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Abstract

It is well-known that, music stimuli have powerful emotion trigger ef-
fect. When people listening to music, music induces motor system activities
in their brain. Therefore, music can be used as a potential stimulus in elec-
troencephalogram (EEG) based emotion research. The goal of emotion recog-
nition is to explore how different kinds of stimuli (e.g. music) from the world
around us influence our brain waves. In previous works, the determination
of emotional states has based on subjects’ feedback. However, this approach
is unreliable almost in all cases because emotional states are changing rather
slowly and they are equivocal. In this study we try to recognize music-
induced electroencephalogram patterns by shallow artificial neural network
from the popular EMOTIV EPOC+ sensor’s signals. This article presents
the data acquisition conditions; the efficiency of the neural network with dif-
ferent hyper-parameters; and the effectiveness of EMOTIV EPOC+ over the
Neurosky Mindwave device.
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1. Introduction

In emotion analysis, there are three different approaches. The first type focuses
on the analysis of facial expressions or speech. In the second approach periphery
physiological signals such as electrocardiogram, skin conductance respiration, and
pulse are used for emotion prediction. The third approach is based on brain signals
such as EEG or functional magnetic resonance imaging (fMRI) [11]. Among those
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possibilities, EEG signals have become widely used as data source in the emotion
and mental state recognition research. After the appearance of some commercial
EEG reader devices, a significant part of EEG related papers dealt with this topic
[13, 5].

More different stimuli effects can be used to elicit emotions. Among them
the most popular are images, sounds, and videos. In the study of Yuvaray et al.
[12] the authors applied visual and audio stimuli to elicit participants’ emotional
responses. They used two classifier algorithms (k-nearest neighbor and support
vector machine) with high order spectra (HOS) features to compare the emotional
states of healthy and Parkinson’s disease subjects. In their experiment, at the end
of all EEG recordings, participants had to fill a questionnaire to state the status
of emotions they felt. In the questionnaire 6 elementary emotions (disgust, fear,
sadness, etc.) could be selected and the strength of feeling also had to be marked
on a 5-point scale. Meza-Kubo et al. [3] performed user experiment evaluation
with the EMOTIV EPOC+ headset. In this experiment, elder couples played
a simple computer game and their emotions (natural, pleasant, unpleasant) were
predicted in three different ways (self-reported, qualitative analysis and EEG signal
classification). Their result also illustrated the issue of self-reported emotion state
determination. Lin et al. [2] used music pieces from the Oscar’s film soundtrack
to elicit 4 emotions: sadness, pleasure, joy, and angry. They tried to classify the
self-reported emotions of 5 participant with an artificial neural network.

Unfortunately, the above-mentioned emotion labelling process is unreliable in
most cases because it is based on self-reported questionnaires. This issue also has
been pointed in some earlier works. For example, in the work of Nagy et al. [4].
They acquired physiological markers (skin conductance) to gauge the arousal state
of subject during video watching.

Contrary to earlier emotion recognition studies, in this work we tried to rec-
ognize the effect of songs from various music styles instead of emotions. This
type of classification does not require any feedback from subjects. Therefore, the
whole classification process is more reliable. This approach has been proposed by
Suto and Oniga [8] at first. As EEG reader they applied the Neurosky MindWave
single-channel device which is one of the simplest and cheapest EEG sensors on
the market. In their experiment, 5 subjects listen 10 songs from different styles
such as rock, pop, classic, etc. They supposed that the different kinds of songs
will generate distinguishable patterns which can be recognized by artificial neural
network. The final outcome of their work was an approximately 30-35 recogni-
tion accuracy (depending on the subject) with 3-5 second long windows. In this
study, we performed a very similar experiment with a 14-channel EMOTIV EPOC+
consumer-grade EEG headset.
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2. Methods

2.1. EMOTIV EPOC+
Brainwave signals were acquired using an EMOTIV EPOC+ 14 channel sensor.
Its electrodes (saline sensors) are arranged on the AF3, F7, F3, FC5, T7, P7, O1,
O2, P8, T8, FC6, F4, F8, and AF4 positions according to the international 10-20
system. The device also has 2 reference points at P3 and P4 positions (see Fig. 1).

