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1 Introduction

A context in which we expect adaptive learning to be promising is the choice
of a suitable optimization strategy in black-box optimization. The reason why
strategy adaptation is needed in such a situation is that knowledge of the black-
box objective function is obtained only gradually during the optimization. That
knowledge covers two aspects:

1. the landscape of the black-box objective, revealed through its evaluation in
previous iterations;

2. success or failure of the optimization strategies applied to that black-box
objective in previous iterations.

To extract landscape knowledge, landscape analysis has been developed dur-
ing the last decade [7,10,11]. To include also the second aspect, we complement
features obtained using the landscape analysis with features describing the op-
timization employed in previous iterations.

Our interest is in expensive black-box optimization, where the number of
evaluations of the expensive objective is usually decreased using a suitable surro-
gate model. Therefore, the research reported in this extended abstract addresses
adaptive learning of surrogate models, more precisely their learning in surrogate-
assisted versions of the state-of-the-art black-box optimization method, Covari-
ance Matrix Adaptation Evolution Strategy (CMA-ES) [3].

Considering the results in [2,14] suggesting that the properties of landscape
features in connection with surrogate model selection problem should be analysed
in more detail, we contribute with this work a first essential step towards a
better understanding, by analysing the robustness of feature computation. Such
analysis of a large set of landscape features has already been presented only
in connection with selection of the most convenient optimization algorithm for
problems in fixed dimension [15].
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This extended abstract focuses on surrogate model selection task in multiple
dimensions and discusses robustness of several classes of features against samples
of points from the same distribution.

2 Landscape Analysis for Surrogate Model Selection

Landscape analysis aims at measuring characteristics of the objective function
using functions that assign to each dataset a set of real numbers [10]. Let’s con-
sider a dataset ofN pairs of observations

{
(xi, yi) ∈ RD × R ∪ {◦} | i = 1, . . . , N

}
,

where ◦ denotes missing yi value (e. g., xi was not evaluated yet). Then the
dataset can be utilized to describe landscape properties using a feature ϕ :⋃

N∈N RN,D × (R ∪ {◦})N,1 7→ R ∪ {±∞, •}, where • denotes impossibility of
feature computation.

Feature classes convenient for continuous black-box optimization field are
mostly described in [7]. From the available feature classes we mention only those
convenient for problems with a high computational complexity (unlike e. g., cell-
mapping approach [8]) and at the same time not requiring additional evaluations
of the expensive function. Feature classes are able to measure the dissimilarity
among points of a subset of the sample (Dispersion) [9], express various informa-
tion content of the landscape (Information Content) [11], measure the relative
position of each value with respect to quantiles (Levelset) [10], extract the infor-
mation from linear or quadratic regression models (Meta-Model) [10] or from the
nearest or the better observation neighbours (Nearest Better Clustering) [6], and
describe the distribution of the objective values (y-Distribution) [10]. Moreover,
in [13] we have proposed the set of features based on the CMA-ES state variables
(CMA features).

The surrogate model selection problem tackle the situation in an iteration
i of a surrogate-assisted algorithm A, where a set of surrogate models M are
trained using a training set T selected out of an archive A (T ⊂ A) of all points
evaluated so far using the objective function f: A = {(xi, f(xi))| i = 1, . . . , N}.
Hereafter, a new set of points P = {xk|k = 1, . . . , α} is evaluated using a
surrogate model M ∈ M, where α ∈ N depends on the strategy defining the
usage of surrogate model in algorithm A. The research question is: How to select
the most convenient M fromM according to A, T , and P?

