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The Craig Interpolation Property (CIP) for first-order logic (FO) states that
an implication ϕ⇒ ψ is valid in FO iff there exists a formula χ in FO using only
the common symbols of ϕ and ψ such that ϕ ⇒ χ and χ ⇒ ψ are both valid.
χ is then called an interpolant for ϕ ⇒ ψ. The CIP of FO and numerous other
logics is generally regarded as one of the most important and useful results in
formal logic, with numerous applications [39]. Description logics (DLs) are no
exception; indeed, the CIP has been intensively investigated [10, 37, 25, 11, 30,
20]. A particularly important consequence of the CIP is the projective Beth de-
finability property (PBDP), which states that a relation or constant is implicitly
definable iff it is explicitly definable. In other words, a relation or constant is
uniquely determined by a theory iff there exists a definition for it in that theory.

The PBDP has been used in ontology engineering to extract equivalent
acyclic terminologies from ontologies [10, 11], it has been investigated in ontology-
based data management to equivalently rewrite ontology-mediated queries [37],
and it has been proposed to support the construction of alignments between on-
tologies [20]. The CIP is often used as a tool to compute explicit definitions [10,
11]. It is also the basic logical property that ensures the robust behaviour of on-
tology modules [24]. In the form of parallel interpolation it has been investigated
in [25] to decompose ontologies. In [30], it is used to study P/NP dichotomies in
ontology-based query answering. The PBDP is also related to the computation
of referring expressions in linguistics [28] and in ontology-based data manage-
ment [7]. In this case, the focus is on computing an explicit definition (or de-
scription) for an individual rather than for arbitrary concepts. More recently, it
has been observed that the CIP is closely related to the existence of strongly
separating concepts for positive and negative examples given as data items in a
knowledge base [13, 21, 22].

The CIP and PBDP are so powerful because intuitively very hard existence
questions are reduced to straightforward deduction questions: an interpolant
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exists iff an implication is valid and an explicit definition exists iff a straightfor-
ward formula stating implicit definability is valid. The existence problems are
thus not harder than validity. For example, in the DL ALC, the existence of an
interpolant or an explicit definition can be decided in ExpTime simply because
deduction in ALC is in ExpTime (and without ontology even in PSpace).

Unfortunately, the CIP and the PBDP do not always hold. Particularly im-
portant examples of failure are DLs with nominals (or, equivalently, hybrid
modal logics that add nominals to propositional modal logic). The CIP and
PBDP fail massively in these DLs as even for very simple implications such as
({a}u∃r.{a}) v ({b} → ∃r.{b}) no interpolant exists. Moreover, there is no sat-
isfactory way to extend the expressive power of (expressive) DLs with nominals
to ensure the existence of interpolants as validity is undecidable in any extension
of ALCO with the CIP [9].

The aim of this paper is to start an investigation of the complexity of deciding
the existence of interpolants and explicit definitions for DLs in which this cannot
be deduced using the CIP or PBDP. We start by considering ALCO and its
extensions by inverse roles and/or the universal role and prove that the existence
of interpolants and the existence of explicit definitions are both 2ExpTime-
complete, thus confirming the suspicion that these are much harder problems
than deduction if one has to live without Beth and Craig.

The upper bound proof is based on a straightforward characterization of the
non-existence of interpolants by the existence of certain bisimulations between
pointed models. We then pursue a mosaic based approach by introducing mosaics
that are sets of types over the input ontologies/concepts which can be satisfied in
bisimilar nodes. Natural constraints for sets of such mosaics characterize when
they can be linked together to construct, simultaneously, models of the input
ontologies and concepts and an appropriate bisimulation between them. The
double exponential upper bound is then naturally explained by the observation
that there are double exponentially many mosaics. Formally, the lower bound
is proved by a reduction of the word problem for exponentially space-bounded
alternating Turing machines.

Related Work. The CIP and the PBDP have been investigated extensively.
They have found applications in formal verification [34], theory combinations [12,
14, 8], and in database theory for query rewriting under views [33] and query
reformulation and compilation [38, 6]. Of particular relevance for this work is
the investigation of interpolation and definability in modal logic in general [32]
and in hybrid modal logic in particular [1, 9]. Also related is work on interpolation
in guarded logics [18, 17, 3, 5, 4].

Craig interpolation should not be confused with work on uniform interpo-
lation, both in description logic [29, 31, 35, 26] and in modal logic [40, 27, 19].
Uniform interpolants generalize Craig interpolants in the sense that a uniform
interpolant is an interpolant for a fixed antecedent and any formula implied by
the antecedent and sharing with it a fixed set of symbols.

Interpolant and explicit definition existence have hardly been investigated for
logics that do not enjoy the CIP or PBDP. Exceptions are linear temporal logic,



Living Without Beth and Craig 3

LTL, for which the decidability of interpolant existence over the natural numbers
has only recently been established [36] (over finite linear orderings decidability
was already established in [15, 16])1 and recent decidability and complexity re-
sults for interpolant existence in the guarded fragment [23]. This is in contrast
to work on uniform interpolants in description logics which has in fact focused
on the existence and computation of uniform interpolants that do not always
exist [29, 31, 35, 26].

The full article containing all definitions and proofs is available at [2].
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