
The Effects of Different Congestion Control
Algorithms over Multipath Fast Ethernet

IPv4/IPv6 Environments

Szabolcs Szilágyi, Imre Bordán

Faculty of Informatics, University of Debrecen, Hungary
szilagyi.szabolcs@inf.unideb.hu

bordanimre@gmail.com

Abstract
The TCP has been in use since the seventies and has later become the

predominant protocol of the internet for reliable data transfer. Numerous
TCP versions has seen the light of day (e.g. TCP Cubic, Highspeed, Illinois,
Reno, Scalable, Vegas, Veno, etc.), which in effect differ from each other in
the algorithms used for detecting network congestion.

On the other hand, the development of multipath communication tech-
nologies is one today’s relevant research fields. What better proof of this,
than that of the MPTCP (Multipath TCP) being integrated into multiple
operating systems shortly after its standardization.

The MPTCP proves to be very effective for multipath TCP-based data
transfer; however, its main drawback is the lack of support for multipath com-
munication over UDP, which can be important when forwarding multimedia
traffic. The MPT-GRE software developed at the Faculty of Informatics,
University of Debrecen, supports operation over both transfer protocols.

In this paper, we examine the effects of different TCP congestion control
mechanisms on the MPTCP and the MPT-GRE multipath communication
technologies.

Keywords: congestion control, multipath communication, MPTCP, MPT-
GRE, transport protocols.

1. Introduction

In 1974, the TCP was defined in RFC 675 under the Transmission Control Pro-
gram name. Later, the Transmission Control Program was split into two modular

Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

Proceedings of the 11th International Conference on Applied Informatics
Eger, Hungary, January 29–31, 2020, published at http://ceur-ws.org

341

architectures, namely the Transmission Control Protocol (TCP), and the Internet
Protocol (IP), which are the two corner stones of what we call internet today.

The TCP is a connection-oriented, reliable, ordered end-to-end protocol that
operates in the fourth (transfer) layer of the ISO OSI reference model, and in the
third layer of the quad-layer TCP/IP protocol stack. It supports the connection and
communication of processes running on different endpoints with reliable transfer of
dataflows. The processes are able to connect to each other using so-called sockets
that are identified by an IP-address and port number pair for each endpoint. Thus,
a communication session can be defined with the help of a socket-pair.

In the beginning, the TCP only provided reliable, ordered dataflow transfer
without any included congestion control mechanisms. Later on, with the internet
gaining in popularity, problems started to arise due to the ever more frequently oc-
curring network congestions. Network congestion is the reduced quality of service
that occurs when a network node or link is carrying more data than it can handle.
Typical effects include queueing delay, packet loss or the blocking of new connec-
tions. A consequence of congestion is that an incremental increase in offered load
leads either only to a small increase or even a decrease in network throughput [1].
Network protocols that use aggressive retransmissions to compensate for packet
loss due to congestion can increase congestion, even after the initial load has been
reduced to a level that would not normally have induced network congestion. Such
networks exhibit two stable states under the same level of load. The stable state
with low throughput is known as congestive collapse. Congestion control modulates
traffic entry into a telecommunications network in order to avoid congestive col-
lapse resulting from oversubscription. This is typically accomplished by reducing
the rate of packets, by preventing senders from overwhelming the network [2].

In the early eighties, it was on Jakobson’s suggestion (see [3]) that a rudimen-
tary congestion control mechanism was implemented on a system level into the
TCP. This version was named TCP Tahoe. As the internet continued to gain
ground and different communication technologies and trends started to emerge,
the initial TCP version proved to be less effective. E.g. current day fast, and
high delay networks have different system requirements, than for example wire-
less data transfer. Numerous TCP versions have seen the light of day since the
eighties, which effectively proves that no TCP version was yet conceived that can
be applied in every type of network environment while satisfying all the require-
ments. Our experiments in multipath environments were limited to the following
versions: TCP Vegas, TCP Reno, Scalable TCP (SCTCP), TCP Veno, HighSpeed
TCP (HSTCP), TCP-Illinois, TCP Cubic. More detailed information about the
operating principles of the TCP versions can be found in the following papers:
[4, 5, 6, 7, 8, 9, 10, 11, 12].

