
Statistical Analysis of Hexagonal and
Triangular Game of Life∗

Erik Zoltán Hidi, Géza Horváth, Dávid Petrik

University of Debrecen, Faculty of Informatics, H-4028 Debrecen, Kassai Road 26.
hidieric@gmail.com, horvath.geza@inf.unideb.hu, david.petrik01@gmail.com

Abstract

We discuss two different implementations of John Conway’s Game of Life.
The first variant is based on an environment consisting of hexagon shaped
cells. Since 6 neighbors (the actual number of neighbors a hexagonal cell
has) does not seem to be enough to support “life”, we use 2 additional neigh-
bors. The second variant is based on triangular cells where every cell has
12 neighbors, so the complexity of the rule-systems is greater than in the
original square grid implementation. We discuss the properties of several
rule-systems which are chosen as the results of a long procedure in which we
have run simulations with several possible systems and compared their statis-
tics afterwards. We also present an algorithm which can be used to recognize
special patterns called oscillators and gliders.

Keywords: cellular automata, Game of Life, triangular grid, hexagonal grid

MSC: 37B15, 68Q80

1. Introduction

A cellular automaton [6, 5, 3] is an automaton in which a set of parameters are
used to initialize the environment consisting of cells and simple rules used to evolve
this particular environment. Simulations created by CA have certain similarities,
such as:

– Their environment is a grid of cells, where every cell has a state.

– The environment evolves (changes) over time.
∗This work was supported by the construction EFOP-3.6.3-VEKOP-16-2017-00002. The

project was supported by the European Union, co-financed by the European Social Fund.
Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

Proceedings of the 11th International Conference on Applied Informatics
Eger, Hungary, January 29–31, 2020, published at http://ceur-ws.org

150



– The change is based on the rules, they describe how cells interact with each
other.

The type and form of cells, the number of states and neighbors, the rules and
the type of grid differ in a very wide range letting us to play with a huge variety
of them. This is the main reason why cellular automata can be used to simulate
systems of different branches of science. John Conway’s Game of Life might be the
most popular cellular automaton [2]. Its environment is a grid of squares, which
means every cell has eight neighboring cells. It uses a specific rule-system, a set of
simple rules, to simulate a changing environment:

– Any living cell with less than two living neighbors dies.

– Any living cell with four or more living neighbors dies.

– Any living cell with two or three live neighbors lives on to the next generation.

– Any dead cell with three living neighbors becomes alive.

Also, worth to mention, that there are oscillators spawning in these simulations.
An oscillator is a structure, which repeats itself after a fixed number of generations
(known as it’s period). There are two types of special oscillators: still life (static,
its period equals to one) and glider (moves through the grid).

2. Preliminaries on hexagonal Game of Life

The hexagonal version of Game of Life has been investigated in the past, but it
does not look anything like life [1]. In our research we were looking for answer to
the following question: Why does Game of Life work on a square grid, and not on a
hexagonal grid? Our conjecture was that the main difference between the two cases
is the number of neighbors. Maybe 6 neighbors are too few to have enough variety.
We have decided to create Game of Life on a hexagonal grid with 8 “neighbors”.

Figure 1: 8 neighbors of the cell in question on hexagonal grid

In the hexagonal implementation of Game of Life originally each cell has six
neighboring cells, but in our case, we include two more. (We can suppose that the
cell can interact a bit further in two directions.) It means that the cells on the top
and bottom (which has two “neighbors”, which are “neighbors” to the given cell)
are included to the neighborhood as well. To be clear, Figure 1 shows a visual
explanation.

151



In the paper [4] the authors have already performed several analyses of the
given implementation of Game of Life. To investigate the automaton, we had a
vital need for a data source, which can generate data continuously. For this purpose,
we developed an algorithm, which is able to execute simulations based on the set
of parameters given as input. The mentioned algorithm describes the behavior of
Game of Life with hexagon shaped cells. It requires the following parameters:

– Size: two integer values, representing the width and height of the environ-
ment.

– Radius of interaction: an integer, which is representing the length of the
radius of a circle. The center of this circle equals to the cell in question. Every
cell inside of this circle should interact with the cell in question, therefore
these cells are the neighbors of the cell in question. In specific cases (like
hexagonal grid with 8 neighbors) there is an alternative parameter to the
radius of interaction: a set of relative coordinates of the neighbors. Thus,
one can define the neighborhood in a very specific way: giving the relative
coordinates (relative to the cell in question) of the chosen neighbors.

– Rule-system: a set of rules describing when should a cell switch to live state,
keep the current stata or when should it switch to dead state. The represen-
tation should follow this pattern:
𝐵𝑥1, 𝑥2, . . . , 𝑥𝑛/𝑆𝑦1, 𝑦2, . . . , 𝑦𝑚/𝐷𝑧1, 𝑧2, . . . , 𝑧𝑘, where the sets of integers are
the number of living neighbors required for a cell to be born (𝐵 = born), re-
main dead/alive, (𝑆 = stable), to die (𝐷 = die).

