


informative instances are queried [13]. The remainder of the paper is structured as follows: Section 2 discusses
recent relevant literature on AL approaches. Section 3 describes the instance selection method used. Section 4
describes the datasets used, other AL methods and experimental results. Finally, Section 5 concludes the work
by presenting some insights for further research.

2 Related Work

AL methods in deep networks use different strategies or a combination of the strategies to query for labels [7].
The strategies range from density estimation to multi-factor methods. The strategies can be categorized into
two groups: population-based strategies and pool-based strategies [18]. In population-based AL, training and
test sets are drawn from the same distribution with an assumption that training and test data both follow the
same conditional distribution p(y|x). In this type, the objective is to find the optimal training input density
to generate the training input instances. In pool-based AL, the objective is to optimally select some unlabeled
instances from a pool so that a model trained from them can best label the remaining samples. Regardless of
whether it is population-based or pool-based, AL is an iterative process [14]. It first builds a base model from
a small number of labeled training instances, and then using different or a combination of utility metrics it
selects unlabeled instances and queries for their labels. The newly labeled instances are added to the training
labeled set and the model is updated. This process iterates until a termination criterion is met, for example,
when the labeling budget is exhausted or the maximum number of iterations is met. Based on the number of
unlabeled instances to query at each iteration, AL methods can be grouped as either sequence-mode AL, where
one instance is queried each time or batch-mode AL, where multiple instances are queried at each iteration [14].

This paper focuses on pool-based batch-mode AL for DN. Although numerous AL approaches have been
proposed in the literature [16], a number of them are for standard pool-based AL problems e.g. Donmez et
al. presents a dynamic approach that updated selection parameters based on estimated future residual error
reduction after each actively sampled instance [3], Settles and Craven formulates the implementation of AL
using information density [17] and Krempl et al. implements cost-sensitive probabilistic approach for binary
classification [11]. Among those approaches limited to AL for DN include the work presented by Ducoffe and
Precioso that uses margin theory to compute instances along the decision boundary, [4], [1], [8] and [9].

The emphasis in AL is to evaluate the informativeness of an instance, with an assumption that an instance
with higher classification uncertainty is more crucial to label. This classical approach usually uses statistical
theory such as entropy and margin to measure instance utility, however it fails to capture the data distribution
information contained in the unlabeled data. This can eventually cause the classifier to select outlier instances
to label. Therefore, its important to consider the classification uncertainty as well as instances diversity in a
population while developing an AL solution. In our approach we consider both the uncertainty and correlation
measure to calculate the most informative and representative instance, which we refer as a high confidence
instance.

In AL where there is a pre-determined budget on labeling, it is important to estimate the objective function
for data selection. This guarantees near-optimal results with significantly less computational effort. The aim is
to maximize the objective function while minimizing data acquisition costs (or to remaining within a budget).
To deal with this problem we formulate the most informative budget selection task as a continuous optimization
problem. The aim is to determine possible queries that maximize the improvement to the classifiers strategy,
without overspending the budget. The proposed model addresses the cost-sensitive learning problem based on
learning algorithms that construct models for class probability estimation p(y|x). The probability estimates
provide an easy means for factoring in the misclassification losses in the classification decision making step. To
address the labeling cost problem, we employ the same probability estimation techniques over the selected high
confidence instances. The two methods are then combined into an algorithm that minimizes the combined cost.
At each iteration (while the total sum of annotation cost is under a given budget) a high confidence instance 1

to label is selected.

3 Selecting Most Informative Instance

We consider the problem of actively selecting a batch of instances to label, where the contents of the batch must
be constrained by some budget. We will use the following notation in this paper. Let xi represents an instance
and yi where yi ∈ {1,+1} represents the class label for xi, D = DL ∪DU , DL denotes labeled instances where

1High confidence instances are the most informative and representative instances selected from the unlabeled set



DL = {(x1, y1), (x2, y2), ...., (xn, yn)}, DU denotes unlabeled instances where DU = {(x1, ?), (x2, ?), ...., (xn, ?)},
DH denotes high confidence instances and Θ denotes the model defined by model parameters. For label space Y
with K classes in D we use the class probability estimator P (y|x) to compute the estimate of a label. In order
to avoid the problem of generalization of unseen instances and to learn an accurate model, we present a robust
approach that uses different utility metrics and a cost function. The utility metrics considered in this work are
uncertainty, correlation and informativeness measure, thus we present three main components of our approach:
a) uncertainty measure, b) correlation measure and the cost-based labeling.

