
On Possible Approaches to Differentiation
of Rough Real Functions

Zoltán Ernő Csajbók

Department of Health Informatics, Faculty of Health, University of Debrecen
Sóstói út 2-4, H-4406 Nyíregyháza, Hungary

csajbok.zoltan@foh.unideb.hu

Abstract
In the mid 1990s Z. Pawlak relying on the rough set theory initiated the

study of rough calculus in his many papers. He invented the investigation
of its different subfields such as rough continuity, rough derivatives–integrals,
rough differential equations, etc. Some authors have systematically investi-
gated the rough continuity of rough real functions in Pawlak’s sense. The
following reasonable step would be to define the derivative of rough func-
tions. However, it does not seem clear how it could be carried through this
important step. In the paper, a possible approach will be outlined.
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1. Introduction

In the mid 1990s Z. Pawlak relying on the rough set theory (RST) [6, 7, 15] initiated
the study of rough calculus in his many papers [9, 11, 13, 14]. He invented the
investigation of its different subfields such as rough continuity–discontinuity, rough
derivatives–integrals, rough differential equations, etc.

The paper [3] systematically investigates the rough continuity–discontinuity of
rough real functions in Pawlak’s sense. The next reasonable step would be to define
the derivative of rough functions.

Pawlak defined the rough derivatives based on discrete calculus. This paper
basically, but not completely follows Pawlak’s method.

The rest of paper is organized as follows. After the introduction, Section 1, the
rough real numbers are defined in Section 2. Section 3 surveys different possible
approximations of rough functions. Section 4 defines the rough derivatives and
discusses some special features of this approach.
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2. Rough real numbers

Let 𝑈, 𝑉 be two classical nonempty sets. A function 𝑓 with domain 𝑈 and co-
domain 𝑉 is denoted by 𝑓 : 𝑈 → 𝑉 , 𝑢 ↦→ 𝑓(𝑢). 𝑉 𝑈 denotes the set of all functions
with domain 𝑈 , in notation Dom𝑓 = 𝑈 , and co-domain 𝑉 , in notation Im𝑓 = 𝑉 .

If 𝑓, 𝑔 ∈ 𝑉 𝑈 , the operation 𝑓 ⊙ 𝑔, ⊙ ∈ {+,−, ·, /} and the relation 𝑓 � 𝑔,
� ∈ {=, ̸=,≤, <,≥, >} are understood by pointwise.

For any 𝑆 ⊆ 𝑈 , 𝑓(𝑆) = {𝑓(𝑢) | 𝑢 ∈ 𝑆} ⊆ 𝑉 is the direct image of 𝑆. Especially,
𝑓(𝑈) ⊆ 𝑉 is the range of 𝑓 .

If 𝑎, 𝑏 ∈ R (𝑎 ≤ 𝑏), [𝑎, 𝑏] = {𝑥 ∈ R | 𝑎 ≤ 𝑥 ≤ 𝑏} and ]𝑎, 𝑏[= {𝑥 ∈ R | 𝑎 <𝑥 <𝑏}
denote closed and open intervals. [𝑎, 𝑎] = {𝑎} is identified with the real number
𝑎 ∈ R. It is easy to interpret the open-closed ]𝑎, 𝑏] and closed-open [𝑎, 𝑏[ intervals.

(𝑎, 𝑏) means an ordered pair of real numbers 𝑎 and 𝑏.
Let R≥0 denote the set of nonnegative real numbers. Let [𝑛] = {0, 1, . . . , 𝑛} ⊆ N

be a finite set of natural numbers. Accordingly, ]𝑛] = 1, . . . , 𝑛, [𝑛[= 1, . . . , 𝑛− 1,
and ]𝑛[= 1, . . . , 𝑛− 1.

Definition of rough real numbers can be found in Pawlak’s different papers such
as [13, 14, 9, 8, 11, 12]. Here, it is briefly summarized.

Let 𝐼 denote a closed interval 𝐼 = [0, 𝑎] (𝑎 ∈ R≥0, 𝑎 > 0).

