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Abstract

Vehicle-to-Anything (V2X) communication is expected to make traffic
more efficient and safe by creating an essential infrastructure for Cooperative
Intelligent Transport Systems (C-ITS). Cooperative platooning is a C-ITS
application controlling a group of vehicles and maintaining small intervehicle
distances even at high speeds. The small distance between the vehicles re-
quires an extended vision for the adaptive cruise control (ACC) algorithms,
which can be provided through advanced V2X communication, such as cre-
ating an extension of ACC called cooperative ACC (CACC). The Quality of
Service (QoS) parameters of the V2X communication influences the reliability
of the CACC algorithms. In this paper, we modeled and examined the effects
of QoS parameters on the platooning control algorithms using Veins/Plexe
as the base simulation framework.
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1. Introduction

1.1. V2X principles and context
Vehicle-to-Anything communication is direct and fast (very low-latency), but not
expected to provide high throughput. V2X communication protocols are designed
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for fully distributed networks that are able to operate without any centralized or
cellular-like control and management systems [12]. This eliminates the risk of ser-
vice outages either due to lack of coverage or system failure. The two major existing
physical layers for V2X services are the IEEE 802.11p (IEEE-802.11-2016) [1] and
the LTE-V2X protcols [2]. Above the complex PHY and MAC layers, simple net-
work and transport protocols are implemented to support the so-called Facility
Layer signaling messages which can share key properties about the vehicles or the
surrounding environment. The applications built on top of these messages can be
categorized into different days or phases of deployment (in 1-5 levels) [3, 13]. The
platooning application is a Day 3 V2X application because it also relies on intention
data, and the full control is taken from the driver among specific circumstances.

1.2. Platooning application
The platooning term refers to a set of vehicles, where the corresponding vehicles
drive in one line, following each other. We assume that the control of the first
car in the group (the platoon leader) is solved either with a professional driver
or with a fully autonomous car. The steering of every other, so-called following
vehicle, is considered to be handled in terms of this paper. The cooperative term
refers to platooning applications, where the algorithm of the lateral acceleration can
also take motion state information of the non-adjacent vehicles into account. The
platoon uses V2X communication features to gain information about non-adjacent
vehicles. Having information about non-adjacent vehicles is a must because it
is a mathematically proven fact that the linear response algorithms which try to
maintain a fixed intervehicle gap require such information to ensure the string
stability property [4, 14]. This strong requirement indicates that disturbances in
communication can have a massive effect on the safety of the platoon [15].

1.3. Scope of the examination
The main topic of this article is the inspection of CACC algorithms for platooning
in circumstances where the communication link has varying QoS parameters. To
reach this goal, we extended the existing framework of Veins/Plexe [5] to be able to
define the QoS parameters for every inter-vehicle V2X link explicitly. We executed
simulations using homogenous platoons controlled by models of existing control
algorithms (ACC and CACC types) with various latency, jitter, and packet loss
parameters. We analyzed the circumstances if any collision or dangerous behavior
applies. The rest of the paper is organized as follows. First, we give a short overview
of the background focusing on the main communication techniques and control
algorithms applied in platoons. Then we introduce the simulation environment we
used and extended, followed by the measurement details, the simulation scenarios,
results, and their analysis. Finally, we conclude the paper and draw our future
research plans.
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2. Background

2.1. Communication between platoon members
The PHY and MAC layers of existing, available V2X communication techniques
are based on the IEEE 802.11p [1] or the LTE-V2X [2] standards. The cooperative
platooning application requires regular updates about the motion states of the
platoon member vehicles and some additional messages to maintain the platoon
members, roles, and maneuvers [16, 17].

EU and US standardization provide two similar message types to implement the
periodic update (“heartbeat”) feature. These two message types are Cooperative
Awareness Messages (CAM) [8] and Basic Safety Messages (BSM) [9]. The CAM
and BSM all contain the required motion state information, and they both send the
information with a maximum frequency of 10 Hz. These two message types are both
modular and have many optional fields, including additional status information
about the vehicle state.

The other type of messages handle management tasks for platoons. These
messages are responsible for maintaining the platoon member vehicles, the leader
of the platoon, the maneuvers made by the platoon, for example, merging two
platoons, changing the lines, or splitting. Currently, these types of messages and
solutions based on them are under standardization and evaluation [6, 18, 19, 20].

2.2. Control algorithms
The platooning application was described first in the 1960s [7]. Since then, mul-
tiple predecessor algorithms were present. Maybe the most important invention in
this topic was the work mathematically proved that the elimination of the string
stability problem in case of using linear response algorithms that try to maintain a
fixed intervehicle gap is only possible if the information is not only available from
the adjacent vehicles [4].

