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Abstract. Trading systems have become sophisticated multi-agent in-
frastructures with complex development cycles. This is why the financial
industry constantly seeks for novel approaches to design and validate
these systems. We propose the use of models to support such tasks. On
the one hand, these models need to describe how objects (e.g., orders
to buy/sell securities) are shared by the system and traders. On the
other hand, being a dynamic multi-agent system, models of trading sys-
tems should have a clear structure, describing how participants interact
between each other. In this paper, we address these requirements, inte-
grating notions of various Petri net extensions. In particular, we discuss
modeling capabilities/limitations of each extension, and we propose to
integrate them into a single approach, allowing for comprehensive mod-
eling of different trading system components.

Keywords: trading systems, financial technology, formal models, Petri
nets, multi-agent systems.

1 Introduction

Trading systems are software platforms used in financial markets to support the
exchange of financial instruments between market participants.The kind of such
instruments depends on the market type that a trading system works with. For
instance, in commodity markets, participants trade primary goods ranging from
cocoa to gold and oil. In foreign exchange markets, people trade currencies. We
consider trading systems in stock exchanges, where participants submit orders
to buy/sell securities (e.g., company shares) [13]. Participants trade for different
reasons. For example, investors buy securities with promising returns. Companies
sell their shares to gain capital for growth. Given these reasons, trading systems
have been positioned as a crucial element of the global economy.
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Today market environment has become more demanding. On the one hand,
there has been an increase of the number and the variety of participants, each of
which concurrently interacts with a platform according to some trading strategy.
On the other hand, in trading platforms, a plethora of market services and rules
affecting, for example, order serving and trade execution policies, have to be
implemented. Thus, trading systems have turned into large and sophisticated
multi-agent infrastructures with complex development cycles, which are more
prone to various flaws. Reducing or even eliminating the number of such flaws
becomes a crucial task. However, within these systems, common alternatives to
analyze implementation flaws such as active testing are sacrificed to minimize
latency and overhead, pushing software quality experts to search for clever and
less expensive/intrusive solutions [27]. Thus, the financial technology industry
constantly seeks for novel approaches to design and validate trading systems.
In this regard, one of the recently proposed approaches suggests to analyze the
behavior of the platform and its participants using system logs [15, 9].
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Fig. 1: The central role of formal models for design/validation of trading systems.

In this work, we focus on developing a formalism to support the design and
validation phases of trading systems, as illustrated in Fig. 1. To fully support
these phases, models constructed with the devised formalism need to provide a
holistic view, capturing different aspects of trading systems in a convenient level
of abstraction. First, similar to business processes, trading system models need
to describe the control-flow of system entities, i.e., activities that participants
and a trading platform execute as well as their causal order. Second, as in data-
aware models, the formalism should allow to describe how objects of the domain
(e.g., orders, trades) can be consumed, produced and ultimately shared by the
system and processes representing routines executed by the system participants.
Finally, being a dynamic multi-agent system by nature, models of trading sys-
tems should have a consistent representation, describing how participants (also
called agents) asynchronously interact with each other and with the trading
platform. Moreover, the number of objects and participants in a model should
be able to change dynamically without affecting the model structure. A formal-
ism meeting all such requirements can lay the basis for further development of
comprehensive formal specifications of trading systems, and it can be used for
running multi-perspective validation methods such as simulation, verification
and conformance checking.
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In this paper, we delineate key modeling requirements for trading systems,
integrating notions of different Petri net extensions. Petri nets are a well-known
formalism for modeling and analyzing concurrent distributed systems [25], that
provides a graphical notation for visualization and formal semantics allowing to
conduct model-based analysis. Moreover, Petri nets represent one of the refer-
ence formalisms for conformance checking [8] – an approach allowing to assess
correctness of system behavior by comparing its model against concrete execu-
tions extracted from system logs. Besides, several extensions of Petri nets have
been developed, answering the increasing demand to model different perspec-
tives of distributed systems. To address the modeling requirements of trading
systems, we consider the following extensions: (i) colored Petri nets [18], where
tokens carry data values of different domains, (ii) nested Petri nets [21], where
tokens can be Petri nets themselves, allowing to model multi-agent systems, and
(iii) db-nets [23], where non-adjacent net components can share data using a
database.

