
Faster Enabledness-Updates for the
Reachability Graph Computation

Torsten Liebke and Christian Rosenke

Universität Rostock, Institut für Informatik, Germany
{torsten.liebke,christian.rosenke}@uni-rostock.de

Abstract. The reachability graph entirely describes the state space and
the transitional dynamics of a place/transition Petri net N . Many chal-
lenges in model checking reduce to searching the reachability graph.
Therefore, this is a time critical operation deserving elaborate speed-up
efforts in every detail. To enumerate the neighborhood of a reached state
m is the fundamental subtask during the graph search. It requires to
determine exactly the set T (m) of enabled transitions in state m. In the
past, we already avoided to compute T (m) from scratch in every reached
state m, as not much changes between consecutive states. Instead, we
prepared a data structure DI(N) allowing the production of T (m) by
briefly updating T (m′) when migrating from state m′ to m. Although
saving up much time during the actual graph search, the preprocessing
of DI(N) has been an unpleasantly costly investment until this point. In
this paper, we introduce a new, generally much faster method to compute
DI(N). We implemented it in the award wining model checker LoLA 2
and compared it to the previous approach. In our experiments we used
the model checking contest (MCC) as a benchmark. The new method is
in almost all cases at least one order of magnitude faster.

Keywords: Model Checking · Preprocessing · Enabledness-Updates.

1 Introduction

In model checking, the main task is to build the, possibly reduced, state space of
a place/transition Petri net N . One of the critical points while building the state
space, is to determine whether a transition is enabled or not. I.e. in each state the
list of enabled transitions, which can lead to new states, must be computed. The
aim is to avoid checking in every state every transition for enabledness. To avoid
this, we only check the enabledness information of all transitions in the initial
state. Then, whenever a fired transition t leads to a new state, we only want
to update the enabledness information of transitions that are possibly disabled
or enabled by the firing transition t. To this end, in the preprocessing, before
building the state space, we compute the look-up data structure DI(N), which

Copyright c© 2020 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).

Faster Enabledness-Updates for the Reachability Graph Computation 109

basically is a list of possibly disabled/enabled transitions for each transition
firing. The advantage is that the lists of DI(N) are in general way smaller than
all transitions and, thus, faster to process.

The problem of speeding-up the computation of the state space using en-
abling tests was already studied more than 25 years ago [7, 4]. The problem also
arises playing the token game while simulating the Petri net [1]. The method
described in [1] is based on the definition of linear enabling functions and the
classification of transitions into five categories. The issue with this approach is
that the Petri net has to be transformed and so-called silent transitions and
preemptive transitions have to be added to the Petri net. In [4] a method is pre-
sented mainly to work in the context of unfolding algebraic nets. The authors
compared their implementation with the tool LoLA [6] and came to the conclu-
sion that LoLA is faster but needs more memory. Since 2010 LoLA 2 [9] uses a
more advanced method, which we describe in this work. This method performs
well in practice. But still, the overhead is unpleasantly costly and sometimes the
approach needs several minutes or more for certain models in the yearly model
checking contest (MCC) [2] to compute DI(N).

In this work, we introduce a new and faster method for computing DI(N).
The key to the performance gain is an indexed graph data structure and a
rigorous reduction of costly copying operations. As a sidenote, we like to point
out that this approach is also used to speed up the computation of conflicting
transitions in partial order reduction techniques [3, 5, 8] used to reduce the state
space.

2 Terminology

Definition 1 (Place/Transition Net). A place/transition net, P/T net for
short, consists of a finite set of places P , a finite set of transitions T where
P ∩ T = ∅, a set of arcs F ⊆ (P × T) ∪ (T × P), a weight function W :
(P × T) ∪ (T × P) → N where W (x, y) = 0 if and only if (x, y) /∈ F , and an
initial marking m0, where a marking is a mapping m : P −→ N.
For a node x ∈ P ∪ T , •x = {y | (y, x) ∈ F} and x• = {y | (x, y) ∈ F} are its
pre- resp. post-set.

The behavior of a P/T net is defined by the transition rule.