– Initial AR (alive-ratio): an integer number between 0 and 100, which repre-
sents the percentage of living cells in generation 0.
AR = number of living cells

number of cells 100% rounded.

– Last generation: an integer used for identifying when the algorithm should
stop the simulation. When the current generation number equals to this the
simulation is stopped.

The algorithm was implemented in Java. By default, it gathers and saves data
about the number of cells alive and dead but can be configured to save the whole
environment as a matrix. For human observation we have developed a graphical
interface, which displays the simulation.

As we realized, that the hexagonal version of GoL with 8 neighbors also has
the potential to provoke oscillators and gliders, we decided to develop some kind
of method, which can recognize them through the simulations.

In the paper [4] authors have discussed the following rule-systems:

– B3/S2/D0145678: original Game of Life rule-system, supports oscillators
(Figure 2 for reference). By applying this system, we get a simulation, which
has a stabilizing population. This means, that it slowly becomes a still life.
The duration of the mentioned process depends on the size of the environment
(how many cells are involved).

152



– B36/S2/D014578: similar to the original version, supports oscillators as
well (Figure 2 for reference). The main difference between this and the origi-
nal system is that the population is not stabilizing. It does have an interval of
AR (≈ 25−35%), but it never stops changing. May support other oscillators,
than the original rule-system.

– B3678/S4/D0125: interesting behavior, supports oscillators (Figure 3 for
reference), has a dying population. At the beginning the population may grow
(up to 10% of growth), in this phase the cells are creating groups. These
groups are merging till there are no direct interactions with other groups.
Then every group starts to shrink (number of living cells are decreasing).
At the end the number of living cells equals to 0 (if we do not count the
oscillators remaining).

Applying these rules the authors have found several oscillators just by visual-
izing the simulation. The mentioned oscillators and gliders can be seen on Figures
2 and 3.

Figure 2: oscillators B3/S2/D0145678 and B36/S2/D014578

Figure 3: oscillators B3678/S4/D0125

Further information and statistical data are provided in the paper [4].

153



3. The oscillator finder algorithm

3.1. Ideas, pros and cons
The main idea of the algorithm is to detect every separate cell cluster then compare
it to every other cluster. If there is a match, then we observe the lifecycle of the
given structure. The lifecycle can be periodic, if so then it is either an oscillator
or a glider. Since the gliders are moving the program should compare a cluster
in question to every other clusters. If we compare the cluster with clusters on
the same location, then this method loses the capability of detecting gliders. As
we can suspect the given method requires enormous computational power, but it
is capable of detecting oscillators and gliders in any size. As we already know
Game of Life simulations are full of cell clusters, which results in a relatively slow
operation. We could boost the speed by turning off the glider detecting function (as
we described earlier), but we would not like to lose this essential ability. Involving a
database could improve the algorithm. The database should contain every pattern,
which was already met during simulations categorized by type (still life, oscillator,
glider, none). The algorithm detects a cluster, then compares it to the ones in the
database. If there is a match, then there is no need to observe the detected pattern
any further. If no match is detected, then it should be further observed and should
also be put in the database.

The next idea of the algorithm is to generate every possible pattern of living
cells of given size. Put this pattern in a simulation (every other cell should not
be in living state), then run the simulation. Then the initial pattern should be
compared to every evolved pattern (from the following generations). If there is a
match, then we should observe the lifecycle. If it is periodic, then we have either
an oscillator or a glider. It is a simpler method than the previous one and requires
less computational power. The issue with this one is that it can detect oscillators
effectively with small dimensions. If we use this method on an average PC, we
should not look for oscillators bigger than 6x6.

3.2. Implementation
We chose the second algorithm for implementation. Our goal is to find every
oscillator not bigger than 5x5 in size. For the given size the second algorithm is
the optimal solution.

The implemented algorithm requires the following parameter list:

– Size, radius of interaction, rule-system, last generation: same as in the pre-
vious program.

– Size of patterns: width and height of the initial patterns.

– Input file: a text file which contains the initial patterns. Patterns are rep-
resented in binary form, where ’1’ means that the cell is alive and ’0’ means
that it is dead.

154



– Output file: a text file which will contain the potential oscillators. The rep-
resentation of the patterns is the same as in the input file.

The number of permutations (the number of possible patterns) can be calculated
by applying the formula

𝑃 = 𝑠𝑤*ℎ,

where 𝑃 stands for permutations, 𝑠 for the number of possible states (in our case
it is 2: dead or alive), 𝑤 for width (the number of cells in a row) and ℎ for height
(the number of rows). So, to achieve our goal we should observe 225 patterns for
every rule system. To prevent the gliders of getting out of the environment and
keeping the size at minimum at the same time the size of the environment should
be calculated by applying the following formulas:

𝑊 = 𝑤 + 2𝑔,

𝐻 = ℎ+ 2𝑔,

where 𝑊 is the width of the environment, while 𝑤 is the width of the pattern and
𝑔 is the number of generations. The same scheme goes for the height. The gliders
can move only one cell in one direction in every generation. This is the reason we
are using these formulas to calculate the ideal size of the environment. To boost
the speed of the comparison, we implemented the algorithm in the following way:

– Generation 0: no need for comparing.