Definition 2.1. A categorization of 𝐼 is a sequence 𝑆𝐼 = {𝑥𝑖}𝑖∈[𝑛]⊆R≥0, where
𝑛≥ 1 and 0=𝑥0<𝑥1<. . .<𝑥𝑛=𝑎. 𝑆𝐼 is also called the discretization of 𝐼.

Let 𝐼𝑆 denote an equivalence relation generated by the categorization 𝑆𝐼 . Let
𝑥, 𝑦 ∈ 𝐼. 𝑥𝐼𝑆𝑦 if 𝑥 = 𝑦 = 𝑥𝑖 ∈ 𝑆𝐼 for some 𝑖 ∈ [𝑛], or 𝑥, 𝑦 ∈ ]𝑥𝑖, 𝑥𝑖+1[ for some
𝑖 ∈ [𝑛[. Hence, the partition 𝐼/𝐼𝑆 associated with the equivalence relation 𝐼𝑆 is:

𝐼/𝐼𝑆 = {{𝑥0}, ]𝑥0, 𝑥1[, {𝑥1}, . . . , {𝑥𝑛−1}, ]𝑥𝑛−1, 𝑥𝑛[, {𝑥𝑛}}.

It should be noted that in classical analysis, the term “partition of 𝐼” is used in
a slightly different sense: Two compact real intervals nonoverlapping if either they
are disjoint or their intersection contains at most one point, which necessarily an
endpoint of both intervals ([2], p. 4). In the classical analysis context, a partition
of 𝐼 is a collection of nonoverlapping closed intervals whose union is 𝐼 ([1], p. 149).

The block of the partition 𝐼/𝐼𝑆 containing 𝑥 ∈ 𝐼 is denoted by J𝑥K𝐼𝑆 . In
particular, if 𝑥 ∈ 𝑆𝐼 , J𝑥K𝐼𝑆 = {𝑥}. If 𝑥 ∈ J𝑥K𝐼𝑆 = ]𝑥𝑖, 𝑥𝑖+1[, J𝑥K𝐼𝑆 = [𝑥𝑖, 𝑥𝑖+1] is the
closure of J𝑥K𝐼𝑆 . Of course, when 𝑥 ∈ 𝑆𝐼 , J𝑥K𝐼𝑆 = J𝑥K𝐼𝑆 = {𝑥}.

In terms of RST terminology, 𝐼𝑆 is an indiscernibility relation on 𝐼. Hence, the
naming of the following notions is consistent with the standard terminology of RST.

The members of 𝐼/𝐼𝑆 are called elementary or base sets. Any union of base
sets are referred to as definable sets. By definition, ∅ is definable. Their collection
is denoted by 𝒟𝐼/𝐼𝑆 .

The principal notions of RST are the lower and upper approximation functions,
l𝑆 and u𝑆 , respectively. Most commonly, their domain and co-domain are the power
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set of 𝐼. In the following, however, the closed intervals of the form [0, 𝑥] (𝑥 ∈ 𝐼)
will only be approximated. Therefore,

l𝑆([0, 𝑥])={𝑥′∈𝐼 | J𝑥′K𝐼𝑆 ⊆ [0, 𝑥]} = ∪{J𝑥′K𝐼𝑆 ∈𝐼/𝐼𝑆 | J𝑥′K𝐼𝑆 ⊆ [0, 𝑥]},
u𝑆([0, 𝑥])={𝑥′∈𝐼 | J𝑥′K𝐼𝑆 ∩ [0, 𝑥] ̸= ∅} = ∪{J𝑥′K𝐼𝑆 ∈𝐼/𝐼𝑆 | J𝑥′K𝐼𝑆 ∩ [0, 𝑥] ̸= ∅}.