Definition 2 (Transition rule of a P/T net). Let N = [P, T, F,W,m0]
be a P/T net. Transition t ∈ T is enabled in marking m if, for all p ∈ P ,
W (p, t) ≤ m(p). The set of all enabled transitions in a marking m is denoted as
T (m). If t is enabled in m, t can fire, producing a new marking m′ where, for
all p ∈ P , m′(p) = m(p) −W (p, t) +W (t, p). This firing relation is denoted as
m

t−→ m′.

Using the transition rule, a P/T net induces the reachability graph, also called
the state space of the P/T net.

110 Torsten Liebke and Christian Rosenke

Definition 3 (Reachability graph of a P/T net). The reachability graph
(M,E) of a P/T net N has a set of vertices M that comprises all markings
that are reachable by any firing sequence from the initial marking of N . Every
element m t−→ m′ of the firing relation (t ∈ T) defines an edge E from m to m′
annotated with t.

3 Preprocessing decreasing and increasing transitions

To speed up building the reachability graph, it is very valuable to preprocess the
candidate transitions that can become en- or disabled after firing transitions. In
fact, if a transition t fires leading from marking m to m′, it may, in the course of
this, disable a previously activated transition t′, if t consumes from a place p ∈
•t∩•t′. More precisely, we would like to capture the situation where both, t and t′,
are enabled in m, hence, (i) m(p) ≥ max{W (p, t),W (p, t′)}, and where t′ is not
enabled in m′, anymore, hence, (ii)W (p, t′) > m′(p) = m(p)−W (p, t)+W (t, p).
As preprocessing is unaware of the specific markings m and m′, we need to
combine (i) and (ii) for the condition

W (p, t′) < max{W (p, t),W (p, t′)} −W (p, t) +W (t, p).

In such a case, we say that t decreases t′ or that t′ is decreased by t and denote
this as the binary relation t↘ t′. In the case of W (p, t) ≤W (p, t′), the decreas-
ing condition reduces to W (t, p) < W (p, t) and, otherwise, it simply becomes
W (t, p) < W (p, t′). Taking everything together, we get the following definition:

Definition 4 (Decreasing transitions). We call a transition t′ ∈ T decreased
by a transition t, if there exists a place p ∈ •t ∩ •t′ with W (t, p) < W (p, t) and
W (t, p) < W (p, t′) and denote this by t↘ t′.

On the other hand, if m t−→ m′, it may also happen that a previously disabled
transition t′ becomes enabled in m′, namely if t produces token on a place
p ∈ t• ∩ •t′. In this simpler situation we have

0 < W (p, t′) ≤ m′(p) = m(p)−W (p, t) +W (t, p),

which leads to the following definition, right away:

Definition 5 (Increasing transitions). We call a transition t′ ∈ T increased
by a transition t, if there exists a place p ∈ t• ∩ •t′ with W (t, p) > W (p, t) and
0 < W (p, t′) and denote this by t↗ t′.

By breaking down the concepts of decreasing and increasing to binary rela-
tions, we are able to describe all information as graphs.

Definition 6 (Decrease and increase graph). If N is a P/T net with tran-
sition set T then we call the directed graph D(N) = (T,↘) with node set T and
arc set ↘ the decrease graph of N and the directed graph I(N) = (T,↗) with
node set T and arc set ↗ the increase graph of N . The pair of decrease- and
increase graph is subsequently denoted as DI(N).

Faster Enabledness-Updates for the Reachability Graph Computation 111

Having preprocessed DI(N), building the reachability graph of a net N can
be sped up. In fact, whenever we traverse an edge m t−→ m′ from a node m to a
new node m′ by firing a transition t, we have to determine the set of reachability
arcs that are incident to m′. In other words, this means to compute the set
T (m′) of transitions in N that are enabled in m′. However, as we come from
m, we are already in possession of T (m) and, probably, the difference between
T (m) and T (m′) is not too big. This is where DI(N) helps us to make just a few
updates of T (m) in order to get T (m′). We begin with the decrease graph D(N)
and obtain the neighborhood d(t) of t, which consists of all transitions that may
become disabled by firing t. Secondly, we also compute the neighborhood i(t) of
t in I(N) for the transitions that may become enabled after firing t. Afterwards,
the job of computing T (m′) reduces to the following update:

T (m′) = T (m)− {t′ ∈ d(t) | ∃p ∈ •t′ :W (p, t′) > m′(p)}
+ {t′ ∈ i(t) | ∀p ∈ •t′ :W (p, t′) ≤ m′(p)}

As this update considers only the transitions of d(t)∪ i(t), which is usually much
smaller than the whole T , investing into the computation of DI(N) pays out.

