but in practice this period may sometimes vary
slightly due to the base station’s occupancy due to the transmission of the current
frame.

Type and
subtype code

Extended control
frame

0x0160 Reserved
0x0161 Reserved
0x0162 Poll
0x0163 Service Period Req
0x0164 Grant
0x0165 DMG Clear-to-send
0x0166 DMG Denial-to-send
0x0167 Grant Ack

Type and
subtype code

Extended control
frame (cont.)

0x0168 Sector Sweep
0x0169 Sector Sweep F.back
0x016a Sector Sweep Ack
0x016b Reserved
0x016c Reserved
0x016d Reserved
0x016e Reserved
0x016f Reserved

Table 3: Extended control frame types of the IEEE 802.11 protocol

Beacon frames advertise basic information about the base station to other mo-
bile terminals that want to use this WiFi service. From the viewpoint of the paper
less important but noteworthy subtypes are the Authentication and Deauthentica-
tion frames, which serve to authenticate terminals. Like the Beacon frame, Probe
Request and Response advertise base station information, such as supported data
transmission rates [22].

The control frame also has subtypes. Some of these frames are used to prevent
collision. The dialogue with the control frames of subtypes RTS (Request to Send)
and CTS (Clear to Send) determines whether the entity wishing to send can start
sending the data frame. The potential sending terminal requests transmission per-
mission with RTS control frame from the base station. If it receives a CTS control
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frame response, it can begin transmitting its data frame. The ACK (Acknowledge)
subtype acknowledges the received data frame to the sender [23]. It is important
to note that expanded control frames in further subdivision identify special frame
types of newer technologies (IEEE 802.3 ac/ad) too. Because the FC field is 16
bits, the last hexadecimal digit of the 0x16X code identifying special control frames
is encoded by changing the function of the other bits of the FC field.

The subtypes of the data frame differ only in those that also contain smaller
control information for the transmitted data, such as an ACK (Acknowledgment)
acknowledgment, which confirms the successful transmission of the previous data
frame [24].

4. Neural network stick for fast data processing

The Intel Neural Compute Stick 2 (Intel NCS2) is a plug-and-play device that looks
like a standard USB drive designed to execute inferences using neural network
and input data in a quickly and energy efficiently way. It is also suitable for
real-time inference. It requires no cloud infrastructure and can be used with low-
powered devices such as the Raspberry Pi 3 and other ARM host devices. It
can be connected to USB 3.0 Type-A compatible connectors. Inside the device is
an Intel® Movidius ™ Myriad ™ X Vision Processing Unit (VPU) that contains
16 processing cores and a dedicated deep neural network hardware accelerator.
Multiple NCS 2s can be used to infer at the same time, and can even be combined
with CPU and GPU. NCS 2 is primarily used to deploy vision-oriented solutions
using convolutional neural networks (CNNs).

The general workflow as shown in the Figure 2. is the following: First, the
raw data is preprocessed, resulting in the training set, validation set and test set.
These sets are used to train the model. The model is trained using frameworks or
formats supported by Intel OpenVINO software, and this process should be done
on the development hardware, not on the stick.

Briefly, OpenVINO is a cross-platform (Windows, Ubuntu, macOS, etc.) soft-
ware that enables deep learning inferences, supports various heterogeneous exe-
cution across an Intel Integrated Graphics, Intel FPGA, NCS 2, Intel CPU, etc.,
supports well-known deep learning frameworks and formats (TensorFlow, MXNet,
Caffee, ONNX, etc.) and includes optimized calls for computer vision libraries such
as OpenCV, OpenCL and OpenVX. Model Optimizer and Inference Engine API
are part of OpenVINO. Once the model is complete, it must be translated with
the Model Optimezer into the so-called Intermediate Representation (IR) format.
This format consists of two files, .xml describes the network topology, and .bin
contains the network weights and bias values. Finally, the user application uses
IR and infers new data both using the Inference Engine API, which is executed on
Intel NCS 2, and outputs the result.

