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Abstract The ideas of functional programming have become well adop-
ted by various fields of information science due to their useful properties
regarding their application to nowadays complex and heterogeneous IT
environments. The graphical modeling tools that support us in keeping
up with mentioned complex environments often lack the functional per-
spective, especially when it comes to formal operational semantics. The
Rmt approach (Renew Meta-Modeling and Transformation) provides
a conceptual framework for the development of domain specific mod-
eling languages with transformational semantics based on mappings to
Petri net components. Petri nets provide a dynamic perspective of sys-
tems based on states and state transitions. With the Rmt approach this
perspective is leveraged to the abstract perspective of domain specific
modeling languages. In this contribution Petri net components are de-
veloped that capture functional properties for the specification of domain
specific modeling languages using operational semantics. The benefits of
this approach are the means to develop graphical formalisms utilizing
formal operational semantics and data processing by using a functional
abstraction.

Keywords: Metamodeling, Petri nets, Reference Nets, Functional Pro-
gramming, Reactive Programming

1 Introduction

A popular perspective in the recent past has been the notion of functional re-
active systems. With the emergence of ubiquitous systems and the Internet of
Things (IOT) we are surrounded by software systems that constantly react to
events in our environment. Petri nets are very well suited to model such types
of applications as they share many characteristics with the functional reactive
paradigm. They support synchronous as well as asynchronous message passing,
have a precise notion of locality and they are inherently concurrent. Although
they are state-based in nature, they do support taking a functional perspective.
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In this contribution we provide a conceptual basis to develop executable
graphical languages for modeling reactive systems based on functional system
decomposition. As a result of this contribution, we provide sophisticated net
components that apply the functional perspective. Our novel approach enables
the application of known concepts of functional programming languages such as
higher-order functions and recursion by utilizing the nets-within-nets paradigm
to ensure the referential transparency. The basis of this work is provided by
the formalism of Reference Nets [10], a variant of high-level Petri nets, which
will be introduced in Section 2. We will use this formalism to demonstrate its
usefulness for modeling functional reactive systems and complex data structures
in Section 3. Once this is achieved we can turn to the development of abstract
(domain specific) modeling languages (DSML) that are more useful for end users
by using the Rmt approach (Renew Meta-Modeling and Transformation ap-
proach, [13]) in Section 4. An example of such a DSML suited for modeling a
home automation scenario will be presented in Section 5. Section 6 presents a
comparison of our approach with related work before we summarize our results
in the conclusion (Section 7).

2 Reference Nets

The Reference Net formalism is a high-level Petri net formalism with support for
modeling complex data structures, remote synchronization and Java integration.
Some of the core features of Reference Nets will be presented in the following as
they are relevant for this contribution. The Java features will not be discussed
in detail as they are of minor interest in this context. A thorough introduction
to Reference Nets with Java integration is in the Renew manual [11]. Renew
provides full support for modeling and execution of Reference Nets and other
modeling languages. An example of the application to software engineering can
be found in the latest research paper on Renew [2].

Figure 1: Using collections in Reference Nets

With high-level Petri nets, data in the form of colors is unified using uni-
fication expressions on the transitions with regard to the variable bindings on
the edges. Reference Nets are not the only high-level Petri net formalism with
support for collection types, however, Figure 1 shows an example of how they
are realized there. On the left side the variable c is calculated from the inputs a
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and b and all of the three variables are outputted in a tuple to the place on the
right side. Tuples can be hierarchically nested to perform complex operations on
them by the means of unification. Lists, as depicted in Figure 1 on the right, are
even more powerful as they permit iterative or recursive processing. In fact, in
the depicted example the transition may fire three times, each time computing a
new value for variable c from its head element (h) and variable b, which is only
read and not removed by using a test arc.

Figure 2: Synchronous channels of Reference Nets

Synchronous channels, as exemplarily depicted in Figure 2, control the firing
of multiple transitions as one synchronized event. A synchronous channel consists
of a pair of downlink (caller) and uplink (callee), so the reference must be known
on one side of the channel. They may have arguments to transport information
similar to the call of a function, but they have a slightly different notion as the
unification of arguments enables a bidirectional exchange of data. In the depicted
example the downlink (left side) calls the right side (uplink) in the local net
instance (this). The first argument (m) on the downlink can be unified with
the String ("match") on the uplink. The second argument (b) receives its actual
parameter from the right side and the calculation of variable c is performed on
the downlink transition on the left side before it flows through the channel to
the uplink.