As we show with several examples in this paper, none of these extensions can
solely provide a holistic view that could fully cover the modeling requirements
of trading systems. Thus, we discuss a possible extension that builds on top
of different Petri net classes, and we demonstrate how it can be used to com-
prehensively model various trading system components. We point out that this
solution is not a mere combination of existing Petri net extensions. For example,
in contrast with db-nets, where queries are attached to places, we incorporate
the concept of reference tokens with attached queries. The latter allows to model
dynamic lists such as order books independently from the model structure.

The remainder of this paper is structured as follows. In Section 2, we provide
an introduction to trading systems. In Section 3, we describe Petri net extensions
and we discuss modeling capabilities and limitations using examples of trading
system models. In Section 4, we informally present our integrated extension,
and we demonstrate how to use it for modeling different components of trading
systems. In Section 5, we present the related work. Finally, Section 6 provides
some conclusions and future work.

2 Trading Systems

When referring to trading systems, we consider a trading platform and a group
of market participants. The former is a software infrastructure supporting the
automatic exchange of securities between participants. Fig. 2 depicts a simpli-
fied view of the general architecture of trading systems. Communication between
participants and a trading platform is typically handled through different net-
work interfaces. For instance, a trading interface allows participants to log in
the platform and to send/receive trading-related messages. A market informa-
tion interface disseminates market information to users via a real-time protocol
(RTP) channel. A downstream interface exchanges data with external systems:
it sends reports to surveillance authorities, and it forwards executed trades to
settlement and clearing systems performing the actual exchange of money and
securities.
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Fig. 2: A simplified view of the general architecture of trading systems.

In this work, we focus on the services provided through the trading interface.
This interface is implemented according to a finance-oriented communication
standard. We consider as a reference the Financial Information Exchange (FIX)
protocol [2], implemented nowadays in most trading platforms. This protocol
is organized in two layers: a session and an application layer. At the session
layer, the connection between each participant and the platform is managed. On
the platform side, the management of user connections is handled by a session
component. At the application layer, after establishing a connection, agents send
trading-related messages to the platform. There can be a large set of trading-
related message types according to the services provided by application com-
ponents of a platform. We focus on the application component that manages
incoming participant orders to buy/sell securities. As an initial example, Fig.
3 depicts a common message exchange between two participants and a trad-
ing platform. The agents initiate (terminate) the communication by exchanging
login(logout)-type messages with the session component. Once online, each
agent sends an order to trade a certain number of stocks of securities, and re-
ceive trade notifications in case of a trade.
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Fig. 3: Message sequence chart describing a typical communication flow between
two market participants and components of a trading platform.
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Table 1: Example of an order book. For simplicity, we assume that order identi-
fiers are given to orders according to their arrival time.

order book sec1

buy side sell side
position order id. agent id. qty price position order id. agent id. qty price

# 1 O1 A1 4 22.0 $ # 1 O6 A6 1 19.8 $
# 2 O4 A4 2 20.1 $ # 2 O7 A7 6 20.0 $
# 3 O2 A2 3 20.0 $ # 3 O8 A8 2 20.1 $
# 4 O3 A3 2 20.0 $ # 4 O9 A9 5 20.1 $
# 5 O5 A5 7 19.8 $

In the following, we describe how trading platforms internally manage orders
and execute trades. Incoming orders of participants are received and processed
sequentially by the corresponding application component, and then they get
inserted into order books. Order books are lists where orders trading the same
security are placed to be matched. Hence, in a trading platform, there can be
an order book for each individual security that can be traded in that system.
Each order book has a buy side and a sell side, where buy and sell orders are
placed. Orders are placed in order books based on a precedence rule. In our
work, we consider the price-time precedence rule, typically employed in most
trading systems. This rule places first buy orders (sell orders) whose prices are
the highest (lowest) in the buy (sell) side; if two orders in the same side have
the same price, then the one that arrived earlier is getting placed first. Table
1 displays an order book, whose orders are placed according to the price-time
scheme.

Within a trading platform, there is also a matching engine that executes
trades between orders. For a given order book, this engine takes as input the
first orders from the buy side and the sell side. Then, a trade can be executed iff
the price of the first buy order is greater or equal than the price of the first sell
order (in other words, the best buyer is willing to pay at least as much as the
best seller wants). This situation is exemplified by the order book in Table 1,
where the price of order O1 is greater than the price of order O6. When a trade
is executed between a buy order o1 and a sell order o2, which respectively have
q1 and q2 stocks, min(q1, q2) stocks are taken from each order (min returns the
minimum of two numbers). The quantities of o1 and o2 are decreased according

to what they traded, e.g., q1
′

= q1 −min(q1, q2). For each of the two orders, if
its remainder goes to zero, then the order is discarded from the order book (that
is, the agent successfully sold/bought what she wanted through that order).
Otherwise, the order remains in the order book (still as the first one in its side)
waiting to trade its remainder against the next best order of the other side. In
Table 1, a trade of 1 stock will be executed with orders O1 and O6. Order O1

will be partially filled, keeping a remainder of 3 stocks, whereas order O6 will be
filled and consequently discarded from the order book.
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3 Petri Net Extensions