The use of multipath communication technologies can greatly improve the effec-
tiveness of infocommunications systems, primarily with regards to maximum data
transfer rate, redundancy, and roaming capabilities. Several multipath solutions
exist; however, probably the most prominent one is the Multipath TCP (MPTCP
– [13]), which has lately been integrated into their operating systems by Apple and

342

Cisco as well. The MPTCP is practically the multipath extension of the tradi-
tional TCP, building its operating principle on the use of TCP-subflows. Besides
its numerous advantages, the MPTCP has a main drawback as well, namely that it
supports communication over TCP only, not allowing the use of the UDP. Multime-
dia applications, however, typically use the UDP. The development of the multipath
communication technology MPT-GRE (see [14]) building on a completely new ar-
chitecture set off to eliminate this problem. Practically speaking, a new tunnel
layer and interface was introduced. The applications operate conventionally above
this layer, handing their transferrable data over to the logical interface of the tun-
nel. The MPT-GRE software is then responsible for mapping the data traffic to
the physical interfaces on both the sending and receiving end. The MPT-GRE is
virtually the multipath extension of the GRE standard, which supports communi-
cation over both the TCP and the UDP, and both IPv4 and IPv6. The performance
analysis of these multipath systems is discussed in the following papers: [15, 16, 17].

In this paper, we examine the effect of different congestion control algorithms on
the MPTCP and the MPT-GRE solutions with regards to file-transfer performance
and CPU utilization, laid out in the following structure: in the second chapter we
introduce the measurement environment, then go on to present our measurement
results in chapter three. The final chapter contains our conclusions together with
the identified development possibilities and suggestions.

2. The measurement environment

Our measurements were carried out in a quad-path Fast Ethernet environment
provided to us by the Faculty of Informatics, University of Debrecen. As shown on
Figure 1, the environment with independent paths was set up between the network
interfaces of two server computers. As by default the network interfaces supported
1 Gbps speeds, we limited their throughput to 100 Mbps on all four interface-pairs.
The specifications of the machines were as follows:

• Gigabyte Z77-D3H motherboard with Intel Z77 chipset

• 8 threads (4 physical cores) on an Intel Core i7-3770K 3.50GHz processor

• 4x4GB 1600MHz DDR3 SDRAM

• Intel PT Quad 1000 Gigabit Ethernet server interface

• Ubuntu 16.04 LTS (Xenial Xerus) 64-bit operating system with 4.4.0-62-
generic Linux kernel module

We used CAT6 STP cables to establish the paths. The motherboards’ in-
tegrated network interface cards were reserved for remote access and they were
disabled during the measurements, removing any impact they could have had on
the measurement process.

343

Server 1 Server 2

enp3s0f0 172.16.1.10/24

tun0 tun0
10.0.0.1/24 10.0.0.2/24

Tunnel

enp3s0f1 172.16.2.10/24

enp3s0f0 172.16.1.20/24

enp3s0f1 172.16.2.20/24

enp4s0f0 172.16.3.10/24

enp4s0f1 172.16.4.10/24

enp4s0f0 172.16.3.20/24

enp4s0f1 172.16.4.20/24

Figure 1: Quad-path Fast Ethernet measurement environment

2.1. Using different versions of TCP
Like it shows in the system specifications introduced above, Linux Ubuntu operat-
ing system was installed on both servers. The modern Linux environments use the
TCP Cubic version by default. The currently enabled congestion control algorithm
can be displayed using this command:

s y s c t l net . ipv4 . tcp_congest ion_contro l

The list of TCP congestion control algorithms currently supported by the op-
erating system can be queried via the following command:

s y s c t l net . ipv4 . tcp_ava i lab le_congest ion_contro l

A specific congestion control algorithm (e.g. TCP Vegas) can be selected as
shown here:

sudo s y s c t l net . ipv4 . tcp_congest ion_contro l=vegas

2.2. Preparation of MPT-GRE and MPTCP based measure-
ments

Afterwards, the MPT-GRE and the MPTCP multipath environments were installed
and configured per the instructions available on their respective developer websites.
The MPT-based and MPTCP-based measurements were carried out separately, as
the latter being a kernel-level implementation required loading a dedicated kernel
module on system boot. We performed the following three measurement types in
both cases: iperf3 throughput measurement of memory-to-memory data transfer,
FTP-based file transfer throughput measured using wget, and CPU utilization read-
ings while using different TCP versions. The measurements were automated using
Python scripts that are publicly available1. Each measurement was repeated ten

1Python scripts – https://irh.myqnapcloud.com:/share.cgi?ssid=0wbCCTP

344

0

50

100

150

200

250

300

350

400

tun4_path4 tun4_path6 tun6_path4 tun6_path6 mptcp4 mptcp6

T
h

r
o
u
g
h

p
u
t
 (

M
b
/
s
)

cubic

reno

illinois

scalable

veno

highspeed

vegas

Figure 2: Testing the ipferf3 and FTP throughput performance of
the MPT-GRE and MPTCP in quad-path IPv4/IPv6 Fast Ethernet

environments

times. The results showed a minimal, one percent deviation in each case. We car-
ried out the measurements in both IPv4 and IPv6 environments, similar to earlier
experiments (see e.g. [15, 16, 17]).