Figure 3: Dynamic hierarchies: nets-within-nets [19]

Clearly, the expressiveness of synchronous channels is quite powerful. How-
ever, they unfold their real potential in combination with dynamic hierarchies
and the nets-within-nets paradigm [19]. Using the new syntax shown in the up-
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most part of Figure 3 Reference Nets can create instances of other net patterns.
This enables dynamic hierarchies up to an arbitrary level of nesting. The de-
picted example is restricted to a level of two and models a message sending
scenario. It shows a system of three components. In the center is a system net,
which manages the instances of senders (left) and receivers (right). The latter
communicate through the synchronous channels (send and receive) of the sys-
tem net. While this configuration models a small application scenario, the next
section goes a step further and demonstrates how Reference Net systems may
be applied to model a more comprehensive application.

3 Functional Reactive Systems

Figure 4: A functional perspective on Reference Nets

Recall the net on the left side of Figure 4, which we have discussed in the
previous section. It may be considered as a function that computes an output
from a number of inputs. It even pertains functional key characteristics, like
referential transparency and immutability of objects. However, we already know
that this is only half of the truth, so we must restrict ourselves to pertain these
properties, which we will consider in the following. Synchronous channels provide
us with the means to explicitly model side effects and control their impact on
the computation (cf. right side of Figure 4). If we wish the data passed along
the synchronous channel to be immutable, we simply design our data structure
to allow read access only.

Figure 5: An immutable named key-value pair data structure
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The simple Reference Net model in Figure 5 implements a key-value pair
data structure comparable to JSON or other similar data types. It is created by
calling the new channel with a list as argument containing a type identifier as
head and a list of key-value pairs as tail. It uses a flexible arc (double arrow) we
have not introduced up to now, which "unpacks" all of the key-value pairs to
the output place. From there the individual values can be queried through the
get-channel but due to the test arc, read only access is permitted. An example
of its usage will be demonstrated shortly.

Figure 6: A reactive system

In order to form a reactive system it must gain the ability to react upon events
that are triggered by its environment. The example of sender and receiver from
Figure 3 in Section 2 contained patterns of this behavior. It has been revisited in
Figure 6 and extended by an event passing mechanism. The system component
in the center remains mainly the same, only the listener is now registered with
the observable to listen for occurring events. The observable stores the event
listener together with the respective event type. As a first step in the cyclic
process an instance of the key-value data net is created with a new event from
the pattern at the leftmost inscription. It contains a type identifier ("event"),
a timestamp (600) and a message ("Hello"). Each time this event occurs the
listener is notified by the synchronous transition (listen). The actual reactive
system is modeled as depicted by the rightmost part (event listener). All it does
is store the message text to the rightmost place. Note that multiple events can
be processed concurrently at a time by the event listener.

When nets are interpreted as functions, the nets-within-nets paradigm with
the possibility to instantiate new nets enables the creation of higher-order func-
tions. Figure 7 shows an example of a higher-order function implemented as a
Reference Net. The left side shows a net that maps integer values to colors using
the net on the right side. The creation of a new instance of the colorforcode
net ensures the referential transparency for every element in the list.

The map component has an input/output behavior just like the function
that was depicted in Figure 4. Note the input and output elements on the map
component, one consuming a list (xs) as an input to the computation, the other
producing a list (ys) as a result. The input list is processed successively, taking
into account the position of the elements in the list, so that the output order
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Figure 7: Higher-order functions

corresponds to the input order. The unpacking is done by separating the head
element ({x:xs}) while counting the elements on Place count at the same time.
While the (un)packing of the list is sequentialized, the actual function calls
execute in parallel. The function is applied by firing the transition call, which
creates a net instance of the net colorforcode. The result is retrieved from
the net instance by the subsequent transition ret. The right part of the map
component symmetrically collects the results while respecting the initial order.
The colorforcode net returns names of colors for numbers according to the
tuples in Place mapping.

We will see a more sophisticated implementation of a reactive system using
higher-order functions in Section 5. First, we introduce the means to develop
graphical modeling languages as abstractions of Reference Net systems in the
next section.

4 Functional Reactive DSML

In this section we will demonstrate the development of domain-specific languages
with the Rmt framework specifically with respect to modeling functional reac-
tive systems. The development of an executable modeling language with the
Rmt framework consists mainly of two steps, the development of constructs for
the graphical editor and the provision of operational semantics in the form of
Petri net components [1, Chapter 5]. The following part gives a brief summary
of creating a graphical editor with the Rmt framework. It is taken from our
previous work [14], where we developed an executable formalism of BPMN. It
was adopted to this context for demonstration purposes.