A second application field of DI(N) is partial order reduction [3, 5, 8], which
is based on the observation that concurrent and independent running processes
contribute extensively to the state explosion problem, while having only little
influence on the property preservation of individual processes. In essence, while
building the reachability graph, in each found marking, they all compute a subset
of transitions and only fire the enabled transitions in it to explore more states.
Hence, the state space is reduced. At the heart of the computation of such subsets
of transitions, lies the finding of conflicting transitions. Two transitions are in
conflict if the firing of one of them can disable the other one. We do not want
to get to involved into partial order reduction here and settle with the plain
proposition, that finding conflicting transitions can be reduced to the concepts
of decreasing transitions. More precisely, partial order subsets can formally be
defined relative to the reverse graph of D(N).

4 The former computation of the decrease-increase-graph

For any ordering p1, p2, . . . , pn of the places of the net N , we define for every
i ∈ {0, . . . , n} the subnet Ni that, while containing all transitions T of N , only
consists of the places Pi = {p1, . . . , pi} and the arcs that go between T and Pi.
The former approach to the computation of DI(N) = DI(Nn) is to start with
DI(N0) and then consider the place sequence p1, . . . , pn in order to successively
obtain DI(Ni) for all i ∈ {1, . . . , n}.

It is easy to see that DI(Ni+1) is just DI(Ni) plus the edges induced by pi+1.
This happens, as the decreasing and the increasing relations between transitions
are defined only existentially over the place set. In other words, if DI(Ni) has a
↘-edge or↗-edge, respectively, between two transitions t, t′ then considering an
additional place pi+1 cannot revoke the existence of place p ∈ {p1, . . . , pi} that

112 Torsten Liebke and Christian Rosenke

justified the aforesaid edge between t, t′. For that reason it makes sense to define
↘ (pi+1) and ↗ (pi+1), the edges of DI(Ni+1) that are additionally introduced
by the consideration of p.

Definition 7 (Incremental edges). For all places p of N , the set ↘ (p) =
{(t, t′) | W (t, p) < W (p, t),W (t, p) < W (p, t′)} is called decreasing edges of p
and the set ↗ (p) = {(t, t′) | W (t, p) > W (p, t), 0 < W (p, t′)} is the increasing
edges of p.

The set ↗ (p) can be represented in a very simple way: There are always two
transition sets T 0, T 1 ⊆ T such that ↗ (p) = {(t, t′) | t ∈ T 0, t′ ∈ T 1}. In fact,
T 0 = {t | W (t, p) > W (p, t)} and T 1 = p•. We capture this property in the
following definition.

Definition 8 (Homogenous pair). A pair (T 0, T 1) of transition subsets of T
is called ↗-homogenous if t ↗ t′ for all t ∈ T 0 and all t′ ∈ T 1. This is also
denoted as T 0 ↗ T 1. Analogously, it is called ↘-homogenous if t ↘ t′ for all
t ∈ T 0 and all t′ ∈ T 1, which is denoted as T 0 ↘ T 1.

If (T 0, T 1) is exactly the ↗-homogenous pair of ↗ (p), this is made explicit by
writing T 0 ↗p T

1.
The set↘ (p), in turn, is generally not describable as a single↘-homogenous

pair. That is why we used to fall back on the set

↘̇(p) = {(t, t′) |W (t, p) < W (p, t), 0 < W (p, t′)}.