Petri nets. A Petri net consists of two kinds of nodes: places and transitions.
Places (drawn as circles) represent conditions or resource buffers, whereas tran-
sitions (drawn as boxes) denote system activities. Places store tokens (drawn as
black dots), and they model resources, local threads, etc. Distribution of tokens
across places represents a state of a Petri net, which is called a marking. A tran-
sition is enabled to fire iff each of its input places contains at least one token.
Firing of an enabled transition consumes a token from each input place and pro-
duces a new token in each output place. Fig. 4(a) depicts a small example, where
two net components denote agents, whereas a central component consumes or-
ders and produces trades. Whilst we focus on modeling trading platforms and
participants, in other cases it might be of interest to analyze atomic elements,
i.e., evolution of orders across their lifetime within a platform. The latter can be
modeled as a Petri net (see Fig. 4(b)) in which places account for order states
and transitions denote activities over orders.
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submitcancel

receive

b1 b2
submit cancel
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trade

sell orders
agent 2
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ware receiving orders and producing trades.
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(b) Handling process of orders.

Fig. 4: Examples of ordinary Petri nets for modeling elements of trading systems.

Colored Petri nets. When constructing trading system models, it is needed
to describe how domain objects such as orders are handled. For example, one
may need to design how the application component of a platform inserts orders
in an order book or how order attributes are modified. For this task we consider
colored Petri nets (CPNs). In CPNs, tokens carry values of different data types.
Fig. 5 presents a CPN modeling the application component of a trading platform.
It models the reception of orders, how these orders are placed in order books
according to an employed priority scheme, and how trades are produced. Orders
are defined as tuples o1 = (id,sec,q,p,s,st) where id is an order identifier,
sec is the security that the order trades, q and p denote respectively the stock
quantity and price per unit, s is the order side (buy or sell), and st is the order
state. Place O is the entry point where orders are received.
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Fig. 5: A CPN model (constructed with CPN Tools [1]) describing the application
component of a trading platform.

When there is an order in place O, either transition t1 (submit buy order)
or t2 (submit sell order) can fire, depending on the order side s. When t1 or
t2 fires, an order is inserted in place AB (resp., AS) for arriving buy (resp., sell)
orders. Two list tokens represent an order book, i.e., the two tokens in places OB
and OS model the order book in Table 1. More pairs of list tokens may be added
to include more order books. Insertion of orders in an order book is modeled as
follows. When transition t3 fires, an order in place AB is transferred to a list token
in place OB. The same principle holds on the sell side. The matching between
first buy and sell orders is done as follows. For two list tokens representing an
order book, transition t5 takes the first elements of each list – the first buy order
and the first sell order. The firing of t5 is possible if the price p of the first buy
order is greater or equal than the price p2 of the first sell order. Then, when t5

fires, it is produced a token in place T denoting a trade. The remainder (if any)
of each first order is placed back as the first element of its list.

CPNs provide a language for declaring expressions, formed by variables, con-
stants and functions. In CPN Tools, this language is CPN ML – an implemen-
tation of the Standard Meta Language (SML). For example, to insert a buy
order in an order book side, a function buy rank is used. The function performs
a priority insertion of the order in the list. Thus, precedence rules such as the
price-time scheme can be easily implemented. CPNs also provide boolean guards,
extending the definition of transition enabling. For example, transition t5 fires
only after the order price values have been checked against the guard assigned
to t5.
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Albeit CPNs meet various requirements to describe data aspects of trading
systems, this extension falls short for modeling large multi-agent systems. As we
have discussed before, one of the important requirements concerns the ability of
having a clear representation of participants, describing how they interact with
a trading platform. It is true that subnets denoting participants may be added
in a CPN, and such subnets may be connected with the trading platform model
using channels (e.g., place O in Fig. 5). However, the latter leads to the increasing
complexity of net models that, in most cases, may be unreadable and impractical
for analysis, especially in the presence of a large number of participants. Hence,
we proceed to present another Petri net extension, where participants can be
modeled as dynamic objects with explicitly specified behavior.
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agents
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login
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online
agents
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logout

x x
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.u1
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u2
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λ1 λ2
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Fig. 6: A NP-net modeling a fragment of a platform session component.