Some real-time applications need to process large amounts of data in a short
amount of time, which in our case means that our application must infer for hun-
dreds of incoming frames in less than 1 second. This requires a powerful computing
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Figure 2: General workflow to apply Intel NCS 2

device, such as the Intel NCS 2, which is optimized for neural network inferences.
Experiments have already been made by us to use this device for enhancement
of RNN calculations, but issues have been detected while running the Inference
Engine. Further in-depth research and software development is in progress to elim-
inate these compatibility problems concerning neural network topologies supported
explicitly by the Openvino.

5. Deep learning analysis of IEEE 802.11n/ac/ax traf-
fics

There were captured WiFi frame streams at a four floor building with 26 base sta-
tions managed by a common controller. The measurements were executed step by
step in 56 physical dispersed in space in different time moments. Measured values
were: Frame Length (B), Frame Type/Subtype, Frame Arrival Time (sec) and Re-
ceived Signal Strength Indicator - RSSI (dBm). Duration of one measurement was
in the scale of ten seconds. Sampling of the WiFi frames was made with Wireshark
protocol analyser software running on a notebook. It was activated deep mode of
the Npcap v0.9984 driver to capture IEEE 802.11 format of all the frames instead
of the basic mode showing just IEEE 802.3 frames. In this way all the management,
control and data type frames transmitted on the wireless channel were captured
by the software. Based on the investigation results described in papers [25, 26, 27,
28] we oriented to use recurrent neural networks for analysis of the WiFi channel
usage efficiency. By channel usage efficiency we mean ratio of data bytes to the
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total number of bytes belonging to all frame types. This efficiency depends on
the channel quality because noisy or congested radio channel requires more control
frames and even retransmission of the data frames.

As an example frame length of different types captured at sampling point no.
23 can be seen in Figure 3. In this case majority of the frames were Beacon man-
agement (34.5%) and Request-to-Send control (17.69%) frames. It should be noted
that the IEEE 802.11n/ac/ax communication mechanism use intensive manage-
ment and control frame transmissions to supervise nodes and deliver data type
frames between the wireless nodes. Intensity of the unidentified type frames was
0.61% which is relatively small but not negligible and are sent by new smart phones
without access point responses. We enrolled such frames in a separated type named
Other.

Because it exists correlation between the intensity of different types of the
frames we grouped subtypes of the frames in four: management (MNG), control
(CTR), data (DAT) and other (OTH). We split each ten second measurement in
sequences having total duration of one second. Each sequence belongs to the event
series of frame arrivals during one second sampling time interval. The sequence
has three predictor variables: v1: Frame Length (B), v2: Frame Interarrival Time
(sec) and v3: Received Signal Strength Indicator - RSSI (dBm). The interarrival
time is the time difference between sampling times of two consecutive frames. The
number of events is given by the number of frames, n.

The sequence is characterized by the four metrics: relative amount of p1: MNG,
p2: CTR, p3: DAT and p4: OTH bytes transmitted on the radio channel during
the sequence time interval. We have p1 + p2 + p3 + p4 = 100% in reality.

Figure 3: Measured frames with type/subtype classes in sampling
point no. 23. Percentages in the right represent relative intensity
of the byte subtypes during the initial ten second measurement

interval.

In this way we got N = 591 sequences, each having three predictor variables: v1,
v2, v3 and four score metrics (ratios): p1, p2, p3, p4. It is obvious that the sum of
these four metrics gives 100% for each sequence. The length of predictor variables
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is ni, i = 1, 2, . . . ,N. Because the number of frames during the sequence sampling
time varied in function of the WiFi traffic intensity, length ni is not constant and
takes values in the range of [22, 550]. Ratios p1, p2, p3, p4 of the whole data
set are given on Figure 4. The initial sequence set with N elements is divided in
three parts: train set (300 elements), validation set (150 elements) and test set
(141 elements). Number of frames of the test data set is given in Figure 5.

Figure 4: Ratios of MNG, CTR, DAT
and OTH of the sampled

sequences (p1, p2, p3, p4).