PAS(𝐼) = (𝐼, 𝐼/𝐼𝑆 ,𝒟𝐼/𝐼𝑆 , l𝑆 , u𝑆) is called Pawlak approximation space.
With a slight abuse of notation, let us define the following numbers:

l𝑆(𝑥) = max{𝑥′ ∈ 𝑆𝐼 | 𝑥′ ≤ 𝑥} and u𝑆(𝑥) = min{𝑥′ ∈ 𝑆𝐼 | 𝑥′ ≥ 𝑥}.
Of course, l(𝑥) ≤ 𝑥 ≤ u𝑆(𝑥), and l𝑆(𝑥) = u𝑆(𝑥) = 𝑥 iff 𝑥 ∈ 𝑆𝐼 . Moreover,

• l𝑆([0, 𝑥]) = [0, l𝑆(𝑥)] = [0, 𝑥] and u𝑆([0, 𝑥]) = [0, u𝑆(𝑥)] = [0, 𝑥] (if 𝑥 ∈ 𝑆𝐼);

• l𝑆([0, 𝑥]) = [0, l𝑆(𝑥)] $ [0, 𝑥] and u𝑆([0, 𝑥]) = [0, u𝑆(𝑥)[ % [0, 𝑥] (if 𝑥 /∈ 𝑆𝐼).

It is said that the number 𝑥 ∈ 𝐼 is exact with respect to PAS(𝐼) if l𝑆(𝑥) = u𝑆(𝑥),
otherwise 𝑥 is inexact or rough [13]. Of course, 𝑥 ∈ 𝐼 is exact iff 𝑥 ∈ 𝑆𝐼 .

Members of 𝐼/𝐼𝑆 are called rough numbers with respect to PAS(𝐼). They can be
represented as J𝑥K𝐼𝑆 =[l𝑆(𝑥), u𝑆(𝑥)]={𝑥} if 𝑥∈𝑆𝐼 , J𝑥K𝐼𝑆 =]l𝑆(𝑥), u𝑆(𝑥)[ if 𝑥 /∈𝑆𝐼 .

3. Approximation of rough real functions

Let 𝐼 = [0, 𝑎𝐼 ], 𝐽 = [0, 𝑎𝐽 ] be two closed intervals with 𝑎𝐼 , 𝑎𝐽 ∈ R≥0, 𝑎𝐼 , 𝑎𝐽 > 0.
Let 𝑆𝐼 , 𝑃𝐽 be categorizations of 𝐼 and 𝐽 , where 𝑆𝐼 ={𝑥𝑖}𝑖∈[𝑛], 𝑃𝐽 ={𝑦𝑗}𝑗∈[𝑚]⊆R≥0

with 𝑚,𝑛 ≥ 1, 0 = 𝑥0 < 𝑥1 < · · · < 𝑥𝑛 = 𝑎𝐼 and 0 = 𝑦0 < 𝑦1 < · · · < 𝑦𝑚 = 𝑎𝐽 .
The corresponding approximation spaces are PAS(𝐼) and PAS(𝐽).

A function 𝐽𝐼 is called a rough real function with respect to PAS(𝐼) and PAS(𝐽).
To make the blocks of 𝐼/𝐼𝑆 easier to handle technically, they are enumerated

as follows.

𝑁𝐼 : 𝐼/𝐼𝑆 → [2𝑛], J𝑥K𝐼𝑆 ↦→
{︂
𝐵2𝑖 = 2𝑖, if ∃𝑖 ∈ [𝑛] (J𝑥K𝐼𝑆 ={𝑥𝑖} ⊂ 𝑆𝐼),
𝐵2𝑖+1 = 2𝑖+ 1, if ∃𝑖 ∈ [𝑛[ (J𝑥K𝐼𝑆 = ]𝑥𝑖, 𝑥𝑖+1[).

The inverse of 𝑁𝐼 is:

𝑁−1
𝐼 : [2𝑛]→ 𝐼/𝐼𝑆 , 𝐵𝑖 ↦→

{︂ {𝑥𝑖/2}, if 𝑖 ≡ 0 (mod 2),
]𝑥 𝑖−1

2
, 𝑥 𝑖+1

2
[, if 𝑖 ≡ 1 (mod 2).

The equivalence classes of 𝐽/𝐽𝑃 can be enumerated in the same way by the
help of an enumeration function 𝑁𝐽 . Its values are referred to as 𝐶𝑗 ’s (𝑗 ∈ [2𝑚]).