Nested Petri nets. Nested Petri nets (NP-nets) represent an extension of clas-
sical Petri nets where tokens can be Petri nets themselves. These tokens, called
net tokens, account for agents whose behavior is described using Petri nets. Net
tokens reside in a Petri net called the system net, denoting the environment
in which agents interact. Thus, NP-nets allow to model multi-agent systems.
Fig. 6 depicts a NP-net modeling a fragment of a platform session component.
The system net models the platform side, whereas net tokens represent market
participants. Places in the system net model connection states between agents
and a trading platform. It provides a clear visualization, displaying which agents
are at a given connection state, and how they move to other states in synchro-
nization with the system. The way net tokens progress through this component
depends on their inner states. For instance, transition t1 (activity login) fires,
if a transition u2 is enabled in an agent workflow (as these transitions are linked
by a synchronization label λ1). When u2 and t1 are enabled, both transitions
fire simultaneously, updating the session component and the agent involved: the
net token is transferred to the place online agents, whereas her inner state is
updated to online. This synchronization mechanism provides a way to model
the communication flow at the session layer, depicted in Fig. 3. In general, NP-
nets have different firing steps: (i) an autonomous step, which is the firing of
a transition in a net token, (ii) a transfer step, in which net tokens are con-
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sumed/produced in the system net without affecting their inner states, (iii) a
vertical synchronization step, which is the simultaneous firing of a transition in
the system net and transitions in net tokens, as it was shown for t1 and u2, and
(iv) a horizontal synchronization step, which is the simultaneous firing of two
transitions in two net tokens residing in the same place of a system net. The
main limitation of NP-nets lies in their inability to describe how net tokens and
a system net share data. As explained before, when modeling trading systems,
it is required to model how participants can send orders and receive trades from
the trading platform. In this sense, we proceed with a Petri net extension where
non-adjacent net components send/receive data through a shared database.

t 3

arriving buy orders 
for order book 'sec1'

order('O4','A4', 'sec1', 2, 20.1 $, 'buy', 'submitted')

order('O1','A1', 'sec1', 4, 22.0 $, 'buy', 'submitted')

order(o_id, a_id, 'sec1', q, p, 'buy', 'submitted')

...

new buy order

(o_id, a_id, sec_id, q, p, s, st)

new buy order • PARAMS = (o_id, a_id, sec_id, q, p)
new buy order • DEL = { order(o_id, a_id, sec_id, q, p, 'buy', 'submitted')}
new buy order • ADD  = { order(o_id, a_id, sec_id, q, p, 'buy', 'active') }

 

Fig. 7: Example of a db-net modeling insertion of buy orders in an order book.

DB-nets. This extension combines CPNs and relational databases into a single
formalism. A db-net is structured in three layers: (i) a persistence layer con-
sisting of a relational database. A database stores a finite set of facts (hereafter
referred to as records), such that the structures of records are defined by rela-
tion schemas; (ii) a data logic layer which consists of a set of queries and actions
used to read/update records in the database, and finally (iii) a control layer,
consisting of a Petri net incorporating several features of CPNs. Fig. 7 describes
buy order insertions in an order book, where a security sec1 is traded, using
db-nets. The database stores, among other records, two orders. For instance,
the record order('01','A1','sec1', 4, 22.0$, 'buy','submitted') models an
order sent by the participant A1, to buy 4 stocks of sec1 at 22.0$ per stock.
To access records in the database, db-nets employ special places called view
places that work akin to views in relational databases. More specifically, every
view place is having a query assigned to it that populates the place’s content
with tokens extracted from the query answer. Let us come back to the db-
net in Fig. 7. The query order(o id,a id,'sec1',q,p,'buy','submitted') is
equivalent to the SQL query SELECT o id, a id, sec id, q, p, s, st FROM

order WHERE sec id='sec1' AND s='buy' AND st ='submitted', returning
all orders planning to buy 'sec1' and whose state is 'submitted'. In Fig. 7,
this query returns two records highlighted in the database, resulting in the view
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place being marked with two tokens that represent such records in the net. Every
view place can be connected to transitions only via read arcs. This implicitly
results in creating tokens that are “copies” of extracted records.