As, obviously,↘ (p) ⊆ ↘̇(p), this set is weaker but sufficient for the anticipated
purpose. Moreover, T 0 = {t | W (t, p) < W (p, t)} and T 1 = •p provide a ↘̇-
homogenous pair for T 0↘̇pT

1, which stands for ˙↘ (p) = {(t, t′) | t ∈ T 0, t′ ∈
T 1}. In practice, we almost always have ↘ (p) = ↘̇(p), which justifies this
simplification.

The graphs of every DI(Ni) are represented by a list of homogenous pairs
each. More precisely, I(Ni) is given by a list of ↗-homogenous pairs. This basi-
cally corresponds to a compressed adjacency list representation, where all transi-
tions t1, t2, . . . with the same adjacency list T 1 are together in T 0 = {t1, t2, . . . }
and we get T 0 ↗ T 1.

Therefore, in iteration i + 1, we have to go through all homogenous pairs
T 0
j ↗ T 1

j of I(Ni) and make updates according to T 0 ↗pi+1
T 1 in order to

obtain I(Ni+1). More precisely, in I(Ni+1) every pair T 0
j ↗ T 1

j is replaced by
the new pairs

(T 0
j \ T 0)↗ T 1

j and (T 0
j ∩ T 0)↗ (T 1

j ∪ T 1)

unless they are empty.
Equivalently, every graph D(Ni) is implemented as a list of ↘̇-homogenous

pairs, which have to be modified according to T 0↘̇pi+1
T 1 for the next step

D(Ni+1).
In our implementation, we use numbers to represent transitions and keep the

pair items T 0
j and T 1

j as ordered lists. This make the computation of T 0
j \ T 0,

Faster Enabledness-Updates for the Reachability Graph Computation 113

T 0
j ∩T 0, and T 1

j ∪T 1 linear time operations, which is fairly efficient. Nevertheless,
we are forced to touch every pair, even though most of them are probably not
intersected by T 0 or T 1. Hence, in worst case, the computation of DI(N) takes
O(|P | · |T |2) time, as, for every place, we need to consider O(|T |) homogenous
pairs in DI(Ni) and process each of them in linear time O(|T |).

5 Sped up computation of the decrease-increase-graph

In our former approach, a lot of time is wasted in updating the adjacency lists.
In every iteration, all lists have to be touched while most of them are not even
relevant and, in case of an actual update, many copying operations occur. The
speed-up idea is to create a more efficient way of determining the necessary
updates. Moreover, in order to omit unnecessarily copying arrays around, the
actual creation of adjacency lists is postponed until after the iteration of all
places. If we want to build the graph G(N), which is either I(N) or D(N), our
new approach works in three steps:

1. For a given ordering p1, . . . , pn of the places, we generate the corresponding
list of homogenous pairs T 0

1 → T 1
1 , T

0
2 → T 1

2 , . . . , where → stands for ↗
in case of the computation of I(N), or for ↘ if D(N) is about to be built.
For that matter, we like to point out that the new computation method of
D(N) does not fall back onto ↘̇ but, instead, processes every place into a
set of possibly more than one homogenous pair. As the definition of these
homogenous pairs is clear at this point, we do not go into the details of their
computation in this section.

2. Iterating through the list of homogenous pairs, we progressively create an
intermediate directed graph H(N) = (X,Y, Z, θ) on node sets X and Y ,
directed edges Z ⊆ (X × Y) ∪ (Y ×X), and a partial function θ : T → X.
This graph means to implicitly encodeG(N). Every node in x ∈ X represents
a set T 0

x = {t ∈ T | θ(t) = x} of transitions with the same adjacency list.
The adjacency between the different nodes of X is realized indirectly. More
precisely, every x ∈ X defines a compressed adjacency list by the homogenous
pair T 0

x → T 1
x with T 1

x =
⋃

(x,y)∈Z
⋃

(y,x′)∈Z{t′ | θ(t′) = x′}. Altogether,
every adjacency list of the target graph G(N) is represented by one node of
X. The efficient computation of H(N) is detailed below.

3. In the final step, we take H(N) and extract the compressed adjacency lists of
G(N) according to the definition above. After computing an inverse mapping
of function θ, this is straightforward and does not need further explanation.