Example 3.1. In the running example, let 𝐼=[0, 𝑥5]with 𝑆𝐼={𝑥0, 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5},
and 𝐽=[0, 𝑦4] with 𝑃𝐽 ={𝑦0, 𝑦1, 𝑦2, 𝑦3, 𝑦4}.

Figure 1 (a) shows the rough coordinate system with respect to PAS(𝐼) and
PAS(𝐽), and the enumeration of 𝐼/𝐼𝑆 and 𝐽/𝐽𝑃 . Figure 1 (b) presents some rough
real functions in this rough coordinate system.

The purpose of this section is to show how rough real functions can be repre-
sented taken into account the features of approximation spaces PAS(𝐼) and PAS(𝐽).
The ideas of these representations mainly rely on Papwlak’s paper [9, 10, 11, 12, 13].

67



(a) (b)

Figure 1: Rough coordinate system and rough real functions

3.1. Pointwise approximation of rough real functions

Definition 3.2 ([9, 13]). Let 𝑓 ∈𝐽𝐼 . The pointwise (𝑆𝐼 , 𝑃𝐽)–lower and (𝑆𝐼 , 𝑃𝐽)–
upper approximations of 𝑓 are the functions

𝑓 : 𝐼 → 𝑃𝐽 , 𝑥 ↦→ l𝑃 (𝑓(𝑥)), 𝑓 : 𝐼 → 𝑃𝐽 , 𝑥 ↦→ u𝑃 (𝑓(𝑥)).

𝑓 is exact at 𝑥, if 𝑓(𝑥) = 𝑓(𝑥), otherwise 𝑓 is inexact (rough) at 𝑥.
𝑓 is pointwise exact on 𝐼 ′ ⊆ 𝐼, if 𝑓(𝑥) = 𝑓(𝑥) for all 𝑥 ∈ 𝐼 ′, otherwise 𝑓 is

pointwise inexact (rough) on 𝐼 ′.

Remark 3.3. Rough real functions are ab ovo treated in (𝑆𝐼 , 𝑃𝐽)–coordinate sys-
tems. Hence, it seems reasonable to define the pointwise approximation in this
context, too. Nevertheless, a “pointwise” feature much better fits to the whole in-
terval 𝐼=[𝑎, 𝑏]. But with the choice 𝑆={𝑥0=0, 𝑥1=𝑎}, this case is also included
in the above definition.

𝑓 ∈ 𝐽𝐼 is exact at 𝑥 ∈ 𝐼 iff 𝑓(𝑥) = 𝑦𝑗 ∈ 𝑃𝐽 for some 𝑗 ∈ [𝑚]. Geometrically it
means that 𝑓 is exact at a point in 𝐼 iff in this point 𝑓 touches or intersects a line
segment 𝑦 = 𝑦𝑗 , where 𝑦𝑗 ∈ 𝑃𝐽 .

Example 3.4. Figure 2 (a) shows the pointwise (𝑆𝐼 , 𝑃𝐽)–lower and (𝑆𝐼 , 𝑃𝐽)–upper
approximations, 𝑓 and 𝑓 , of a function 𝑓 ∈ 𝐽𝐼 . 𝑓 is exact at points 𝑥𝑖, 𝑥𝑖𝑖, 𝑥2, 𝑥𝑖𝑖𝑖
and rough at all other points.

3.2. Blockwise approximation of rough real functions

Definition 3.5. Let 𝑓 ∈ 𝐽𝐼 . The blockwise (𝑆𝐼 , 𝑃𝐽)–lower and (𝑆𝐼 , 𝑃𝐽)–upper
approximations of 𝑓 are the functions

𝑓←→ :𝐼/𝐼𝑆→𝑃𝐽 , J𝑥K𝐼𝑆 ↦→ l𝑃 (inf 𝑓(J𝑥K𝐼𝑆 )),
←→
𝑓 :𝐼/𝐼𝑆→𝑃𝐽 , J𝑥K𝐼𝑆 ↦→u𝑃 (sup 𝑓(J𝑥K𝐼𝑆 )).
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(a) (b)

Figure 2: Pointwise and blockwise approximations of 𝑓

𝑓 is blockwise exact on 𝐵𝑖 for some 𝑖 ∈ [2𝑛] if 𝑓←→(𝐵𝑖) =
←→
𝑓 (𝐵𝑖), otherwise 𝑓 is

blockwise inexact (rough) on 𝐵𝑖.