Figure 1: Left: EMOTIV EPOC+ sensor, right: its electrode ar-
rangement on the 10-20 system (source: www.emotiv.com)

For EEG recording, the official EMOTIV software has been used. Before data
acquisition, electrode impedance should be decreased using saline solution. In the
software, users can verify the quality of signals and they can adjust the desired
position of all electrodes.

Inside the EEG reader, the sampling method is sequential. The acquired data
are digitalized by a 16-bit analog-digital converter (14-bit resolution, 2-bit accu-
racy) and down-sampled to 128 Hz per channel. It incorporates a built-in notch
filter (5th order Sinc) at 50-60 Hz. The communication between EPOC and com-
puter takes place via Bluetooth protocol.

2.2. EEG data recording
In our experiment the data have been collected from 3 volunteers (subjects):

1. subject: 29 years old male

2. subject: 29 years old female

3. subject: 21 years old female

311



All of them claimed that physiologically and psychologically healthy and right-
handed. Each subject has been informed about their task and the goal of the
experiment.

The conditions and the data acquisition method were similar as in [8, 9]. During
EEG data recording, subjects sat on a chair in front of the computer in a silent
room. All subjects listened 1-minute long music pieces from 10 popular songs.
They kept their eyes closed and remained as motionless as possible. Between music
pieces, there was a 1-2 minutes break. In the experiments, we have followed all
principles outlined in the Helsinki Declaration (as revised in 2000).

2.3. Frequency bands and noise
EEG signals can be decomposed into 5 well-known frequency bands:

• delta (𝛿): 0.5 – 4Hz

• theta (𝜃): 4 – 8Hz

• alpha (𝛼): 8 – 13Hz

• beta (𝛽): 13 – 30Hz

• gamma (𝛾): >30Hz

Spectral band decomposition is generally applied in all fields of EEG research.
All bands can be associated with special emotions and music is also influencing the
power of particular bands. Sun et al. [6] observed that light, country, jazz, and
rock music have different effect on energy intensity of spectral bands.

Almost all EEG analysis require noise removal because interfering noises can be
stronger even 10 times than the real EEG signal. Therefore, all interferences com-
ing from eye movement, power line frequency, electrostatic interference, muscular
movement, and heart rhythm significantly affect the quality of the EEG signal.
This can prevent the classifier algorithm to recognize patterns in the signal prop-
erly. Typically, eye movement is the major noise sources. This is the reason why
participants had to listen music with closed eyes.

The easiest way to increase the signal-to-noise ratio is digital filtering. We in-
vestigated both the whole band (without frequency subdivision) and the individual
frequency bands separately. Band separation has been performed by self-defined
finite impulse response (FIR) filters with Hamming window [10]. The frequency
response of filters can be seen on Fig. 2.

2.4. Classification with artificial neural network
The EEG signal classification with a shallow artificial neural network (ANN) follows
the general machine learning chain: data acquisition, segmentation (or windowing),
feature extraction, classifier training and classification.
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Figure 2: Filters’ frequency response

ANN is a strongly parameterized learning algorithm where hyper-parameters
such as initial learning rate and weight regularization have significant effect on
the model’s performance. In this work a two-layer (hidden and output) ANN
architecture with 128 hidden neurons has been used according to [7] where the
authors compared three shallow ANN architectures on two public datasets (related
to human activity recognition). The activation functions on the hidden and output
layers were relu (2.1) and softmax (2.2) respectively. In the equations, 𝜂𝑖 is the
weighted input of the i’th neuron and M is the number of output neurons. The
learning algorithm was RMS with no improvement in 20 epochs stop condition and
without learning decay. The error function was cross-entropy (2.3) where 𝜔 refers
to network weights, K is the number of training samples, 𝜆 (0.001) is the weight
regularization strength, y is the target output while a is the output activation.