A control algorithm for vehicle platooning is expected to produce the desired
acceleration or deceleration value as output to determine the lateral dynamics of
the controlled vehicle. The steering of the controlled vehicle is considered to be
solved. The control of the platoon leader is handled by a fully autonomous vehicle
or a human driver.

Existing control algorithms can be categorized by the inputs of they are relying
on. If the control algorithm has only information about the adjacent vehicles, then
the solution is ACC. At the same time, the algorithm also uses information about
non-adjacent vehicles, and then it is a CACC. CACC algorithms can have the string
stability property – unlike the ACC –, making the technique able to be a secure
basis for platooning control.

Simulational examination of the platooning application is a reasonable method
because it can provide realistic data much cost-efficiently than using field tests.
Several articles are examining the quality of service (QoS) requirements of the pla-
tooning application from various approaches via simulation. The Plexe article [5]
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defines the packet length, implements the MAC and the physical layer protocol,
and simulates various platooning maneuvers, so it examines the safety of the pla-
tooning application with communicational disturbances. Another approach [11]
is to examine the platooning application if short term disturbances occur, for ex-
ample, the device reboots. This article claimed that – depending on the speed
change and distance between the vehicles – if the loss of communication occurs
for 2 seconds, the vehicles will collide. Our approach is different from the ones
mentioned earlier. We defined QoS parameters, which are explicitly defined. Our
sensor model also includes a radar in front of the vehicles which can be able to
handle communicational outages.

3. Simulation Environment

3.1. Plexe
As part of our work, we selected a simulation framework that is able to simulate the
platooning traffic with support for parametrized lateral control algorithms. The
framework had to support V2X communication, as well. The Plexe framework
was chosen, which is an extension of the Veins simulation framework [5, 21]. It is
designed to support the realistic simulation of various platooning scenarios. The
Plexe – or the Veins – framework consists of the following three elements.

• The SUMO microscopic simulation framework [22]. SUMO implements traffic
simulation with different driving models. It makes it possible to import maps
from OpenStreetMap [10] or implement any driving model, in our case, any
platooning control algorithm. The SUMO simulation is accessible through a
so-called TraCI interface, which is a network-based interface with extensible
instruction sets. The Plexe implements four cruise control algorithms to
demonstrate the limitations of the platooning application.

• The OMNeT++ discrete-time event-driven network simulation framework [23].
This framework simulates network traffic through various terrestrial situa-
tions with various parameters given. Plexe uses the communication imple-
mented in the Veins framework and extends it with additional functionalities.
Plexe implements a higher layer unicast protocol and basic beaconing pro-
tocols with corresponding message definitions to support signaling messages
of the cooperative platooning applications. Plexe also defines a superclass
for platooning applications, which can pass wirelessly received data to the
controllers and also logs the motion data.

• The Veins open source vehicular network simulation framework [21]. The
Veins module connects OMNeT++ and SUMO through the SUMO’s TraCI
interface. Simulation parameters are stored in the configuration file of OM-
NeT++, the driving scenario, and the platooning control algorithm is im-
plemented in the SUMO framework. The Veins module itself compiles in a
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shared object file, which is loaded by OMNeT++. Veins manages the SUMO
simulation, the network simulation, and the TraCI connection as well. The
Plexe framework extends Veins with a custom unicast message type and the
implementation of the messages which are responsible for exchanging the
information about the vehicle’s motion state.

3.2. The examined communication parameters
To examine QoS requirements of cooperative platooning control algorithms, we
selected the Average Packet Loss, Latency, and Jitter as the most important com-
munication QoS parameters.

The average packet loss is interpreted here as a certain percent of the signaling
packets of the cooperative algorithm that does not arrive at the receiver. The
loss of each packet is independent and follows a Bernoulli distribution, where the
probability – and the mean – value of the packet loss is the configurable packet loss
parameter. The L represents the event of packet loss.

L ∼ B(𝑝)

Latency represents the amount of time, which corresponds to the time difference
between sending a signaling packet and receiving it. The latency is caused by
processing delays, communicational delays, and many other reasons.

𝑡latency = 𝑡receive − 𝑡send

The jitter parameter in our analysis follows a normal distribution, with an ad-
justable dispersion parameter and 0 as the mean parameter. This definition of the
latency would allow the simulator to send a packet before the generation of the
packet, which would not be realistic, nor implementable, so this effect is filtered.
The latency and the jitter parameters together form a normal distribution where
the mean – 𝜇 – is the configured latency parameter and the dispersion – 𝜎 – is the
configured jitter parameter.