– Generation 1: let us say that the first cell of the pattern has the (𝑥, 𝑦)
coordinates; then the comparing starts at (𝑥− 1, 𝑦 − 1).

– Generation 2: comparing starts at (𝑥− 2, 𝑦 − 2).

For better understanding, see Figure 4.

Figure 4: The black cells are representing the initial area of the
pattern. The dark grey cells are for the area where we are looking
for the pattern in the next generation, and the light grey is for the

second generation.

In the future we would like to implement the first algorithm as well. Using
the first solution, we would be able to detect bigger oscillators. However, for
performance boost we are planning to implement it in C++.

155



4. Results of the oscilator finder

By applying our implementation in practice, we were able to detect more oscillators
and gliders than before. Some of the oscillators found with the new algorithm can be
seen on Figure 5 and 6, using rule systems B36/S2/D014578 and B3678/S4/D0125.
Because of the limited size, this paper does not contain all detected oscillators.

Figure 5: oscillators of the new algorithm (B36/S2/D014578)

5. Results of Game of Life on triangular grid

In this implementation we use the same rule-system format as in the hexagonal
implementation. Unlike in the previous implementation of Game of Life, every cell
has 12 neighbors (two triangles are considered as neighbors, when the corners or
the sides are connected). There are two different types of cells. Both types of cells
(the black cells) represented on Figure 7 have 12 neighbors. The relatively big
number of the neighbors makes this implementation more complex. We wanted to
test every possible rule-system that can be applied in this environment. However,
due to computing capacities we reduced the set of rules from 312 rulesystems to 38

rule-systems by applying a constant subrule (can be expanded): D0,1,10,11,12. The
results were obtained from the analyzes of simulations, which have an environment
of a 50x50 triangular grid. This means that the total number of cells is 2500.

5.1. Case 1
By applying the rule-system B2,3,4/S6,9/D0,1,5,7,8,10,11,12 we have seen what
we expected: the rule-system doesn’t stabilize. In most cases the number of living
cells varied greatly between two direct generations. Obviously this phenomenon
occurred due to the nature of the rule-system: if a dead cell has a low number of
living neighbors (2, 3, 4), then it will be alive, thus if there is underpopulation in
the current generation there will be a relatively big population growth and vice
versa.

156



Figure 6: oscillators of the new algorithm (B3678/S4/D0125)

Figure 7: neighbors

Figure 8: statistics B2,3,4/S6,9/D0,1,5,7,8,10,11,12

157



5.2. Case 2

Figure 9: oscillators B5,6,7,8,9/S/D0,1,2,3,4,10,11,12

The rule-system B5,6,7,8,9/S/D0,1,2,3,4,10,11,12 does not stabilize either and
there are no great differences in the number of living cells between generations after
100th generation. However, if the generation 0 has been initialized with a low AR,
then the population dies out almost instantly. Only the still lives and oscillators
could have been found in these simulations (Figure 9).

Figure 10: statistics B5,6,7,8,9/S/D0,1,2,3,4,10,11,12

5.3. Case 3

Figure 11: oscillator B4,5,6,7,9/S8/D0,1,2,3,10,11,12

The rule-system B4,5,6,7,9/S8/D0,1,2,3,10,11,12 is not different from the rest,
after a few generations it populates the environment. We have detected only 1 os-
cillator, which has already been found earlier in the B5,6,7,8,9/S/0,1,2,3,4,10,11,12
system (Figure 11).

158



Figure 12: statistics B4,5,6,7,9/S8/D0,1,2,3,10,11,12

6. Conclusions

We have developed two algorithms for oscillator detection on hexagonal grid and
implemented one of them. This detector algorithm successfully detected several
oscillators and gliders. Additionally, we performed statistical analyses on Game
of Life with triangular environment. We concluded that the triangular implemen-
tation is viable and functional. The fact, that oscillators are spawning and the
population of cells changes through time just like in the original Game of Life
proves that it supports “life”. In the future we plan to run simulations on hexag-
onal grid with 12 neighbors as well, since it would restore the symmetry, also it
could be compared to the triangular grid. Furthermore, we would like to compare
the behavior of the hexagonal grid with 8 neighbors to behavior of the square grid.

References

[1] Bays, C., A Note on the Game of Life in Hexagonal and Pentagonal Tessellations,
Complex Systems Vol. 15 (2005), 245–252.

[2] Gardner, M., The Fantastic Combinations of John Conway’s New Solitaire Game
‘Life’, Scientific American Vol. 223 (1970), 120–123.

[3] Herendi, T., Nagy, B., Parallel Approach of Algorithms, Typotex Budapest (2014).

[4] Hidi, E., Z., Horváth, G., Hexagonal Game of Life with 8 Neighbors, Eleventh
Workshop on Non-Classical Models of Automata and Applications (NCMA 2019),
(2019), 23–29.

[5] Preston, K., Modern Cellular Automata Theory and Applications, Plenum Press,
New York (1984).

[6] Wolfram, S., Cellular Automata, Los Alamos Science Vol. 9 (1983), 2–21.

159