3.1 Uncertainty Measure

Given a label space Y the uncertainty measure fu of an instance considering both the features and the label can
be defined as:

fu(x) :

{
LS → R, (i) features view

(DU × LS)→ R, (ii) features-label view
(1)

to a real number space R. From Equation 1 above: (i) the uncertainty measure is computed from instance-
features only while (ii) the uncertainty measure is computed from both the instance-features and instance-label.
In our method we consider the uncertainty measure computed from instance features and label view which is
considered the most effective [10]. Out of the three common uncertainty measure criteria namely least confidence,
sample margin and entropy, sample margin is prefered since it integrates the second most probable class label
in the uncertainty metric hence able to reduce the error rate by defining the decision boundary. We therefore
define uncertainty measure as:

fu(x) = P (yi = l1|xi;Y )− P (yi = l2|xi;Y ) (2)

With l1 and l2 being the most likely and second most likely labels. High uncertainty value fu implies current
model have little knowledge of the instance, and including it into the training set can help improve to the
prediction performance of the model.

3.2 Correlation Measure

When developing efficient AL methods, it is critical to consider samples distribution information [19]. The
instance diversity information aids in selecting most representative instances. In order to have more information
about the unlabeled instances it is appropriate to select a candidate instance in a more dense region. In addition,
selecting an instance to label only based on uncertainty measure may lead to selecting an outlier instance,
therefore exploiting sample instance diversity will provide the most informative instance to label. Our method is
based on the fact that the trade off between instance uncertainty and correlation is an essential AL problem to
address. Given a label space Y , we can define different groups of correlation of an instance x in a set of unlabeled
set as;

fc(x) :


DU ×DU → R, feature view

Y × Y → R, label view

(DU , y)× (DU , y)→ R, combined view

(3)

to a real number space R. In Equation 3, the combination of feature and label correlation is called combined
view. Different algorithms exist for exploiting this type of combination [10]. Majorly these algorithms are used
in a multi-label learning tasks when an instance has more than one label. This setting is ideal for mining tasks
on instances with complex structure. In this work we focus on exploiting the pairwise similarities of instances,
therefore the informativeness of an instances is weighed by average similarity to its neighbours. Let xi and xj
be a pair of instances. To cope with the drawback of uncertainty based selection, we then consider the diversity
by evaluating the correlation of the instances. Given a label space Y the correlation measure fc(xi, xj) between
a pair of instances xi and xj can be defined as:

fc(x) =
1

DU

∑
xj∈DU

(xi, xj) (4)

The value of fc(xi) represents the instance density of xi in the unlabeled set. The larger the value, the more
densely an instance is correlated with others. A low value of the correlation measure indicates an outlier



instance which should not be considered for labeling. Our motivation is that the most representative instances of
a distribution can be very informative for improving the generalization performance. Therefore, given correlation
measure fc(xi) and uncertainty measure fu(xi) the informativeness of an instance can be defined as:

fi(x) = fu(xi) · fc(xi) (5)

It can be rewritten as:
xi = argmax

i
(ui · ci) (6)

3.3 Cost-Based labeling

In our approach the high confidence instance evaluation is based on the instance informativeness which is com-
puted from both uncertainty and correlation metrics. The model is trained on labeled instances: feature and
label views. After querying for an high confidence unlabeled instance, a model prediction result is generated
based on output probability distribution. Each instance xi = {f i1, f i2, ...f iq, yi} in labeled set DL = {x1, x2, ....xs}
is represented in a feature space F consisting of a feature space and its class label yi. The size of DL is denoted
by s and xi denoted the ith instance in DL. The prediction can be denoted as a mapping function from the
feature space F to the class label space Y which can be expressed as;

P (x) : F 7→ Y (7)

The query strategy used in this work is based on the value of fi discussed in equation 6. Instances are ranked based
on the value fi with top ranked instances being the most appropriate to label. Under the current distribution
P (yi|xi;Y ) each possible instance (xi, ?) from the selected instances DH will be labeled with label yi. When
yi = 1, xi is regarded as a high confidence sample. The model update strategy is to train a model based on
the information provided by model weights computed from model validation of the performance. We employ the
probability estimators in our approach to both minimize the labeling costs and the misclassification decisions.
We make the assumption that the loss function associated with the decisions is represented as a static K and a
loss matrix L available at learning time. The contents of L(i, j) specify the cost incurred when an example is
predicted to be in class i when in fact it belongs to class j. Therefore, high confidence instance selection criteria
in this study will be based on probability of xi belonging to Kth class which can be expressed as:

yi = arg min
ξ∈DH

(C(ξ)+

K∑
k=1

P (k|ξ)
∑
i

K∑
j=1

Pξ,k(j|xi)L(yi, j)) (8)

The Algorithm 1 describes the Cost-Based Budget Active Learning (CBAL) with budget labeling.

Algorithm 1: Cost-Based Budget Active Learning (CBAL).