In db-nets, transitions are equipped with actions that allow to update the
database. For example, upon firing, transition t3 invokes an action new buy

order assigned to it. Assume that t3 has fired and read the token ('O1','A1',
'sec1',4,22.0$,'buy','submitted') from the view place. The action assigned
to t3 updates the database by first deleting a record corresponding to order O1,
and then adding to the database the same order, but now with its state value
changed to submitted. In this way, manipulation of orders within the order
books can be simulated.

In trading systems, the number of securities that are traded may change
dynamically. Thus, there can be a variable amount of order books in the sys-
tem. To deal with this variability, order books need to be independent from the
model structure, and to be conceived as dynamic objects, like participants. Fig.
7 shows why db-nets cannot satisfy such requirement. The query to a collection
of orders, representing an order book section, is attached to view places. Under
this static modeling strategy, the size of the model structure increases accord-
ing to the number of order books. This issue does not allow to conceptualize a
clever management of order books, being created or closed upon demand. We
aim to model order books as a combination of dynamic list tokens (e.g., as in
the CPN of Fig. 5). In such model, participants should be able to manipulate
remotely elements of such lists. This approach can be implemented if queries are
attached to tokens (and not to places). Thus, the number of order books can be
variable in the model. Such approach is explained in the following section, where
we integrate notions of the introduced Petri net extensions into a single solution,
addressing all the aforementioned requirements for modeling trading systems.

4 An Integrated Extension for Modeling Trading Systems

In this section, we propose the integration of the considered Petri net extensions
into a single formalism for modeling trading systems. We conceive a Petri net
combining the characteristics of CPNs and NP-nets. In addition, following the
approach of db-nets, we include in our extension a relational database and queries
to consume database records. However, in contrast with db-nets, these queries
are going to be directly assigned to reference tokens. Such tokens are carrying
direct links to records extracted from the underlying database using such queries.
Moreover, any manipulation done with these tokens are mirrored on the records
they are pointing at. For example, a token that is consumed by a transition will
have its data deleted from the database.
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.

[ o[3] == hd(ob)[3] ]

o

order('O1','A1', 'sec1', 3, 22.0 $, 'buy', 'active')
order('O4','A4', 'sec1', 2, 20.1 $, 'buy', 'active')

t 3p1 p2ob

(o[1],…,o[6],'active') :: ob

order('O8','A8', 'sec2', 3, 30.0 $, 'buy', 'active')
order('O9','A9', 'sec2', 2, 20.2 $, 'buy', 'active')

order(o1, o2,'sec2', o4, o5, o6, o7)
sort(o5, o1) desc

order(o1, o2,'sec1', o4, o5, o6, o7)
sort(o5, o1) desc

('O2','A2', 'sec1', 3, 20.0 $, 'buy', 'submitted')
references to
buy sides of 
order books

Fig. 8: Example of reference tokens in the proposed extension.

Fig. 8 illustrates the concept of reference tokens. Place p1 contains an order
to buy sec1, waiting to be inserted in its order book side. In place p2, each token
has a query attached to it. A result set of each of such queries is a list of orders,
modeling an order book buy side. In our approach, reference tokens are treated
as lists of records, corresponding to the result sets of queries. To order result
sets returned by the queries, we propose to enrich the latter with special sort
clauses. In Fig. 8, result sets are sorted in descending order, based on two record
attributes, namely the price and the order number. When evaluating the guard
expression in transition t3, it is checked whether the third component of the head
of a list (hd(ob)[3]) from p2, representing an orders security value is equal to
the security value of the incoming order in place p1. The guard of t3 evaluates
to true (thus making t3 enabled) if a selected binding contains an element from
the reference token in p2, that relates to orders trading sec1. Let us consider
the firing of t3, essentially consists of three phases. First, on token consumption,
the query result set of the token is actually consumed, i.e., records are deleted
from the database. Second, on token production, the reference token is placed
back in place p2, but with a new element added to its list: the consumed order
from p1. The latter is done using the expression on the arc (t3, p2). Finally, the
transition firing concludes updating the database based on records in the list of
the produced token. In what follows, we explain, using several fragments, how
this integrated extension can model different components of trading systems.