The computation of H(N) works iteratively. We assume that we have com-
puted the list of homogenous pairs T 0

1 → T 1
1 , T

0
2 → T 1

2 , . . . , T
0
k → T 1

k from the
list of places. Then we start from an empty graph H0(N) and, step-by-step,
integrate every pair T 0

j+1 → T 1
j+1 into Hj(N) to get Hj+1(N) and, at the end,

H(N) = Hk(N). Accordingly, every partial solution Hj(N) encodes a graph
Gj(N) with all the edges of T 0

1 → T 1
1 , . . . , T

0
j → T 1

j .

114 Torsten Liebke and Christian Rosenke

Then, when integrating the pair T 0
j+1 → T 1

j+1, we firstly have to process
all the nodes x1, . . . , xr, x′1, . . . , x′s ∈ X where T 0

j properly intersects T 0
xi
, i ∈

{1, . . . , r} or T 1
j properly intersects T 0

x′
i
, i ∈ {1, . . . , s}. More precisely, we have

to make copies x̂1, . . . , x̂r, x̂′1, . . . , x̂′s having the same neighborhoods in Y as the
original nodes. Moreover, we need to redefine θ(t) = x̂i for all t ∈ T 0

j ∩ T 0
xi

and
θ(t′) = x̂′i for all t′ ∈ T 1

j ∩T 0
x′
i
. This is necessary as, in contrast to the transitions

T 0
xi
\ T 0

j , all elements of T 0
x̂i

will obtain an enhanced neighborhood in Gj+1(N),
namely T 1

j+1. Similarly, the transitions of T 0
x̂′
i
have to be divided from T 0

x′
i
\ T 1

j ,
as only they are neighbors of T 0

j .
Up to this point, however, Hj+1(N) still represents Gj(N) as no edge of

T 0
j+1 → T 1

j+1 has been included. To this end, we add a new node x ∈ X and
define θ for T 0

x = T 0
j+1 \ (T 0

x1
∪ · · · ∪ T 0

xr
). We also add a new node x′ ∈ X and

define θ for T 0
x′ = T 1

j+1 \(T 0
x′
1
∪· · ·∪T 0

x′
s
). Moreover, we add a new node y ∈ Y for

the connection T 0
j+1 → T 1

j+1. To implement this homogenous pair in Gj+1(N),
we, thus, include the edges (x, y) and (x̂i, y), i ∈ {1, . . . , r} into Hj+1(N) as well
as all the edges (y, x′) and (y, x̂′i), i ∈ {1, . . . , s}.

The reason that computing H(N) is much faster than our old method, comes
from the fact that finding the intersected nodes x1, . . . , xr, x′1, . . . , x′s does not
work by exhaustive search as before. Instead, we just once iterate through the
elements t of T 0

j+1 and T 1
j+1, respectively, and use θ(t) to get the intersected set.

Moreover, having the intersected sets, we do not split entire transition arrays but
copy only small amounts of edges between X and Y . But while the computation
of H(N) works in O(|P | · |T |) time, the expansion of H(N) into the compressed
form of G(N) can still take O(|P |·|T |2) time in the worst case. However, that the
new approach is usually the better one, even with the overhead of the subsequent
adjacency list extraction, is demonstrated experimentally in the next section.

6 Experimental validation and conclusion

Both methods discussed in the paper are implemented in our explicit model
checker LoLA 2 [9]. For evaluating the methods, we used the benchmark provided
by the model checking contest 2019 [2]. The benchmark consists of 94 Petri nets,
also called models, which result in 1018 instances due to the scaling parameter
of some models. We restrict the benchmark to P/T nets and for each net we
only consider the largest available instance. If the model scales over more than
one parameter, we choose for every parameter the largest instance. We ignored
smaller instances since they have proportionally the same effect as their larger
counterparts. For the ”FamilyReunion” net we choose a smaller instance, since
the largest instance runs out of memory on our test machine, while computing
the former method. Overall our benchmark consists of 100 models.

Experiments were executed on a machine with 32 physical cores running
at 2.7 GHz and 1 TB of RAM. All computations were done with no time and
memory restrictions. The time was measured with the C++ chrono library using
the high resolution clock. We only show experiments where one of the methods

Faster Enabledness-Updates for the Reachability Graph Computation 115

Table 1. Time comparison in seconds between the former (here called old) and the
new method to compute enabledness and conflicts.