1 Input: labeled instance set DL, unlabeled instance set DU , loss matrix L, labeling cost C,

empty set DH , a budget m;
2 Output: model Θ;

3 Θ← getModel (DL);

4 while |DL| < m do
5 for each xi in D

U do
6 ui ← fu(xi);
7 ci ← fc(xi);
8 x∗ ← argmax

i
(u · c);

9 DH ← DH ∪ {x};
10 for each j learn P (y|DH);
11 yi ← getLabel using Eq.8;

12 DH ← DH \ {yi};
13 DL ← DL ∪ {yi};
14 Θ← updateModel (DL);

15 return Θ;



In Algorithm 1, the labeling is defined by the budget m with model updates after each iteration (lines 4-
14). At first the base model is trained using the initial set of labeled data DL. Instance evaluation is done to
identify the most informative and representative instance to label (lines 5-9). This evaluation returns the high
confidence instances DH selected from the unlabeled population (line 9). For each of the selected instance, its
label is queried and consequently the labeled set is updated. The model selection strategy is updated with the
learned parameters after every iteration. CBAL is designed to train a classification model using a small labeled
population sample proportion.

4 Experiments

We conduct experiments with 12 real-world data sets (wine2, seeds3, v2-plant seedling4, liver5, sonar6, vehicle7,
breast8, diabetic9, heart10, isolet11, plant12, svhn13) previously considered by other authors in similar domain.
For each data set, we split 80% of the instances as the training set, and the balance 20% as the test set to
evaluate the prediction accuracy of the models. We select a subset of instances from the training data to query
(100 instances per query) for labels and then construct a base classification model according to these labeled data.
The goal is to pick out high confidence instances such that the constructed model maintains effective classificaion
ability. The training is implemented in a batch-mode AL. We compare our method with other state-of-the-art
methods: a). Random Sampling (RS) which selects a certain number of samples from a given set and quire
labels; b). Core-Set AL (CSAL) [15] which defines the AL problem as a competitive sample core-set selection
which is then applied to a CNN in a batch setting; c). Deep Bayesian Active Learning (DBAL): a Bayesian
framework proposed in [6] for high dimensional data which considers Deep Learning problem of dependence on
big amount of data; d). Adversarial AL for deep networks (AAL) a margin based approach proposed in [4] for
deep networks with intention of reducing the number of queries to the oracle during training. The both the
budget m and the initial labeled set is specified before start of iterations. A batch size of 64 was considered for
all iterations for both training and testing selection. 100 queries were considered for each iteration.

4.1 Results and Discussion

Figure 1 shows the classification accuracy of different active learning approaches with varied number of queries.
From the observation RS tends to yield better performance when the number of queries is small but as the
number of queries increases it starts to slow its effectivenes in prediction. This observation might be as a result
of sampling bias induced by an intelligent selection strategy. CSAL that define AL as a core-set problem, is
not performing well at the start of training. As the number of queries increases, there is improvement and
yields better performance. This is because with few training instances, the learned decision boundary tends to
be inaccurate, and as a result, the unlabeled instances near the decision boundary may not be the most high
confidence instances to label. The performance of DBAL is better on some datasets but performs poorly on
others. This inconsistency might be as a result of identified cluster structure of unlabeled data that is not always
consistent with the target classification model. The behavior of AAL is similar to that of DBAL. Finally, we
observe that for most cases, CBAL is able to outperform the baseline methods significantly and we attribute this
success to the principle selecting high confident samples at each iteration, and the specially aspect of minimizing
the labeling and decision cost after each subsequent iteration.

5 Conclusion and Future Work

We propose a new near optimal AL approach called CBAL, that measure both the informative and representative
of an instance using instance utility to get a high confidence instance to lable while minimizing the labeling and

2http://archive.ics.uci.edu/ml/datasets/Wine
3https://archive.ics.uci.edu/ml/datasets/seeds
4https://www.kaggle.com/vbookshelf/v2-plant-seedlings-dataset
5https://archive.ics.uci.edu/ml/datasets/Liver+Disorders
6https://archive.ics.uci.edu/ml/datasets/Connectionist+Bench+(Sonar,+Mines+vs.+Rocks
7https://archive.ics.uci.edu/ml/datasets/Statlog+Vehicle+Silhouettes
8https://www.kaggle.com/paultimothymooney/breast-histopathology-images
9https://www.kaggle.com/sovitrath/diabetic-retinopathy-224x224-gaussian-filtered

10https://archive.ics.uci.edu/ml/datasets/Heart+Disease
11https://archive.ics.uci.edu/ml/datasets/isolet
12https://www.kaggle.com/vipoooool/new-plant-diseases-dataset
13https://www.kaggle.com/stanfordu/street-view-house-numbers



decision cost. The proposed approach of minimizing cost is based on the minmax principled view. Our current
work is based on budget constrained learning with pairwise similarities of instances. In the future, we plan to
extend this work to multi-label learning tasks by considering instances with more than one label. In addition we
plan to consider the expert knowledge in the training by allowing the user to control tradeoff between selection
and labeling, this will lead to incoporating domain knowledge into AL
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Figure 1: Classfication Accuracy on different datasets
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