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Abstract. In anomaly detection problems the available data is often
not or not fully labelled. This leads to results that are usually signifi-
cantly worse than in balanced classification problems. In this short paper
VIAL-AD is proposed, which addresses this problem with a sequence of
unsupervised, semi-supervised and supervised machine learning models
allowing a user to interactively label data points. This allows to move
towards supervised anomaly detection, starting with unlabelled data.
The approach is introduced and identified open research questions are
discussed.
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1 Introduction

This work addresses machine learning-based anomaly detection (AD) [6, 1], where
the aim is to classify data points as either normal or anomaly based on a set of
features f . This can be achieved by training AD models on data that is (a) un-
labelled, (b) contains labelled normal data, or (c) contains labelled normal data
and anomalies. Applications of AD can be found in system health monitoring,
intrusion detection, fraud detection, and the analysis of medical data. One main
application field is data-driven fault detection, e.g. addressed in [20, 21].

This work is motivated by the question of how we can compensate for the
lack of a labelled and representative data set in AD problems by incorporating
human knowledge in order to move to supervised AD. While there are statistical
or unsupervised ML methods to identify outliers, only a human expert can de-
cide whether a data point is a true anomaly for a given application. Therefore, it
suggests itself to incorporate the user in the process. We argue that for anomaly
detection, this is indeed even more crucial than for balanced classification prob-
lems.

In this paper visual interactive labelling for anomaly detection (VIAL-AD)
is proposed which – starting with unlabelled data – allows to iteratively move
from unsupervised to supervised anomaly detection [6]. This is achieved by a
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combination of (1) a sequence of machine learning (ML) models with different
levels of supervision and (2) the incorporation of the user to interactively label
data. The idea is to use unsupervised AD to address the so-called cold-start
problem [22] in order to obtain an initial set of tentative labels. A sequence of
AD models is used to suggest labels and a human expert confirms or overrules
suggestions and labels data or regions in the feature space. We believe that
in AD, where it is unlikely to have a representative and labelled training set,
the user-in-the-loop is key to allow for the use of ML and move towards an
accuracy that allows for productive use. In order to validate the idea, a prototype
was implemented. Preliminary results are promising, however a number of open
research questions were uncovered and are discussed in Section 3.

In the following, related work is briefly reviewed. Holzinger et al. showed
how a user in-the-loop with ML models can improve the overall performance of
a system [11]. A generic process for visual interactive labelling was proposed by
Bernard et al. under the name of VIAL [4]. In [3] it was shown that VIAL can
outperform pure active learning – specifically for two-class problems. In [2] AD
models were used for interactive labelling, however not with the aim to label
an AD data set. Trittenbach et al. discuss open research challenges for one-class
active learning [22], e.g. the cold-start problem.

2 The approach: VIAL-AD

VIAL-AD consists of the steps unsupervised, semi-supervised, and supervised AD
[6] (see Fig. 1(a)), where in each step model and user collaborate as follows: The
model classifies the data and suggests the labels normal and anomaly. The user
inspects the data points and their labels and (a) adjusts model hyperparameters,
or (b) confirms/overrules the labels proposed by the model, or (c) visually labels
data points or regions. Following that, the user decides to move to the follow-up
step or to refine the labelling in the current step.

Fig. 1: (a) VIAL-AD: Interactive labelling with a sequence of ML models and
the user-in-the-loop. (b) UI for visual interactive labelling, where the data shows
RPM (revolutions per minute) and coolant temperature of vehicles during the
occurrence of fault codes, read-out in car repair shops [19].
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1. unsupervised AD: An unsupervised model (LOF [5] in current implementa-
tion) suggests initial labels which are confirmed or overruled by the user.
Confirmed anomalies are moved to the two-class data set for the supervised
step and are excluded for the current step. The model continues to report
anomalies which are again evaluated by the user. In addition, regions in the
feature space can be marked as normal or anomaly resulting in the creation
of artificial data points. The result of the unsupervised step is a tentatively
labelled train set.

2. semi-supervised AD: The reduced data set from the unsupervised step is
used to train a one-class classifier (current prototype uses a OC-SVM [16]).
For each data point the classifier suggests the labels normal or anomaly.
These are processed analogously to the first step. A promising alternative is
to make use of the anomalies from step 1 using methods like SVDDneg [18,
10]. This step’s output is a labelled train set of normal data and anomalies,
where the anomaly class is, however, not likely to be representative.

3. supervised AD: As VIAL-AD is used on real data, more and more anoma-
lies are detected, so one can move to a supervised scenario. In addition to
the normal data, the previously labelled anomalies are used to form a two-
class train set that becomes increasingly representative. Hence, a variety of
common ML models becomes applicable. In case of high class imbalance,
sampling methods should be applied [12]. In the prototype ν-SVM is used.

The central element of interaction is an interactive 2D-scatter plot as in [2]
(see Fig. 1(b)). This does however not limit the approach to two-dimensional
data – higher dimensional data can be projected [15] onto two dimensions. Al-
ternatively, visualisations for multi-dimensional data could be used. However,
they introduce a higher complexity for the user.