𝑡Latency with Jitter =

{︃
𝑁(𝜇, 𝜎) if > 0

0 otherwise

3.3. Implementation of explicit QoS parameter declaration
To perform the desired analysis, we had to extend the Plexe framework with the
support of an explicit declaration of communication QoS parameters. For batch
execution, the values of the QoS parameters must be given in the configuration
file of OMNeT++. Therefore we introduced proper TraCI messages at the Veins
side to enable the configuration as an adjustable parameter. The above mentioned
three explicit QoS parameters were implemented as receiver functions. The latency
and the jitter were implemented as OMNeT++ self messages parameterized with
a certain latency. A new application class was introduced at the Veins side called
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QoSApp containing two instances from helper objects: one of them implements the
draw of the probabilistic packet loss using the selected Bernoulli distribution, the
other implements the draw of the latency values using the normal distribution. The
QoSApp class is responsible for the implementation of the packet loss as well. It
stores the message frame of the delayed message and sends a self message to sched-
ule the delivery of the packets. As the self message arrives at the QoSApp, it makes
the corresponding message available for the cooperative platooning application.

3.4. The examined algorithms
There are multiple approaches to ACC/CACC algorithms with different design
visions and objectives. We examined four different algorithms that were already
implemented in Plexe. We did not change the built-in parameters of the algorithms
to stay consistent with the original framework.

• Plexe ACC. This algorithm only considers the motion state of the preceding
vehicle. Therefore, this algorithm can not ensure string stability with a low
headway time gap. The safety of the platoon can only be ensured if quite
long distances – time gaps – are maintained between the vehicles. The ACC
algorithm relies on the distance between the preceding and the ego vehicle
and the speed of the ego and the preceding vehicle.

• Plexe CACC. The CACC algorithm uses V2X communication to gather in-
formation from the preceding and the leader vehicle. This algorithm counts
with the information obtained from the leader and preceding vehicle. It uses
the acceleration, speed, and distance values as well.

• Plexe PLOEG. The PLOEG algorithm uses information only from the pre-
ceding vehicle transmitted via V2X communication in the Plexe implemen-
tation. This approach can be realistic because the acceleration is the second
derivate of the distance. If the acceleration sensing is based on distance sens-
ing, the accumulated errors can lead to unreliable results. This problem can
be solved by using communication to share the measurements of the sensors
in the preceding vehicle.

• Plexe CONSENSUS. The Consensus algorithm can count on every member
of the platoon. This algorithm has an adjacency matrix filled with properly
chosen coefficients. The Plexe implementation of the Consensus algorithm
only uses the leader and the preceding vehicle data obtained from V2X com-
munication.

434



4. Simulation Results and Analysis

4.1. Simulation scenarios
Plexe implements the two most important safety-relevant scenarios in terms of the
platooning application. In both of them, the first car is driven by the simulator on
a flat and straight highway with different characteristics of speed.

The Braking scenario is responsible for testing emergencies where the platoon
has to stop in a very short distance. The leader vehicle brakes hard, and the
follower vehicles have to stop without colliding the other cars.

In the Sinusoidal scenario, the speed of the leader vehicle follows a sinus curve.
This scenario is responsible for testing whether the algorithms can ensure safe
operation in situations where they face an excitation with a constant frequency.
The desired answer of the algorithm is a decaying behavior where the algorithm
smoothens the speed oscillation of the leader car. It is easy to consider that an
ascending answer would lead to collisions. This ability is called string stability.

4.2. Simulation execution
The introduced QoS parameters, the two crucial scenarios, and the applied algo-
rithms were defined as adjustable variables in the OMNeT++ configuration file.
The QoS implementation introduced significant random factors in the simulation
runs – without the QoS implementation, and the simulation runs did not show an
indeterministic behavior.

Figure 1: The platoon contained 8 vehicles.

In order to get statistically relevant results, it was necessary to execute each
simulations multiple times. The OMNeT++ framework executed each combination
of the available variables, where the available free factors were the following:

• the examined algorithm. The simulation ran on four different ACC/CACC
algorithms, where the first algorithm was represented twice because it ran
with two different configuration parameters;

• the packet loss rate, parametrized from 0 percent until 70 percent with 10
percent steps;

• the standard deviation of the jitter could be 0 or 500 milliseconds;

• the delay parameter could be 0 and 1 second;

• the two key scenarios;
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• finally, an additional helper parameter was introduced to execute the test
cases multiple times.

Each scenario covered a 60 seconds long situation on a straight highway. The
platoon contained eight vehicles, a leader and seven follower vehicles, as it is visible
in Fig 1. The platoon used a dedicated lane; the surrounding traffic was not
a disturbing factor. Each simulation run took approximately 10 seconds for the
framework to simulate. During our analysis, we executed thousands of different
simulations and produced more gigabytes of data to be processed.