3. Measurement results

We began with the iperf3 -based scenarios. The computer seen on the left side
of Figure 1 was used as the iperf3 server, while the computer on the right was
used to run the Python scripts for the measurements. As the next figure shows
(Figure 2), both the MPT-GRE and the MPTCP were effective in aggregating
the capacity of the four independent paths. With the exception of TCP Vegas,
each case resulted in a throughput measurement of about 360 Mbps. The MPT-
GRE surprisingly under-performed when used in conjunction with TCP Vegas: the
throughput fluctuated around 100 Mbps. On the other hand, the MPTCP proved
effective when paired with either of the seven TCP versions, both in IPv4 and IPv6
quad-path environments.

The FTP-based performance analysis brought nearly identical results to those
of the iperf3 measurements (see Figure 2). In this scenario, a 1 GB file was down-
loaded into the memory of the client computer using the wget command. The TCP
Vegas environment proved to be the most detrimental to the MPT-GRE results in
these runs as well. The MPTCP also performed well. Interestingly, its operation
over IPv6 seemed slightly more effective and stable, than over IPv4. It managed
to achieve throughputs over 360 Mbps with each of TCP versions.

The following two figures (Figure 3 and Figure 4) illustrate the results of the
most effective and the least effective FTP-based measurements.

The most effective path aggregation and thus the highest throughput could be
observed when utilizing the TCP Cubic algorithm. In this case, compared to the
single-interface baseline measurement, the download time dropped to a quarter

345

0

50

100

150

200

250

300

350

400

0 25 50 75 100

T
h

r
o
u
g
h

p
u
t
 (

M
b
/
s
)

Time (s)

tun4_path4 baseline4

Figure 3: MPT-GRE IPv4-IPv4 wget throughput performance us-
ing 4 interfaces and the Cubic TCP congestion control algorithm

0

50

100

150

200

250

300

350

400

0 25 50 75 100

T
h

r
o
u
g
h

p
u
t
 (

M
b
/
s
)

Time (s)

tun4_path4 baseline4

Figure 4: MPT-GRE IPv4-IPv4 wget throughput performance us-
ing 4 interfaces and the Vegas TCP congestion control algorithm

(3.1), while the throughput quadrupled (3.2). The worst results were acquired
using the TCP Vegas algorithm, where the MPT-GRE performed only about ten
percent above its single-path baseline. This meant its file download time was almost
identical to the one measured in the single-path environment.

𝑡(𝑛) =
𝑡(0)

𝑛
[𝑠], where 𝑛 = 4, (3.1)

𝑇 (𝑛) = 𝑛 · 𝑇 (1)[𝑀𝑏/𝑠], where 𝑛 = 4. (3.2)

The next two figures (Figure 5 and Figure 6) also show two measurement ex-
tremes, this time with regards to CPU utilization.

The same trend can be observed as before: the TCP Cubic algorithm proved
to be the most suitable for both multipath environments. We can see the almost
linear increase of CPU utilization with the number of interfaces and paths used.
The MPTCP came out on top in this round as well since it exhibited lower resource

346

0

2

4

6

8

10

12

14

0 25 50 75 100 120

C
P

U
 u

s
a
g
e
 (
%

)

Measurement time (s)

tun6_path6 mptcp6

Figure 5: MPT-MPTCP CPU utilization comparison in a quad-
path IPv6 Fast Ethernet multipath network environment in case of

TCP Cubic and iperf3

0

5

10

15

20

25

0 25 50 75 100 120

C
P

U
 u

s
a
g
e
 (
%

)

Measurement time (s)

tun6_path6 mptcp6

Figure 6: MPT-MPTCP CPU utilization comparison in a quad-
path IPv6 Fast Ethernet multipath network environment in case of

TCP Vegas and iperf3

usage compared to that of the MPT-GRE software. The TCP Vegas algorithm, this
time, interestingly, closed the gap on the resource utilization of the two multipath
technologies. However, quite a significant oscillation can be observed with regards
to the MPT-GRE values in the quad-path IPv6 environment.

The last figure (see Figure 7) shows a summary of the CPU utilization of the
MPT-GRE and the MPTCP multipath configurations when running iperf3 in quad-
path Fast Ethernet IPv6 environments. Looking at the averaged percentage values,
we can see again that the resource demand of the MPTCP is somewhat lower. In
our view, this can be attributed to the fact that the MPTCP is a kernel-level
multipath solution, while the MPT-GRE is a user-space implementation. Despite
this, both solutions can be considered effective.