The Rmt framework (Renew Meta-Modeling and Transformation) [13] is a
model-driven framework for the agile development of DSML. It follows concepts
from software language engineering (SLE, [9]) and enables a short development
cycle to be appropriately applied in prototyping environments. With the Rmt
framework, the specification of a language and a corresponding modeling tool
may be derived from a set of models, defined by the developer of a modeling
technique. A meta-model defines the structure (abstract syntax) of the lan-
guage, the concepts of its application domain, and their relations. The visual
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Figure 8: Excerpt from the Rmt models for a home automation modeling tool

instances (concrete syntax) of the defined concepts and relations are provided
using graphical components from Renew’s modeling constructs repertoire. They
are configurable by style sheets and complemented with icons and a tool configu-
ration model to facilitate the generation of a modeling tool that nicely integrates
into the Renew development environment.

Figure 8 displays a selected excerpt from the models required for the home
automation DSML, together with the tool that is generated from these models.
The parts of the figure are linked with colored circles and numbers. The meta-
model (upper left) defines the concepts for classifiers (4, 5) and relations (1)
of the modeling language and the corresponding model (3). Annotations are
realized as attributes of these concepts (2). The concrete syntax (upper right)
is provided using graphical components, which are created with Renew, as it is
depicted for the XOR-split and the map component (4, 5). Icon images for the
toolbar can be generated from these graphical components. The representation
of the inscription annotation (2) and the data-flow relation (1) is configured with
style sheets.

The tool configuration model (lower left) facilitates the connection between
abstract and concrete syntax and defines additional tool related settings. The
concepts of the meta-model are associated with the previously defined graphical
components (4), with custom implementations or default figure classes that are
customizable by style sheets (1), and the icons. Connection points for constructs
are specified with ports (8). The general tool configuration contains the definition
of a file description, an extension (6), and the ordering of tool buttons (7).
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Table 1: Mapping of graphical and Petri net constructs
Start Stop Action

XOR-Split XOR-Merge Parallel Split Parallel Join Data

Map Filter Forall

With these models, a tool is generated as a Renew plug-in, as shown at
the bottom right side of Figure 8. A complete example of the Rmt models and
additional information about the tools can be found in our article on the Rmt
framework [13].

Table 1 shows the semantic mapping, a mapping of graphical components
to semantic Reference Net components. In combination with the previously de-
scribed steps, this is all it needs in order to build models that are ready to be
executed within the Renew simulation environment. With the integrated sim-
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ulation plugin [14] feedback from the simulation may be visualized directly in
the representation of the original DSML. The first row of Table 1 shows the
graphical components (above) and the semantic components (below) that initi-
ate and terminate the execution of a DSML and also an (atomic) action. The
second row contains elements that organize control flow and the data component
(cf. Figure 5) and the third row contains the higher-order functions. The start
component takes a variable as an argument on the new channel and the stop com-
ponent terminates by returning a value. The values may be of arbitrary type,
the variable (o) is inserted as a placeholder. The XOR-split component accepts
a conditional statement (cond) that may be evaluated to a boolean value. The
XOR-split component must be complemented by a closing XOR-merge compo-
nent to merge the execution paths. The same holds for the parallel split and the
parallel join components respectively, only, they do not branch conditionally but
concurrently. The key-value data Reference Net, which we have introduced in the
previous section, is included as a data storage component. Map, filter and forall
are Reference Net implementations well known to the users of functional lan-
guages. They operate on lists and each of them applies a Reference Net (net(x))
in order to perform a certain task. The map component receives elements (x) as
input and maps them to elements (y) as output. How this mapping is achieved,
is subject to the applied net, the inputs and outputs of this component however
are always of type list. This also holds for the filter component, however, the
applied net maps arbitrary elements to boolean outputs in order to perform the
filter operation. The forall component in contrast does not necessarily return
any values at all, it merely guarantees that the computation on each input is
completed by call of the ret channel with no arguments.

Net components were originally developed by Cabac [1, Chapter 5] and they
are adopted from his work. The basic and control flow components, were used by
Cabac to implement agent interactions (including a variant of the forall compo-
nent), the data component and the components modeling higher-order functions
are novel results.

5 Home Automation DSML

Once the abstract and concrete syntax are at hand the graphical editor may
already be employed to draw basic models using the home automation DSML.
The elements of the home automation DSML can be annotated with inscriptions.
The semantic components may hold variables where the generator replaces a
place holder with the value of the respective inscription.