3 Open research questions

Potential disruption caused by subsequent models: Different AD mod-
els have differing underlying assumptions [6, 18] about anomalies. Some work
with probabilistic distributions, others with distances, densities (e.g. LOF [5]),
reconstruction errors (autoencoders), or the adaption of the maximum-margin
assumption to the one-class case (one-class SVMs [18, 16]). Hence, the use of
different models in subsequent steps can induce disruptions in the way labels are
suggested. A subsequent model could come up with a different labelling, which
is confusing for the user. This disruption is to be minimised.

Visualisation-vs.-model dilemma: For data with > 2 dimensions the user
is presented projected data, while the model may work on the original or on
projected data. However, a projection with the aim to optimally visualise the
data is not necessarily the optimal projection for the ML model to work on
[14]. The original space or alternative projection methods might be more ap-
propriate. Visualising and classifying different representations of the data can,
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however, induce undesired effects. Wenskovitch et al. give an overview and po-
tential solutions are discussed in [24].

Problem of non-interpretability of projected space: In AD problems,
typically no representative set of anomalies exists. To compensate for that, en-
tire regions could be marked as anomalous based on expert knowledge. In the
original feature space these would be outlier values that can be clearly specified
by experts. As discussed, the potentially high-dimensional data can be projected
onto a lower dimensional space, the user can interact with. However, for many
projection methods the relation between the visualization and the original input
space is not obvious. This makes it difficult or even impossible for the user to
label unoccupied regions in the feature space. Projection methods like t-SNE
[23] aim to preserve the neighbourhood between data points, however do not
preserve the properties in unpopulated regions. This creates a dilemma trying
to mark unpopulated regions as normal or anomaly : in contrast to working on
the original feature space, users do not have an intuition about where anomaly
regions in the projected space are, as the projected feature space can be distorted
and hardly interpretable [15]. This problem can be addressed in several ways:

1. Avoid projections by using visualization methods for high-dimensional data,
which however makes interaction with the data more complex and does not
scale well for a high number of dimensions.

2. Show original data objects for selected data points. Data types, where single
data objects can be intuitively presented due to some order within the data
are predestined for that, e.g. images, time series, or text. High-dimensional
data in the form of independent feature vectors can, however, not easily be
represented in an intuitive way.

3. Investigate projection methods and interaction facilities in order to allow for
a user-friendly interaction [9, 8]

4. Let the user explore different projections, e.g. as proposed in [7].

Problem of highly imbalanced data: In AD, the distribution of the classes
is typically highly imbalanced towards the normal class. As a consequence (a)
this poses particular challenges for the projection methods, and (b) it raises the
question if users will label the data accordingly.

In projections, anomalies should be positioned well separated from normal
instances. Hence, an interesting issue is the sensitivity of projection methods
to outliers. Bernard et al. evaluated different projection methods in [2]. While
PCA’s sensitivity to outliers is considered promising [2], in [3] it is stated that
users prefer t-SNE [23]. The appropriateness of a projection method can be
evaluated with a user study or using metrics specifying the readability of the
projections. In [17, 13] ways to measure this readability are discussed.

The second question raised by the class imbalance is if users will label the
data accordingly: On the one hand, users might run into the risk of overlooking
anomalies due to their rareness. On the other hand, it might be that users
overestimate the anomaly class, labelling too many data points as anomalous.
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Risk of manual overfitting: Furthermore, an identified challenge is the risk of
what we call “manual overfitting”. In supervised ML, overfitting is addressed e.g.
with regularization terms – preventing the model from too naively overfitting the
data. However, with the user in-the-loop and with direct control over class labels,
such a naive overfitting may take place: The user might be tempted to process the
data set in such a way to achieve optimal accuracy as opposed to strictly applying
domain knowledge to distinguish between normal or anomalous data points or
regions in the feature space. This could be addressed with a – potentially high
number – of blind test sets. Even after testing, this data should not be made
available to the expert in order not to overfit towards the test set. Ideally, a test
set should only be used once to evaluate performance. Another option would be
the introduction of some regularization method, putting reasonable constraints
on the user actions.

4 Conclusion

This paper discussed how the incorporation of humans can compensate for the
lack of labelled data in anomaly detection. The proposed approach uses unsuper-
vised AD on an initially unlabelled data set and lets the user confirm or overrule
decisions. After having interactively processed the data set in collaboration with
unsupervised AD models, the user can move to semi-supervised or supervised
models. The key benefit of VIAL-AD is, that it allows to move towards super-
vised ML where it was previously not applicable due to the lack of labelled data.
This is a problem often encountered in industry where data is recorded for a dif-
ferent purpose and the opportunities of applying ML are discovered later. While
preliminary experiments indicate the applicability of VIAL-AD, open research
questions were identified which will be addressed in future work. Following that,
the goal is to evaluate VIAL-AD in a systematic user study and to apply it in a
real-world case study.
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