Let 𝑓 ∈ 𝐽𝐼 , 𝑖 ∈ [2𝑛]. 𝑓 is blockwise exact on 𝐵𝑖 iff 𝑓(𝐵𝑖) = {𝑦𝑗} ⊂ 𝑃𝐽 for
some 𝑗 ∈ [𝑚]. Geometrically it means that 𝑓 is exact on 𝐵𝑖 ∈ 𝐼/𝐼𝑆 iff 𝑓 touches or
intersects a line segment 𝑦 = 𝑦𝑗 for some 𝑦𝑗 ∈ 𝑃𝐽 at the point 𝑥𝑖/2 if 𝑖 ≡ 0(mod 2),
or 𝑓 coincides with a line segment 𝑦 = 𝑦𝑗 for some 𝑦𝑗 ∈ 𝑃𝐽 on ]𝑥 𝑖−1

2
, 𝑥 𝑖+1

2
[ when

𝑖 ≡ 1(mod 2).

Example 3.6. Figure 2 (b) shows the blockwise (𝑆𝐼 , 𝑃𝐽)–lower and (𝑆𝐼 , 𝑃𝐽)–upper
approximations, 𝑓←→ and

←→
𝑓 , of 𝑓 . 𝑓 is blockwise exact on 𝐵4 = {𝑥2} only, and

blockwise rough on all other blocks.

It should be noted that the pointwise and blockwise approximations defined
above substantially differ from those considered in function approximation theory.
Essentially because the lower and upper approximations (pointwise or blockwise)
delimit a family of functions.

For instance, in the case of blockwise approximation, the domain and co–domain
of every function 𝑓 in this family, in their most general form, are Dom𝑓 = 𝐼 and
Im𝑓 = {𝑦 ∈ 𝐽 | 𝑓←→ ≤ 𝑦 ≤ ←→𝑓 }, without any assignment rules. Certain functions in
this family can also be interpreted as partially specified ones with unknown values.
With the help of getting finer and finer rough coordinates systems, actual values
of these unknown values are becoming more and more recognizable.

3.3. Finite sequence approximations

Definition 3.7. Let 𝑓 ∈ 𝐽𝐼 . The finite sequence (𝑆𝐼 , 𝑃𝐽)–lower and (𝑆𝐼 , 𝑃𝐽)–
upper approximations of 𝑓 are the functions

𝑓∘ : [𝑛]→ 𝑃𝐽 , 𝑖 ↦→ l𝑃 (𝑓(𝑥𝑖)), 𝑓∘ : [𝑛]→ 𝑃𝐽 , 𝑖 ↦→ u𝑃 (𝑓(𝑥𝑖)).
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This approximation characterizes the rough functions at the categorization
points. However, it does not say anything about how a rough function behaves
on the open intervals ]𝑥𝑖, 𝑥𝑖+1[ (𝑖 ∈ [𝑛[).

Definition 3.8. Let 𝑓 ∈ 𝐽𝐼 . The extended finite sequence (𝑆𝐼 , 𝑃𝐽)–lower and
(𝑆𝐼 , 𝑃𝐽)–upper approximations of 𝑓 are the functions

𝑓∙ : [2𝑛]→ 𝑃𝐽 , 𝑖 ↦→ l𝑃 (inf 𝑓(𝐵𝑖)), 𝑓∙ : [2𝑛]→ 𝑃𝐽 , 𝑖 ↦→ u𝑃 (sup 𝑓(𝐵𝑖)).

Of course, 𝑓∘(𝑖) = 𝑓∙(2𝑖), 𝑓∘(𝑖) = 𝑓∙(2𝑖) (𝑖 ∈ [𝑛]), i.e., they are equal at the
categorization points.