4.1 General Scheme of a Trading System Model

Using our proposal, a trading system is modeled as a multi-agent system, con-
sisting of a system net and net tokens. The system net models the session and
application components of a trading platform as two disjoint components. Net
tokens, denoting participants, reside within the session component (as in Fig. 6).
Fig. 9 shows a top view of the trading system model. The application component
models order insertion in order books and trade executions. Agents interact with
the application component via a database. Database records are orders, trades,
or agent data, based on a schema derived from the entity-relationship diagram
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of Fig. 10. For example, trade('T1', 1, 20.0$, 'A1','A6','O1','O6') models a
trade between a buyer A1 and a seller A6. Participants and the application com-
ponent consume/produce records from/to the database using reference tokens.
Records in the database are non ordered, so the application component man-
ages orders using reference tokens, whose queries are equipped with sort clauses.
Table 2 shows how four reference tokens can model sections of an order book.
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Fig. 9: Top view of a trading system model. Some inscriptions are omitted.

Table 2: Four reference tokens with their queries can model an order book.
order book sec1

place (location) query attached to the reference token

arriving buy orders order(o1,o2,'sec1',o4, o5,'buy','submitted') sort(o5,o1) desc

arriving sell orders order(o1,o2,'sec1',o4, o5,'sell','submitted') sort(o5,o1) asc

buy side order(o1,o2,'sec1',o4, o5,'buy','active') sort(o5,o1) desc

sell side order(o1,o2,'sec1',o4, o5,'sell','active') sort(o5,o1) asc
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Fig. 10: Entity-relationship diagram of the database model.
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4.2 Modeling Market Participants

Participants can be modeled as net tokens, nested within the session component
of the system net. Each net token has an inner Petri net workflow (see Fig.
11) composed by different aspects of an agent trading process (control-flow,
references to data, and local resources). We describe these aspects, as well as the
activities of order submission and trade reception.

Agent control-flow. The control-flow is the agent process backbone. It consists
of a set of activities that an agent executes, and it establishes a causal ordering,
e.g., activity submit buy order executes iff the login activity was executed
before. As we resort to the same synchronization steps of nested Petri nets, some
transitions in the workflow are linked with transitions in the session component
using synchronization labels. In this way, we model the connection management
between a participant and the session component of a trading platform.

References to shared data. An agent may have references to shared data, for
example, to orders that the agent submitted or to upcoming trades. In Fig. 11,
reference tokens are created upon the firing of transitions u1 and u2. When u1
fires, it creates a reference to a record agent('A1'), as specified by the inscription
agent(ν) on the arc (u1, r1) (ν is a unique fresh agent identifier). Other agents
subsequently firing u1 would insert agent ('A2'), agent('A3'), etc. After u2
fires, references to agent’s orders and future trades are created. The queries of
these references use the identifier A1.
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Fig. 11: Fragment of a market participant model.

Agent local resources. Agent local resources (non visible by other agents or
the system net) are modeled as places storing tokens with data values. In Fig.
11, places d1 and d2 represent the agent’s stock portfolio and capital.
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The stock portfolio is a set of pairs denoting stock quantities of securities that
an agent trades, whereas the capital is the available balance to buy more stocks.

Creation and submission of orders. An agent can use her local resources,
for instance, to create and submit buy orders. In Fig. 12, the firing of transition
u3 produces an order (yet a local data token) in place order created. When
transition u4 fires, the order is consumed, and it is produced as a record in the
database. The latter is accomplished using the reference token to agent’s orders
in the shared database.
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Fig. 12: Agent model fragment regarding the creation/submission of buy orders.

Reception of trade notifications. Fig. 13 depicts the reception of a trade
notification in which an agent was involved as a buyer. The buyer updates her
trade portfolio based on the purchased quantity of stocks informed in the record.

online
receive 

buy trade

stock
portfolio

(10,'sec1')

(40,'sec2')

u5

(qt,sec_id)

trade('T1', 1, 22.0 $, 'A1', 'A6', 'O1', 'O6' 'sec1')

...

trade(o1, o2, o3, 'A1', o5, o6, o7, o8)

reference to 
agent’s  buy trades

a_btrades

a_btrades \ hd(a_btrades)

[a_btrades ≠  ∅ and  
hd(a_btrades)[8] == sec_id ]

(qt + hd(a_btrades)[2], sec_id)

r 3

d 1

Fig. 13: Agent model fragment describing the reception of trades for a buyer.



132 Julio C. Carrasquel, Irina A. Lomazova, and Andrey Rivkin

4.3 Modeling the Application Component of a Trading System

The application component processes orders submitted by agents. As explained
before, all orders in the database trading the same security are organized using
four different reference tokens, representing thereby the different sections of an
order book. As depicted in Fig. 9, these reference tokens are located in different
places of the application component: two tokens for arriving buy/sell orders, and
other two tokens for the buy/sell side of the order book. Using this design, we
explain the insertion of an order into an order book side and the execution of
trades.