347

0

1

2

3

4

5

6

7

8

9

10

11

tun6_path6 mptcp6

C
P

U
 u

s
a
g
e
 (
%

)

cubic reno illinois scalable veno highspeed vegas

Figure 7: MPT-MPTCP CPU utilization comparison in a quad-
path IPv6 Fast Ethernet multipath network environment in case of
TCP Cubic, Reno, Illinois, Scalable, Veno, HighSpeed and Vegas

using iperf3

4. Conclusions

In this paper we examined the effects of seven different TCP congestion control
algorithms (TCP Cubic, TCP Reno, TCP-Illinois, Scalable TCP, TCP Veno, High-
Speed TCP and TCP Vegas) on the MPT-GRE and the MPTCP multipath so-
lutions in quad-path IPv4/IPv6 Fast Ethernet environments. We can conclude
that the lowest system performance was achieved when utilizing the TCP Vegas
congestion control algorithm, while the most optimal back-end configuration for
the multipath solutions proved to be the TCP Cubic algorithm, which at the time
of publication is the default congestion control algorithm used in both the latest
Linux and Windows operating systems2. Our further objectives include extend-
ing our measurements to multipath Gigabit Ethernet IPv4/IPv6 environments as
well as to include more recently released TCP congestion control algorithms (e.g.
the Google-developed TCP BBR3 from 2016, or the Elastic-TCP proposed in 2019
[18]).

Acknowledgements. This work was supported by the construction EFOP-3.6.3-
VEKOP-16-2017-00002. The project was supported by the European Union, co-
financed by the European Social Fund.

References

[1] Al-Bahadili, H., Simulation in computer network design and modeling: Use and
analysis, Hershey, PA: IGI Global (2012), 282.

2https://en.wikipedia.org/wiki/CUBIC_TCP
3https://github.com/google/bbr

348

[2] Akiene, P. T., Kabari L. G. Simulation of an Optimized Data Packet Transmis-
sion in a Congested Network, Network and Complex Systems, Vol. 5 (2015), 29–37.

[3] Jacobson, V., Congestion Avoidance and Control, Proceedings of the 1988 ACM
SIGCOMM Symposium (1988), 314–329.

[4] Móczár, Z., Molnár, S., Towards the Transport Protocols of Future Internet,
Infocommunications Journal, Vol. 6 (2014), 3–9.

[5] Yang, P., et. al., TCP Congestion Avoidance Algorithm Identification,
IEEE/ACM Transactions on Networking, Vol. 22 (2014), 1311–1324.

[6] Pande, A. P., Devane, S. R.., Study and Analysis of Different TCP Variants,
IEEE: 2018 Fourth International Conference on Computing Communication Control
and Automation (ICCUBEA) (2018), 1–8.

[7] Lin, J., et. al., Extensive evaluation on the performance and behaviour of TCP
congestion control protocols under varied network scenarios, Elsevier: Computer
Networks, Vol. 163 (2019), 1–21.

[8] Mateo, P. J., et. al., Analysis of TCP Performance in 5G mm-Wave Mobile
Networks, ICC 2019 - 2019 IEEE International Conference on Communications
(ICC) (2019), 1–7.

[9] Mishra, A., et. al., The Great Internet TCP Congestion Control Census, Pro-
ceedings of the ACM on Measurement and Analysis of Computing Systems (2019),
1–24.

[10] Park, J., Kim, H., Choi, J., Improving TCP Performance in Vehicle-To-Grid
(V2G) Communication, Electronics, Vol. 8 (2019), 1206–1223.

[11] Turkovic, B., Kuipers, F. A., Uhlig, S., Interactions between Congestion Con-
trol Algorithms, IEEE: 2019 Network Traffic Measurement and Analysis Conference
(TMA) (2019), 161–168.

[12] Polese, M., et. al., A Survey on Recent Advances in Transport Layer Protocols,
IEEE Communications Surveys and Tutorials, Vol. 21 (2019), 3584–3608.

[13] http://multipath-tcp.org/, The MPTCP Project official website (2020).

[14] https://irh.inf.unideb.hu/˜szilagyi/index.php/en/mpt/, The MPT-GRE Project of-
ficial website (2020).

[15] Almási, B., Szilágyi, S., Throughput Performance Analysis of the Multipath
Communication Library MPT, TSP 2013 – The 36th International Conference on
Telecommunications and Signal Processing, (2013), 86–90.

[16] Almási, B., Lencse, G., Szilágyi, S., Investigating the Multipath Extension of
the GRE in UDP Technology, Computer Communications, Vol. 103 (2017), 29–38.

[17] Szilágyi, S., Bordán, I., Harangi, L., Kiss, B., Throughput Performance Com-
parison of MPT-GRE and MPTCP in the Gigabit Ethernet IPv4/IPv6 Environment,
Journal of Electrical and Electronics Engineering, Vol. 12 (2019), 57–60.

[18] Alrshah, M., A., Al-Maqri, M., A., Othman, M., Elastic-TCP: Flexible Con-
gestion Control Algorithm to Adapt for High-BDP Networks, IEEE Systems Journal,
Vol. 13 (2019), 1336–1346.

349