Example 3.9. Figure 3 (a) and Figure 3 (b) illustrate the finite sequence and
extended finite sequence approximations of the function 𝑓 (see Figure 2).

(a) (b)

Figure 3: Finite sequence approximations of 𝑓

3.4. Discrete sequence approximations
The most abstract approximations of rough functions is the discrete sequence one.
In the definitions, the following function will be needed.

Let 𝐼 and 𝐽 two intervals with categorizations 𝑆𝐼 and 𝑃𝐽 be given as above.

l𝑒𝑛𝑢𝑚𝑆 : 𝐽 → [𝑚], 𝑦 ↦→ max{𝑖 ∈ [𝑚] | 𝑦𝑖 ≤ 𝑦},
u𝑒𝑛𝑢𝑚𝑆 : 𝐽 → [𝑚], 𝑦 ↦→ min{𝑖 ∈ [𝑚] | 𝑦𝑖 ≥ 𝑦}.

Definition 3.10. Let 𝑓 ∈ 𝐽𝐼 . The discrete sequence (𝑆𝐼 , 𝑃𝐽)–lower and (𝑆𝐼 , 𝑃𝐽)–
upper approximations of 𝑓 are the functions

𝑓⋆ : [𝑛]→ [𝑚], 𝑖 ↦→ l𝑒𝑛𝑢𝑚𝑆 (𝑓(𝑥𝑖)), 𝑓⋆ : [𝑛]→ [𝑚], 𝑖 ↦→ u𝑒𝑛𝑢𝑚𝑆 (𝑓(𝑥𝑖)).

This approximation also characterizes the rough functions at the categorization
points only. It will be extended on the whole partition 𝐼/𝐼𝑆 of 𝐼.

Definition 3.11. Let 𝑓 ∈ 𝐽𝐼 . The extended discrete sequence (𝑆𝐼 , 𝑃𝐽)–lower and
(𝑆𝐼 , 𝑃𝐽)–upper approximations of 𝑓 are the functions

𝑓* : [2𝑛]→ [𝑚], 𝑖 ↦→ l𝑒𝑛𝑢𝑚𝑆 (inf 𝑓(𝐵𝑖)), 𝑓* : [2𝑛]→ [𝑚], 𝑖 ↦→ u𝑒𝑛𝑢𝑚𝑆 (sup 𝑓(𝐵𝑖)).
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Of course, 𝑓⋆(𝑖) = 𝑓*(2𝑖), 𝑓⋆(𝑖) = 𝑓*(2𝑖) (𝑖 ∈ [𝑛]), i.e., they are equal at the
categorization points.

Example 3.12. Figure 4 (a) and Figure 4 (b) illustrate the discrete sequence and
extended discrete sequence approximations of 𝑓 .

(a) (b)
Figure 4: Discrete sequence approximations of 𝑓

4. Rough derivatives

Classically, discrete derivatives, or more general, discrete calculus of functions was
studied in the theory of “calculus of finite differences”, see, e.g., [4], one of the clas-
sical treatments of this subject. Traditionally, the subject of the discrete calculus
is the functions of the form 𝑓 :N→R, i.e., 𝑓 ’s are finite or infinite sequences.

In his papers, however, Pawlak defined the rough derivatives of such functions
whose both domain and co–domain are finite set of natural numbers which he
called discrete functions. In the following, under the discrete functions it is meant
a function of the form 𝑓 :N→Z. Obviously, 𝑓 : [𝑛]→ [𝑚] is discrete function as well.
The calculus of such functions is called a rough calculus [12], or digital calculus [5].

4.1. Pawlak’s approach
Pawlak’s approach is based on the discrete representation of rough functions. This
section mainly relies on Pawlak’s papers [10, 11, 12], in addition Nakamura, Rosen-
feld’s paper [5]. Although, Nakamura and Rosenfeld defined derivatives in a slightly
more general context, their results can be applied here.