Order insertion in an order book side. The insertion of an arriving order
into an order book is managed by changing the state attribute of an order from
submitted to active. In this case, the order will be referenced by the reference
token which acts as the buy or sell side of an order book. This procedure is
exemplified in Fig. 14. When transition t3 fires, it accesses the list of orders
referenced by the token at place references to arriving buy orders, removes the
first record of this list (that is O1, which is the next arriving buy order to be
served), resulting in the simultaneous deletion of the same record in the database,
and then inserts this record in the list carried by the reference token at place
references to buy sides of order books. Note that the newly generated token is
going to reference a new record as its state is set to active.
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arriving buy orders

t 3
new
buy order

references to 
buy sides of order
books

ab ab \ hd(ab)

ob ob :: (hd(ab)[1], …, hd(ab)[6],'active')
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order('O1','A1', 'sec1', 4, 22.0 $, 'buy', 'active')

[hd(ab)[3] == hd(ob)[3]]

Fig. 14: Model fragment regarding insertion of orders into an order book.

Trade execution. As explained before, if the first two orders of each side of
an order book can be matched, then they can produce a trade. We recall that a
trade execution is possible iff the price of the first buy order is greater or equal
than the price of the first sell order. Fig. 15 presents a fragment of the application
component modeling this situation. The guard in transition t4 (activity trade)
models the inequality condition between the fifth attributes (the price) of the
first records in each side. Then, when transition t4 fires, it consumes these first
orders, it produces a trade record with the stock quantity traded, and finally it
places back these first orders to their sides in case they have any stock remainder.
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order(o1, o2,'sec1', o4, o5,'buy','active')
sort(o5, o1) desc

.
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Fig. 15: Model fragment describing trade execution between first orders.

5 Related Work

The increasing amount and heterogeneity of participants and market rules has
driven the financial industry to look for novel approaches to design and vali-
date trading systems. In this regard, passive testing techniques have drawn the
attention of practitioners [12, 16]. These techniques meet industrial demands
of minimizing latency and overhead as they explore system behavior based on
output logs, avoiding to inject intrusive control in online systems. On this sub-
ject, different authors advocate the use of formal models (see, for example, [4,
5]), sometimes even in conjunction with traditional data science techniques or
process mining [15, 19, 20, 24, 30]. This shows that formal models for validating
concurrent end-to-end system processes are highly relevant in the industrial con-
text. For instance, formal models can be compared against recorded behavior of
trading systems to detect system deviations.

However, to detect deviations that occur due to agent or data corruption,
integrated formalisms modeling agent and data aspects become essential. As it
has been proposed in [10, 22], extended conformance checking techniques, may be
applied between integrated models and event logs that focus on the information
about participants within some multi-agent system. While both studies focus
on nested Petri nets, [10] offers a preliminary investigation on the feasibility of
conformance checking in the case of trading systems, whereas [22] presents a
formal approach for checking perfect fitness of a nested Petri net w.r.t a log of a
multi-agent system. This paper proposes a possible formalism for constructing
such integrated models. Notably, there is already an approach suggesting how
to obtain event logs of trading systems from sets of FIX messages, which are
captured from network interfaces of trading platforms [9]. Also, this work can
be seen as a development of an earlier study based on nested and colored Petri
nets for formal modeling of order-driven trading systems [11].
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To model trading systems, we are interested in using Petri-net based tech-
niques that can describe persistent data storage with all the complexity of an
underlying data model to capture data manipulation, as well as to represent
autonomous agents together with a logic that allows them to interact with each
other and the environment. As we have already demonstrated before, existing
Petri net formalisms do not fully capture all the requirements needed to faith-
fully model trading systems. We briefly discuss formalisms used in this work and
other Petri net classes related to them.

In order to model autonomous agents that interact with each other and the
environment, we considered nested Petri nets [21]. Tokens in NP-nets can be
Petri nets themselves (referred to as net tokens). As described in Section 3, there
are different synchronization steps in NP-nets, allowing to model several interac-
tion patterns between agents and the environment. NP-nets belong to a family
of Petri nets called nets-within-nets. From this class of nets, it is noteworthy to
mention object Petri nets (OPN), introduced in [31], and adopted in various ap-
plied frameworks for modeling and analysis of multi-agent systems (see, e.g., [6,
7]). In contrast with NP-nets, OPNs also support reference semantics. In this
type of semantics, a remote object can be referenced by multiple tokens (using
special identifiers) stored in different places, resembling the concept of pointers
in programming languages. This is a clear difference with respect to NP-nets,
which support value semantics, where every single net token is represented as a
different object (e.g., a market participant) locally assigned to a specific place.