𝜎ℎ(𝜂𝑖) = max(0, 𝜂𝑖) (2.1)

𝜎𝑜(𝜂𝑖) =
𝑒𝜂𝑖

∑︀𝑀
𝑗=1 𝑒

𝜂𝑗

(2.2)
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𝐶(y,a) = −
𝑀∑︁

𝑗=1

[𝑦𝑗 ln(𝑎
𝐿
𝑗 ) + (1− 𝑦𝑗) ln(1− 𝑎𝐿𝑗 )] +

𝜆

2𝐾

∑︁

𝑤

𝜔2. (2.3)

In many papers inside machine learning literature, the description about hyper-
parameter setup or parameter search is very limited (or missing). However, param-
eter tuning has a significant effect on the network’s performance. The most impor-
tant parameter of a network is the initial learning rate (𝛼0). In order to demon-
strate the effect of 𝛼0 we applied random parameter search on a 10 base exponential
scale (2.4) where exponents come from a uniform distribution (𝑈(−6,−1)). The
expansion of parameter search (e.g. regularization strength) may cause additional
improvement but it was out of the scope of this study.

𝛼0 ∈ 10𝑈(−6,−1). (2.4)

3. Results

The whole data processing and classification processes have been performed in the
Python programming environment. At first, we used the original (full-spectrum)
signals from all channels and later their filtered (delta, theta, alpha, beta, and
gamma) sub-bands as raw data. An example about the effect of filtering is visible
on Fig. 3.

Signals from the 14 channels were aligned line by line into ten data matrices
according to the 10 songs. All data matrices went through the windowing process
where the window size was 256 samples (28). This window size covers 2 seconds
wide time interval of the time series. There was no any overlap between windows.
From each window the following 12 features have been extracted: mean, standard
deviation, mean absolute deviation, interquartile range, 75th percentile, kurtosis,
difference between min and max values, spectral energy, spectral centroid, princi-
pal frequency and the first two autoregressive coefficients. At the end of feature
extraction stage all elements have been normalized (mean subtraction and scaling
to unit variance). After feature extraction, feature vectors have been randomly
divided into 20% test and 80% training data. Finally, 15% of the training set (also
randomly selected) were used for validation.

The results of our experiment can be found in Table 1. In the table we can see
the highest recognition accuracy (corretly recognized test samples divided by all
test semples) of the ANN after random initial learning rate search (100 trials).

4. Conclusion

In this paper, we presented a particular music stimuli recognition experiment with
the Emotiv EPOC+ EEG reader which does not require any user feedback. The
motivation of this experiment came from [8], where the authors used a Neurosky
Mindwave EEG headset for the same task. Compared to their results, we got
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Figure 3: The effect of filtering

Signals Sub.1 Sub.2 Sub.3
𝛿 band 41.8% 48.3% 35.1%
𝜃 band 34.5% 51.6% 36.8%
𝛼 band 47.2% 51.6% 35.1%
𝛽 band 47.3% 61.6% 54.4%
𝛾 band 43.6% 71.6% 78.9%

original signal 56.3% 66.6% 68.4%

Table 1: Highest recognition accuracies of the ANN

much better results. Although, on the data of subject 1 the highest recognition
accuracy was only 56.3%, in the case of subject 2 and 3 recognition rates were 71.6%
and 78.9% respectively. Another interesting difference between our results and [8]
lies in the effect of frequency subdivision. In [8] frequency decomposition reduced
the recognition accuracy against the unfiltered signal and the classifier was more
efficient with wider bands. The latter statement is also met in our work but in the
case of subject 2 and 3, frequency decomposition caused significant classification
performance improvement. The explanation of this phenomenon requires further
investigation. Our results demonstrate that, music has a significant effect on our
brain waves but this effect is strongly depending on the observed person. In order
to investigate the influence of songs, we have to observe the confusion matrix of
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the classifier. As an example, the confusion matrix on the data of subject 2 can be
seen on Fig. 4.

Figure 4: Confusion matrix of subject 2

In the confusion matrix, well visible that the 1., 3., and 7. songs were classified
with 100% accuracy while the 8. song (Clint Mansell - Lux aeterna) was totally
misclassified. From the individual song classification rates, conclusions can be
drawn about the effect of songs.

Our preliminary results, reported in this paper, reflect the effect of songs on
the listener’s brainwaves without any feedback. Therefore, it would be a majorly
enhance in music therapy and music recommendation systems.
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