4.3. The developed analysis tool
A novel tool was developed with the capability to handle the multiple simulation
runs. The analysis tool was developed to process and visualize the most critical
measured Key Performance Indicators (KPIs) of the examined algorithms. The
logging of the measured data in the simulation framework was performed on the
Veins side, where each platoon participants sent their movement data to play the
communication parts of the overall simulation. In the platooning application the
following KPIs were logged and analyzed:

• the distance between the platoon members, where the logged parameter is
the distance between the adjacent vehicles;

• speed of the platoon member vehicles;

• the acceleration of the platoon member vehicles.

The logging is implemented with standard OMNeT++ methods on the communica-
tion simulation side, with a defined frequency, along with the beaconing messages.

The distance between the platoon member vehicles is the most important eval-
uation criterion because it shows if the vehicles collide, which is not acceptable
due to the strict safety requirements of the platooning application. The speed and
the acceleration data shows whether the algorithms can perform according to the
design principles also in suboptimal communicational situations or not. The tool,
in its current form, calculates the minimum, maximum, deviation, and mean values
of the measured data.

4.4. Evaluation method and simulation results
The main goal of the analysis was to point on the most sensible QoS parameter of
the examined algorithm and also to specify the algorithm’s numerical limits. It is
important to note that the algorithms were used with the coefficients/parameters
defined in the article where they were used. This means that not all of the algo-
rithms try to keep the same time gap or distances, so a direct comparison is not
applicable. During the evaluation, we used the developed analysis tool to evaluate
the simulation results.
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The experience of the analysis is that most of the algorithms are sensitive for the
latency, especially when having a braking scenario. Most of the algorithms could
handle the Sinusoidal scenario, but some of them could only handle it because
they had a relatively wide safety gap. If having a Sinusoidal gain, the correct
answer from the algorithms is a decaying behavior, which we could see from some
of the algorithms. In the Braking scenario, however, some of the algorithms did not
respond hard enough to stop without colliding. This behavior is potentially caused
by choosing too small coefficients, which creates a smooth response in most of the
time, but when having a hard brake situation, this approach does not perform well.

Figure 2: Braking scenario: ACC algorithm with 0.3 and 1.2 sec-
onds time headway and CACC algorithm with 30% packet loss

Figure 3: Braking scenario: Consensus algorithm with 0.5 seconds
delay and 70% packet loss, PLOEG algorithm with 30% packet loss

The algorithms have different identified weaknesses and strengths:

• ACC: The performance of the ACC depended strongly on the chosen time
gap between the vehicles. If the time gap was great enough, the algorithm
could avoid the collision in any case, as one can see in Fig 2, which means
that this algorithm can be a fallback solution. However, the lack of string
stability property does not make it able to be a full solution, as one can see
in Fig 4.

• CACC: The CACC handled the Sinusoidal scenario relatively well – which is
visible on Fig 6 –, but it is visible that with higher coefficients the algorithm
could result in a better performance when braking hard as one can see on
Fig 2. The algorithm collides if having too high latency or jitter values.
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Figure 4: Sinusoidal scenario: ACC algorithm 0.3 seconds time gap

Figure 5: Sinusoidal scenario: ACC algorithm 1.2 seconds time gap

Figure 6: Sinusoidal scenario: CACC algorithm with 60%packet
loss , CONSENSUS algorithm with 70% packet loss, PLOEG algo-

rithm with 70% packet loss

• PLOEG: The PLOEG algorithm was susceptible to the latency property,
which is proven by Fig 3 and Fig 6.

• CONSENSUS: The consensus algorithm was sensitive for the latency property
but relatively resistive for the jitter. This is visible on Fig 3 and Fig 6.
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5. Conclusions

The experience of the performed analysis is that most of the examined CACC
algorithms are sensitive for the latency, especially when having a braking scenario.
Most of the algorithms could handle effects in the Sinusoidal scenario, but some of
them could only manage it because they had a relatively wide safety gap. If having
a Sinusoidal gain, the correct answer from the algorithms is a decaying behavior,
which we could see from some of the algorithms. In the Braking scenario, however,
some of the algorithms did not respond hard enough to stop without colliding. This
behavior is potentially caused by choosing too small coefficients, which creates
a smooth response most of the time, but when having a hard brake situation,
this approach does not perform well. As an experience, future algorithms could
recognize some critical situations like hard braking, and they could handle these
situations with different control sequences.

As a part of our future work, we plan to extend the set of examined CACC
algorithms, and also to explore the circumstances where the obtained minimal QoS
parameters are present due to the dense traffic. We want to implement control
algorithms and new maneuvers as well based on the Artery framework [24].
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