Model size Decr. Incr. Difference
Model |P| |T| |F| Old New Old New Decr. Incr. Both

AirplaneLD-PT-4000 28019 32008 122028 87.9 2.2 49.2 0.5 85.7 48.7 134.4
ASLink-PT-10b 4410 5405 16377 0.1 0.0 1.3 0.0 0.0 1.3 1.3
AutoFlight-PT-96b 7894 7868 18200 0.2 0.0 3.1 0.0 0.2 3.1 3.3
BART-PT-60 8130 12120 97200 7.8 0.1 3.9 0.1 7.7 3.8 11.5
BridgeAndVehicles-PT-
V80P50N50 228 8588 67470 3.2 1.0 0.0 0.1 2.2 -0.1 2.1
CloudDeployment-PT-7b 2271 19752 389666 0.2 38.5 0.6 0.0 -38.3 0.6 -37.7
DatabaseWithMutex-PT-40 12920 12800 156800 0.3 0.1 9.7 0.1 0.2 9.6 9.8
Dekker-PT-200 1000 40400 320400 21.7 1.4 0.2 0.4 20.4 -0.2 20.2
DLCflexbar-PT-8a 3971 32571 129321 126.5 0.0 0.7 0.1 126.5 0.6 127.1
DLCflexbar-PT-8b 47560 76160 216499 9.8 0.4 335.2 0.2 9.4 335.1 344.5
DLCround-PT-13b 5343 8727 24849 0.1 0.0 2.2 0.0 0.1 2.2 2.3
DLCshifumi-PT-6a 3568 25936 101182 61.9 0.0 0.6 0.1 61.9 0.5 62.4
DLCshifumi-PT-6b 44243 66611 182532 8.3 0.3 260.2 0.1 8.0 260.1 268.1
DoubleExponent-PT-200 10604 9998 28194 0.2 0.0 5.5 0.0 0.2 5.5 5.7
DrinkVendingMachine-PT-10 120 111160 1026520 38.0 22.7 6.8 0.1 15.3 6.7 21.9
FamilyReunion-PT-
L00200M0020C010P010G005 143908 134279 411469 36.7 0.5 2450.4 0.5 36.1 2450.0 2486.1
FlexibleBarrier-PT-22b 6478 7469 18797 0.1 0.0 1.8 0.0 0.1 1.7 1.8
GlobalResAllocation-PT-5 102 136662 1226388 1.9 0.7 1.0 0.2 1.2 0.8 2.0
HexagonalGrid-PT-816 3391 6174 24696 0.0 0.0 1.4 0.0 0.0 1.4 1.4
HypertorusGrid-PT-d5k3p2b10 7533 24300 97200 0.2 0.0 15.9 0.1 0.2 15.8 16.0
JoinFreeModules-PT-5000 25001 40001 115002 5.2 0.1 56.9 0.1 5.1 56.8 62.0
NeighborGrid-PT-d5n4m1t35 1024 196608 393216 0.6 0.1 1.9 2.1 0.5 -0.3 0.3
NeoElection-PT-8 10062 22266 129195 2.2 1.4 2.9 0.1 0.8 2.8 3.5
NoC3x3-PT-8B 9140 14577 30726 0.4 0.0 5.3 0.0 0.4 5.2 5.6
PhaseVariation-PT-D30CS100 2702 30977 216835 23.7 0.9 0.8 1.5 22.7 -0.7 22.0
Philosophers-PT-10000 50000 50000 160000 195.2 0.2 143.5 0.1 195.0 143.4 338.4
PhilosophersDyn-PT-20 540 17220 140780 3.8 0.8 1.5 0.4 3.0 1.1 4.2
Railroad-PT-100 1018 10506 62728 1.6 0.3 0.9 0.2 1.4 0.6 2.0
RERS17pb113-PT-9 639 31353 125418 5.6 0.5 1.4 0.3 5.1 1.1 6.2
RERS17pb114-PT-9 1446 151085 604252 107.5 6.2 27.1 4.5 101.2 22.6 123.9
RERS17pb115-PT-9 1399 144369 577414 90.8 7.4 30.4 4.5 83.3 25.9 109.3
RwMutex-PT-r2000w0010 6020 4020 52040 1.2 0.0 1.6 0.0 1.2 1.6 2.8
SafeBus-PT-20 1026 10461 77364 âĂŞ 1.0 0.5 0.2 0.3 0.6 -0.1 0.5
SharedMemory-PT-200 40601 80200 320000 2992.3 45.1 3821.9 38.6 2947.2 3783.4 6730.6
TokenRing-PT-50 2601 127551 510204 840.1 1.4 3.1 0.8 838.8 2.3 841.1