Figure 5: Length of initial XTrain
sequences, ni. Ordering is
used to train the RNN.

Parameters of the tensor data analysed with different recurrent neural networks
are given in Table 4. For each neural network learning it was used Adaptive Moment
Estimation (Adam) optimizer with GradientDecayFactor = 0.9, SquaredGradient-
DecayFactor = 0.9990 and InitialLearnRate = 0.01. Topology of these networks
are including Long-Short Term Memory (LSTM) or bidirectional LSTM (BiLSTM)
layers (see Figure 6 and 7). For faster convergence two fully connected (FC) layers
were used. The first layer has 512 number of classes and the second layer just four
because we are predicting scores p1, p2, p3 and p4 of the test dataset. Number of
hiden units in LSTM or BiLSTM layers was set to be 100 or 200.

Parameter RNN1 RNN2 RNN3 RNN4 RNN5 RNN6 RNN7 RNN8
RNN Type LSTM LSTM LSTM BiLSTM BiLSTM BiLSTM BiLSTM BiLSTM
miniBatch-
Size 50 100 300 50 50 100 100 100

maxEpochs 360 180 180 360 360 180 180 360
LSTM
numHidde-
nUnits

100 100 100 100 200 100 200 100

FC num-
Classes 512 512 512 512 512 512 512 512

Learning
time [sec] 348 107 84 378 137 154 154 271

Table 4: Parameters of the used recurrent neural networks

Table 5. shows correlation coefficients of the test predicted scores. It can be
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Figure 6: NN topology A
(RNN1, RNN2, RNN3)

Figure 7: NN topology B
(RNN4, . . . , RNN8)

stated that for the sampled WiFi channel sequences BiLSTM has better perfor-
mance than LSTM. Having information about the past and the future sequences
of the traffic in WiFi channel helps to train better the neural network. To have
best performance of the RNN needs at least 200 hidden neurons of the recurrent
layer. Computation capacity has impact on the training time. To decrease the
computation time dedicated hardware tool, like compute stick is required.

Best neural network to predict the IEEE 802.11n/ac channel usage efficiency
was found to be RNN5. Prediction with 0.70 correlation is based on frame size,
interarrival time of the frames and the received signal strength intensity.

Coeff. of
correlation RNN1 RNN2 RNN3 RNN4 RNN5 RNN6 RNN7 RNN8

R: MNG 0.00 0.10 0.16 0.42 0.56 0.52 0.53 0.53
R: CTR 0.04 0.12 0.01 0.41 0.52 0.52 0.49 0.49
R: DAT 0.26 0.20 -0.46 0.55 0.70 0.45 0.54 0.39
R: OTH 0.11 0.09 0.08 0.01 0.07 0.04 0.10 0.12

Table 5: Correlation between the test and predicted scores

Figure 8 shows the real and predicted scores of the channel usage efficiency.
Considerable correlation exists between the real and predicted usage efficiency of
the IEEE 802.11 channel by the recurrent neural network. Not only the data but the
management and control bytes sent on the channel are predicted with reasonable
accuracy.

6. Conclusions and future work

In this paper we analysed IEEE 802.11n/ac/ax technology behaviour based on
neural network modelling. Based on the special features of the wireless medium
access communication mechanism there were captured all the management, control
and data frames transmitted on the radio channel. It is settled that majority of
the wireless bandwidth is used for management and control byte transmissions
and just 50% or less of the channel capacity is allocated to transmit data bytes.
The proposed neural network contains recurrent layers and the learning process
is supervised. There were compared usability of LSTM and BiLSTM layers for
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Figure 8: Best final scores of the used recurrent neural networks.
p1, p2, p3, p4 for RNN5. (Left: Test ratios; Right: Predicted ratios)

prediction of the WiFi channel usage efficiency. It was found that BiLSTM has
better performance to prognoses transmitted byte ratios belonging to management,
control and data classes. Possible continuation of this research may be oriented to
evaluate other topologies of the deep neural network.
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