Definition 4.1. Let 𝑓 : [𝑛]→ [𝑚] be a discrete function. The rough derivative 𝑓 ′
of 𝑓 is the function

𝑓 ′ : [𝑛[= [𝑛− 1]→ Z, 𝑖 ↦→ 𝑓(𝑖+ 1)− 𝑓(𝑖).

The relationship between derivation and function operations slightly differ from
the classical rules.
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Proposition 4.2 ([5], Theorem 1.4). Let 𝑓, 𝑔 : [𝑛]→ [𝑚] be two discrete functions.
Then, for 𝑓 ± 𝑔, 𝑘 · 𝑓 , 𝑓 · 𝑔, 𝑓/𝑔, we have

• (𝑓 ± 𝑔)′(𝑖) = 𝑓 ′(𝑖)± 𝑔′(𝑖);

• (𝑘 · 𝑓)′(𝑖) = 𝑘 · 𝑓 ′(𝑖) (𝑘 ∈ Z);

• (𝑓 · 𝑔)′(𝑖)=𝑓 ′(𝑖) · 𝑔(𝑖) + 𝑓(𝑖) · 𝑔′(𝑖) + 𝑓 ′(𝑖) · 𝑔′(𝑖)=𝑓(𝑖) · 𝑔′(𝑖) + 𝑔(𝑖+ 1) · 𝑓 ′(𝑖);

•
(︁

𝑓
𝑔

)︁′
(𝑖) = 𝑓 ′(𝑖)·𝑔(𝑖)−𝑓(𝑖)·𝑔′(𝑖)

𝑔2(𝑖)+𝑔(𝑖)·𝑔′(𝑖) , provided that 𝑔2(𝑖) + 𝑔(𝑖) · 𝑔′(𝑖) ̸= 0,

where (𝑓 ± 𝑔)′,(𝑘 · 𝑓)′,(𝑓 · 𝑔)′,(𝑓/𝑔)′ : [𝑛− 1]→ Z.

Higher order derivatives of 𝑓 can be defined as usual: the second order derivative
of 𝑓 is the derivative of 𝑓 ′, etc. The following notations are used commonly for
higher order derivatives: 𝑓 = 𝑓 (0), 𝑓 ′ = 𝑓 (1), 𝑓 (2) = 𝑓 (1)

′
, 𝑓 (3) = 𝑓 (2)

′
, etc.

One can observe that Dom𝑓 (0) = [𝑛], Dom𝑓 (1) = [𝑛[ = [𝑛 − 1], Dom𝑓 (2) =
[𝑛− 1[ = [𝑛− 2], and, in general, Dom𝑓 (𝑘) = [𝑛− (𝑘 − 1)[ = [𝑛− 𝑘]. It also means
that the discrete function 𝑓 : [𝑛]→ [𝑚] has at most derivatives up to 𝑛-th order.

4.2. Discussion of rough derivatives
Digital calculus is applied to digital image processing [5, 16]. In this context,
direct interpretation of rough derivatives is simple. Let 𝑓 : [𝑛]→ [𝑚] be a discrete
function, and 𝑓 ′ : [𝑛 − 1] → Z its derivative. Then, 𝑓 can be interpreted as a
piecewise linear function with slopes 𝑓 ′(𝑖)’s (𝑖∈ [𝑛−1]). Of course, when 𝑓 ′(𝑖) = 0,
𝑓 is constant between 𝑓(𝑖) and 𝑓(𝑖+1), i.e., 𝑓(𝑖) = 𝑓(𝑖+1). In this interpretation,
the domain of 𝑓 can be considered as bounded compact real interval [0,𝑚] ⊂ R.

Example 4.3. Figures 5 (a) and 5 (b) show the discrete derivatives of 𝑓⋆ and 𝑓⋆.
Figures 5 (c) and 5 (d) depict their piecewise linear function interpretations.

On the other hand, rough calculus was motivated by the setting up a possible
calculus of rough functions. Pawlak used the rough calculus, which is also known as
digital calculus or discrete calculus, to achieve this goal. However, Pawlak did not
establish a connection between the rough derivatives and rough functions. Indeed,
it is hard to interpret rough derivatives as rough functions.