116 Torsten Liebke and Christian Rosenke

needed more than one second. Table 1 lists the results of our experiments. It
shows that the new method is in almost all cases at least one order of magnitude
faster. Although both methods are asymptotically of the same complexity, it
seems that they have different worst case inputs. Our experiments suggest that
the ones that slow down the new approach are less frequent in practice than
those making the former one slow.

In the remainder of this section, we want to take a closer look at the outcome
of our experiments. As Table 1 shows for the decreasing computation, both
methods needed less than 1 ms for 29 of all models. In 7 models the former
method was faster, whereas in 6 of them the difference amounted to only a
couple of milliseconds. In the remaining 64 models the new approach was faster.
All in all the new approach needed only 2.86 % of the time compared to the
former method. Even if we leave out the biggest outliers the new approach needs
less than 10 % of the time.

The picture for the increasing computation is even better. There are 19 mod-
els where both methods needed less than 1 ms. In 8 models the former method
was faster, but in all of these cases the difference was also only a couple of mil-
liseconds. In the remaining 73 models the new method was faster. All in all the
new approach needed only 0.79 % of the time compared to the former method.
And if we again leave out the biggest outliers the new approach still needs less
than 10 % of the time.

There are only three models, where the new method is slower. In two of them,
the difference is only a couple of milliseconds. But for the CloudDeployment-
PT-7b model the decrease computation needed more than 38 seconds, while the
former approach needed not even one. We thoroughly investigated this case, but
we could not find any useful hints, why this model performs completely different
than the rest.

Starting from the 2020 edition of the MCC, LoLA 2 will use the new method
and with this the model checking performance will increase, since more time is
available for the actual verification. Especially in large Petri nets there will be
a lot more time available to validate a given specification. The new approach
addresses mainly the runtime performance. In the future we also plan to use
DI(N) for the reduction of memory used to save the decreasing and increasing
transitions for each transition.

References

1. José Luis Briz and José Manuel Colom. Implementation of weighted place/transition
nets based on linear enabling functions. In Proc. PETRI NETS, LNCS 815, pages
99–118, 1994.

2. Fabrice Kordon et al. Presentation of the 9th edition of the model checking contest.
In Proc. TACAS, LNCS 11429, pages 50–68, 2019.

3. P. Godefroid and P. Wolper. A partial approach to model checking. Inf. Comput.,
110(2):305–326, 1994.

4. Marko Mäkelä. Optimising enabling tests and unfoldings of algebraic system nets.
In Proc. PETRI NETS, LNCS 2075, pages 283–302, 2001.

Faster Enabledness-Updates for the Reachability Graph Computation 117

5. D. A. Peled. All from one, one for all: on model checking using representatives. In
Proc. CAV, LNCS 697, pages 409–423, 1993.

6. Karsten Schmidt. Lola: A low level analyser. In Proc. PETRI NETS, LNCS 1825,
pages 465–474, 2000.

7. Dirk Taubner. On the implementation of petri nets. In Advances in Petri Nets,
LNCS 340, volume 340, pages 418–434, 1987.

8. A. Valmari. Stubborn sets for reduced state space generation. In Advances in Petri
Nets, LNCS 483, pages 491–515, 1989.

9. K. Wolf. Petri net model checking with LoLA 2. In Proc. PETRI NETS, LNCS
10877, pages 351–362, 2018.