In Section 3, we showed that colored Petri nets could be used for describing
processes that manipulate complex data objects. In CPNs, colors abstractly
account for data types, and the control threads (i.e., tokens), traversing the
net, carry data conforming to colors. However, when it comes to the analysis of
CPN models, one needs to severely restrict the contribution of data by requiring
colors to have a finite domain [17]. This, in turn, led to the de facto adoption
of the CPN formalism with bounded color domains only. Different approaches
have been studied in order to overcome this limitation. For example, ν-Petri
nets [29] allow to model processes running on top of an abstract object domain.
Single values from this domain are assigned to tokens, whereas transitions can
compare these tokens only for equality, but can also generate tokens with values,
that are distinct from all those in the current marking. The last feature makes
the formalism of ν-Petri nets very appealing to model cases when one needs to
secure possibly infinite provision of fresh data objects (for example, generation of
a new identifier) into the process. It is worth mentioning an approach studied in
[26] that essentially extends the ν-PN formalisms along two dimensions. First,
the authors use Petri nets with identifiers that do not deal only with single
values, but allow tokens to carry vectors of identifiers from the same abstract
object domain. Second, the formalism allows to capture information aspects
of the modeled data-aware process by introducing a sophisticated information
model allowing to express relations between objects as well as constraints on top
of them and CRUD (create, read, update, and delete) operations to manipulate
such objects.
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There are still other data-aware Petri net classes in which tokens are asso-
ciated to more complex data structures such as nested relations [14] or XML
documents [3]. Even though all these approaches offer different ways for model-
ing and manipulating data, there is a common limitation that all of them (apart
from [26]) share: data elements are “locally” attached to tokens, while no native
support for global, persistent relational data is provided.

Given that the data representation and manipulation are crucial for mod-
eling trading systems, in this paper we opted for db-nets [23]. Similarly to the
formalism studied in [26], db-nets provide a way for modeling complex dynamic
systems by realizing the clear separation of concerns between control flow and
data-related aspects. As we demonstrated in Section 3, the persistent data in
db-nets are represented using a single relational database. Nevertheless, the ap-
proach can be seamlessly extended towards the support of multiple data storages.
In addition, a variant of db-nets has been applied for model-based simulation
of software systems. More specifically, in [28] the authors demonstrated how to
model and test (via simulation) enterprise integration patterns using bounded
db-nets and their temporal extensions.

6 Conclusions

In this work, we primarily focused on formal modeling of trading systems in the
context of Petri net theory so as to provide a basis for testing their correctness
using trading system logs. To this end, we identified and presented a number of
crucial design requirements that would allow to capture a holistic view over the
systems under consideration. Then, it has been shown how such requirements
could be addressed using currently existing formalisms of Petri nets. We argued
that each of such formalisms can be suitable for representing only a certain
type of the trading system abstraction (and supported our observations with
concrete examples), and that currently there is no approach that could fully
address all the requirements. Therefore, we informally proposed a new framework
that combines relevant features of the discussed Petri net formalisms, and we
demonstrated using detailed examples how it can be employed for modeling
different components of trading systems.

A next step is to thoroughly formalize the proposed approach by combin-
ing already existing theories of CPNs, db-nets and NP-nets, and to develop a
prototype supporting modeling and simulation. We also plan to study how to
analyze the models of the devised formalism. Indeed, given such a rich setting,
performing formal analysis can be a complex task. In this case, one can proceed
independently following two directions. First, it is possible to focus only on the
simulation task supported by the prototypical implementation of the proposed
approach. This can be further applied to perform model-based passive testing.
More specifically, one would need to develop a conformance checking technique
that accounts both for data and agents interacting with the system net, and that
uses execution traces of the trading system software. Notably, the latter can be
extracted from trading system logs following the approach presented in [9]. Sec-
ond, we are planning to investigate how various available theoretical results on
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the verification of NP-nets and db-nets can be adopted in the context of the
new formalism. We are particularly interested in studying a notion of sound-
ness (a property that guarantees the absence of livelocks, deadlocks, and other
domain-related anomalies) that is specific for the scenario of trading systems,
and a corresponding compositional verification approach that would allow to
check the soundness property separately on every trading agent net.
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