Different approximations of rough functions lead to different sets of rough func-
tions. More specifically, let PAS(𝐼) and PAS(𝐽) be two approximation spaces as
defined above. In addition, let 𝑓 ∈ 𝐽𝐼 be a fixed rough function. Then, all different
approximations of 𝑓 set up sets of rough functions. In regard to Pawlak’s approach,
here we will focus on the discrete sequence approximation of rough functions only.

The discrete sequence approximation determines the following set of rough func-
tions: ℛ𝑑𝑠

𝑓 = {𝑔 ∈ 𝐽𝐼 | ∀𝑖 ∈ [𝑛](𝑦𝑓⋆(𝑖) ≤ 𝑔(𝑥𝑖) ≤ 𝑦𝑓⋆(𝑖))}. That is, ℛ𝑑𝑠
𝑓 consists

of such the rough functions 𝑔’s which are bounded by 𝑦𝑓⋆(𝑖) and 𝑦𝑓⋆(𝑖) (𝑖 ∈ [𝑛],
𝑦𝑓⋆(𝑖), 𝑦𝑓⋆(𝑖) ∈ 𝑃𝐽) at the categorization points of 𝐼, but they are not constrained
on the open intervals formed by the categorization points of 𝐼.
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(a) (b)

(c) (d)
Figure 5: Discrete derivatives of 𝑓⋆, 𝑓⋆, and their interpretations

Example 4.4. Figure 6 depicts the discrete approximation of 𝑓 (Figure 6 (a)), and
the set of rough functions determined by it (Figure 6 (b)). One can observe that
the discrete approximation constraints the rough functions at the categorizations
points, but it does not say anything about how they behave on the open intervals.

(a) (b)

Figure 6: Discrete approximation of 𝑓 and its interpretation ℛ𝑑𝑠
𝑓

Finding out rough derivatives of a set of rough functions, e.g., ℛ𝑑𝑠
𝑓 , may be

approached, for instance, by differentiating both lower and upper discrete sequence
approximations. Some special difficulties of this approach are the following:

(i) Of course, 𝑓⋆ ≤ 𝑓⋆ does not imply 𝑓 (1)⋆ ≤ 𝑓⋆(1).
At an 𝑖∈ [𝑛[ may occur 𝑓 (1)⋆ (𝑖)<𝑓⋆(1)(𝑖), 𝑓 (1)⋆ (𝑖)>𝑓⋆(1)(𝑖), or 𝑓 (1)⋆ (𝑖)=𝑓⋆(1)(𝑖).
Their interpretations are simple. 𝑓

(1)
⋆ (𝑖) < 𝑓⋆(1)(𝑖) means that the lower
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approximation changes at 𝑖 to a lesser extent than the upper approximation;
whereas 𝑓 (1)⋆ (𝑖) > 𝑓⋆(1)(𝑖) indicates that the lower approximation changes at 𝑖
to a greater extent than the upper approximation. If 𝑓 (1)⋆ (𝑖) = 𝑓⋆(1)(𝑖), the
lower and upper approximations change at 𝑖 to the same extent.

(ii) 𝑓 (1)⋆ (𝑖) < 0 and/or 𝑓⋆(1)(𝑗) < 0 for some 𝑖, 𝑗 ∈ [𝑛[.

A possible solution is the following. If 𝑓 (1)⋆ (𝑖) < 0 for some 𝑖 ∈ [𝑛[, then
Im𝑓

(1)
⋆ may/should be extended to the extent necessary. This can be done,

of course, analogously for 𝑓⋆(1), too.

5. Concluding remarks

The paper, first, has presented four different rough approximation methods repre-
senting the rough real functions. The chances are that a definition of the rough
differentiation should rely on one of these representations. In this paper, basically
but not completely following Pawlak’s method, the rough differentiation based on
discrete sequence approximation has been considered only. Of course, additional
differentiation definitions should also be studied based on the other representations
which may be the subject of many subsequent papers in the future.

Acknowledgements. The author would like to thank the anonymous referees
for their useful comments and suggestions.
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