Figure 9 shows the model of a home automation process. It models a sim-
plified heating control unit for an office building. The process is triggered by an
hourly cron job. During working hours the level of the heating system is set for
each floor of the building according to the values of sensors, which are installed
throughout the building. First, the sensor temperatures are read and then the
values are filtered by office rooms (sensor.roomtype). The temperatures are
subsequently mapped to a heating configuration and applied to the heating sys-
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Figure 9: An example of a heating control modeled with a DSML for home au-
tomation

tem. In between office hours (timestamp) the heating system is shutdown for
saving energy.

Together with the semantic mapping we developed in the previous section, the
home automation DSML models can be executed within the Renew simulation
environment. Using the net generator from the RMT framework the Reference
Net depicted in Figure 10 was generated from the home automation model in
Figure 9. It was extended with some inscriptions to become executable within
the Renew simulation environment. The state of the home automation system
becomes interactively inspectable and with the adaption to an appropriate home
automation API the model could be used to control a home automation system.

6 Related Works

Graphical modeling techniques that apply a functional decomposition have a
long tradition in computer science. The basis of functional block diagrams and
its many variants are the interpretation of elements that are commonly depicted
by rectangles as black boxes that transform inputs to outputs (cf. structured
analysis and design technique [16]). Standard languages exist to simulate ma-
ture instances of such diagrams, for instance using Modelica [18] or Matlab
Simulink [21], and even approaches to verification [22]. However, they are usually
self-contained and do not account for the environment as in functional reactive
programming.
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Figure 10: The Reference Net generated from the home automation DSML

There are many programming libraries that support functional reactive pro-
gramming and some of them even provide a graphical notation, like the GraphDSL
using Akka streams [4]. As an advancement of the map-reduce approach to big
data processing, the Apache Spark project gains support for graphical flow-based
programming [12]. They also target IOT and cyber-physical systems, however,
the approach taken with this contribution is somewhat different as it focuses
more on the operational semantics than on the processing of huge amounts of
data.

Several frameworks exist that support developers in creating their own (do-
main specific) modeling languages based on metamodels (ADOxx [5]) and some
of them even provide means for simulation or interactive execution (GEMOC
Studio [3]). The execution semantics is usually coded within the modeling en-
vironment, while with the Rmt approach it is provided by transformations to
Petri nets. The Viatra eclipse project provides an event driven reactive frame-
work for model transformations [20], which is an interesting approach for Petri
net transformations.

Petri nets in general already offer a functional perspective due to their local-
ity principle. For complex applications a powerful inscription language is nec-
essary. Petri net formalisms often choose functional languages for this purpose
to maintain the perspective. The Coloured Petri Nets formalism [8] for exam-
ple uses ML as inscription language. To address the issue that simulators still
have problems with side effects, the Curry-Coloured Petri Nets formalism uses a
purely functional language to prevent side-effect related problems and logic pro-
gram evaluation for the transition binding search [17]. In comparison to these
formalisms, Reference nets allow the creation of dynamic hierarchies using the
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nets-within-nets paradigm. This makes the implementation of advanced concepts
from functional languages possible, such as recursion and higher-order functions
while maintaining referential transparency.

Concerning the transformation based approach one may criticize that it is
not actually functional, because it does not allow the combination of functions in
the sense of currying or function composition. This would require a mechanism
to modify the net structures at run-time, like higher-order Petri nets [7,6] or
reconfigurable nets [15]. However, no such thing is currently supported by the
Reference Net formalism and it would involve quite an effort to bring these ideas
together with the high-level concepts of Reference Nets.

7 Conclusion

Software models created from a composition of functional components can be
employed to support the undestanding of complex reactive environments. They
may be executed within the Renew simulator for inspection and used as con-
trol mechanism, similar to a workflow execution system. In Section 2 we have
laid the foundation by the means of Reference Nets. It was demonstrated in
Section 3 how Reference Nets can be employed to model functional reactive
systems and complex data structures. We introduced the means for creating a
modeling language that supports this paradigm and developed functional net
components in Section 4 to formalize their semantics. This was used to build a
simple example of a home automation DSML that may be used to generate a
Reference Net model to be executed within the Renew simulation environment.
It can be extended with further constructs to extend the applications of the
home automation DSML.

In the future we would like to advance the approach to perform formal anal-
ysis most probably using state space analysis, which is interesting because only
parts of the environment are visible. Another interesting idea is the extension
of the Reference Net formalism to support real higher-order functions and the
combination of functions.
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