To tackle the research question connected with the surrogate model selec-
tion problem, we have proposed (see [14]) the following metalearning approach
visualised in Figure 1:

In the first phase, each model M ∈ M is trained on each T (l) from the set
of datasets D = {A(l), T (l),P(l)}L

l=1, L ∈ N and its error ε is measured on P(l).
Simultaneously, a set of features Φ is computed on each dataset from D. Hereby,
a mapping SM : Φ →M from the space of landscape features toM is trained.
In the second phase, the trained mapping SM is utilized in each iteration i of the
algorithm A to select the model M ∈M according to the features Φ calculated
on A(i), T (i), and P(i). The selected M is utilized to fit T (i) and afterwards to
predict objective function values of points from P(i).
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Figure 1: Scheme of the metalearning approach to the surrogate model selection
system [14].

3 Feature Robustness

To investigate robustness of feature computation against different samples of
points (in the sense of low variance), several independent archive realisations
using the same distributions should be available. To gain such realisations, we
have created a new set of artificial distributions by smoothing the distributions
from real runs of the surrogate algorithm on the set of benchmarks.

First, we have generated a set of datasets D using independent runs of the
8 model settings from [13] for the DTS-CMA-ES algorithm [1,12] on the 24
noiseless single-objective benchmark functions from the COCO framework [4,5].
All runs were performed in dimensions 2, 3, 5, 10, and 20 on instances 11–15.
To gain 100 comparable archives using those runs, we have generated points
for new archives using the weighted sum of original archive distributions from
D, where the weight vector w(i) = 1
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i
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provides distribution smoothing across the available iterations1. Second, for all
A(i), T (i), and P(i) from D we have computed all features from the following
feature classes: Dispersion, Information Content, Levelset, Meta-Model, Nearest
Better Clustering, y-Distribution, CMA features.

Once the features are computed, the numbers of ±∞ and • values of different
samples from one iteration are summarized and the rest of feature values is
normalized to [0, 1] range using feature minima and maxima over the whole D.
We then compare feature means and variances for individual iterations.

1 Weighted sum of the original archive distributions satisfies∑imax
n=0 w

(i)
n N

(
m(n),C(n)) ∼ N

(∑imax
n=0 w

(i)
n m(n),

∑imax
n=0 (w(i)

n )2C(n)), where
imax is the maximal iteration reached by particular original archive and m(n) and
C(n) are mean and covariance matrix in iteration n.
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Figure 2: The dependecies of 0.05, 0.5, and 0.95 quantile of feature variance,
the median number of ±∞, or • of feature values on the number of observations
N for two features are shown on plots in the first column. The dependencies of
the same statistics on the data density D

√
N are presented in the second column.

Plots in the first row represent statistics for feature ϕmed(A) – median distance of
the ’best’ vs. ’all’ objectives in A (from Dispersion feature class) and the second
row contains statistics for ϕεs(T ∪ P) – settling sensitivity of the information
content in T ∪ P (Information Content).

Figure 2 shows the dependecies of 0.05, 0.5, and 0.95 quantile of feature
variance, the number of ±∞, or • on the number of observations N in the
considered set (A, T , or P) and data density D

√
N for two example features.

The results show that most of the features are robust in the sense of having a
low variance, especially for higher numbers of observations. Robustness for lower
values of N is not frequently high, or even the feature is not possible to calculate
(e. g., some of Dispersion features). CMA features provided the most robust
results probably due to the fact that most of them are sample independent. The
lowest variance values, and also high numbers of cases where the feature was
impossible to calculate were observed at Dispersion features.

4 Conclusion

The extended abstract addressed adaptive learning of a suitable optimization
setting in black-box optimization, more precisely, adaptive learning of a surrogate
model in a surrogate-assisted version of the CMA-ES. Its main message is the
relationship of this kind of adaptive learning to landscape analysis. A formal
framework for the learning of a surrogate model based on landscape analysis is
given, and considered kinds of landscape features are discussed. In the results
obtained so far, attention is paid in particular to feature robustness.

This work in progress is part of a thorough investigation of the possibilities of
landscape analysis in the context of surrogate modelling for black-box optimiza-
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tion. That investigation has already brought first results in the past [2,13,14],
but much still remains for further research.
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