
UH-MAJA-KD at eHealth-KD Challenge 2020: Deep
Learning Models for Knowledge Discovery in
Spanish eHealth Documents
Alejandro Rodríguez-Péreza, Ernesto Quevedo-Caballeroa, Jorge Mederos-Alvaradoa,
Rocío Cruz-Linaresa and Juan Pablo Consuegra-Ayalaa

aFaculty of Math and Computer Science, University of Habana, 10200 La Habana, Cuba

Abstract
This paper describes the solution presented by the UH-MAJA-KD team at IberLEF 2020: eHealth Knowl-
edge Discovery Challenge. Separate strategies were developed to solve Tasks A and B, both based on
Deep Learning models using contextual embeddings obtained from a pretrained BERT model, and some
other syntactic features. We propose a strategy using a hybrid model for Task A that uses Stacked
Bidirectional LSTM layers as contextual encoders, and linear chain Conditional Random Fields as tag
decoders. The system addresses Task B in a pairwise-query fashion, encoding information about the
sentence and the given pair of entities using syntactic structures derived from the dependency parse
tree, by the means of LSTM-based Recurrent Neural Networks. The output is obtained scoring every
possible relation via a Multilayer Perceptron with a sigmoid activation function. Our model was able to
get a high performance in all four tasks of the competition. The system was ranked third in the main
evaluation scenario, with a 0.001 difference with the second place. Additionally, it was ranked second
in the evaluation responsible for measuring the performance in Task B, considered the hardest one in
previous editions of the challenge.

Keywords
Knowledge Discovery, Information Extraction, Named Entity Recognition, Relation Extraction, Deep
Learning

1. Introduction

The IberLEF 2020: eHealth Knowledge Discovery Challenge [1] (or eHealth-KD 2020 for sim-
plicity) is an event that aims to push the state of the art boundary in the knowledge discovery
area, particularly for medical-content text. It counts so far two previous editions [2, 3], defining
similar tasks. The challenge is divided into two tasks: A and B; one for entity extraction and
classification, and the other oriented to the extraction of semantic relationships between pairs
of such entities.

This paper describes the solution presented by the UH-MAJA-KD team at eHealth-KD 2020.
It proposes a hybrid model for Task A that uses Stacked Bidirectional Long Short Term Mem-

Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2020)
email: a.rodriguez4@estudiantes.matcom.uh.cu (A. Rodríguez-Pérez); e.quevedo@estudiantes.matcom.uh.cu (E.
Quevedo-Caballero); jorge.mederos@estudiantes.matcom.uh.cu (J. Mederos-Alvarado); rociocl@matcom.uh.cu (R.
Cruz-Linares); jpconsuegra@matcom.uh.cu (J.P. Consuegra-Ayala)
orcid: 0000-0002-0069-8950 (R. Cruz-Linares); 0000-0003-2009-393X (J.P. Consuegra-Ayala)

© 2020 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:a.rodriguez4@estudiantes.matcom.uh.cu
mailto:e.quevedo@estudiantes.matcom.uh.cu
mailto:jorge.mederos@estudiantes.matcom.uh.cu
mailto:rociocl@matcom.uh.cu
mailto:jpconsuegra@matcom.uh.cu
https://orcid.org/0000-0002-0069-8950
https://orcid.org/0000-0003-2009-393X
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


ory (BiLSTM) layers as contextual encoders, because of the sequential structure of the input
and its widely use in the literature [4] for addressing the Named Entity Recognition (NER)
problem. Also, a linear chain Conditional Random Field (CRF) [5] is used as the tag decoder
architecture for the model, for it has been used in many Deep Learning based NER systems
on top of a BiLSTM, with successful results [4]. The system addresses the Relation Extrac-
tion (RE) task in a pairwise-query fashion, encoding information about the sentence and the
given pair of entities using syntactic structures derived from the dependency parse tree, and
by the means of Long-Short Term Memory (LSTM) based Recurrent Neural Networks (RNN)
to achieve such purpose. Dependency information has proved useful in solving RE task in
various benchmark datasets [6, 7, 8]. The output is obtained scoring every possible relation via
a Multilayer Perceptron (MLP) with a sigmoid activation function.

The rest of the paper is organized as follows. Section 2 explains in detail the proposed system.
The results of the model in the several scenarios evaluated during the eHealth-KD 2020 event are
presented in Section 3. Section 4 analyses briefly matters of interest related to the development
and performance of the models. Finally, the conclusions of the work are shown in Section 5.

2. System Description

The system proposed solves both tasks separately and sequentially. Thus, independent models
were defined to solve NER and RE problems.

The NER task is posed as a tag prediction problem that takes the raw text of the input
sentence and outputs two independent tag sequences: one in the BMEWO-V tag system for
entity prediction [9], and another with tags corresponding to entity types (Concept, Action,
Reference, Predicate) for classification purposes. The tag None is included in the latter for
cases where no entity is present. Meanwhile, the RE task is interpreted as a series of pairwise
queries amongst the entities present in the target sentence. Hence, it predicts the existence of a
certain relation upon features derived from both the sentence and the pair of entities.

2.1. Preprocessing

Given the target sentence and the highlighted entities input as raw text, some preprocessing
is done in order to derive useful structures from such text. Since both models make use of
word-piece information, the input sentence must be tokenized first. Other preprocessing steps
include character-level word decomposition, syntactic features extraction and dependency
parsing.

To obtain a representation of the corresponding inputs, the models make use of the following
features for each word:

Contextual embedding: BERT-based contextual embeddings with no further hypertuning.
Due to BERT model’s tokenization algorithm, a certain strategy is needed to merge words
divided into multiple BERT tokens (e.g, word cáncer might be divided in [cán, cer]). In
our case, it is done using the mean of the given vectors. Each model uses the concatenation
of a number of BERT output vectors.

126



Character embeddings: CNN-based character embeddings. The input to such CNN is a
sequence of alphabet indexes, those of the characters contained in the word.

POS-tag and Dependency embeddings: Embeddings intended to encode word-level syn-
tactic features such as the POS-tag of the given word and the dependency with its ancestor
in the dependency parse tree.

BMEWO-V and Entity Type tags: BMEWO-V and entity type tags are used in RE task and
are obtained from Task A model outputs.

Contextual embeddings are pretrained with no further hypertuning; whereas the remaining
embeddings’ weights are optimized when training the corresponding model.

2.2. Named Entity Recognition Model

The model receives the sentence as a sequence of words vectors 𝑆. A distributed representation
of each word is obtained concatenating contextual, character and POS-tag embeddings, as
described in the previous subsection.

At a second level, the sequence of tokens is processed in both directions by a BiLSTM layer,
resulting in two sequence vectors. The vectors on complementary positions of the two sequences
are concatenated resulting in a new sequence 𝑃 with contextual-dependent vectors assigned
to each token in the sentence. This sequence is looking to encapsulate semantic dependencies
between the tokens of the sentence. The output sequence of the first BiLSTM is processed
in both directions by a stacked BiLSTM on top of the first one, getting more representational
power and resulting in the sequence of vectors 𝑃 ′.

𝑃 = 𝐵𝑖𝐿𝑆𝑇𝑀(𝑆) 𝑃 ′ = 𝑆𝑡𝑎𝑐𝑘𝑒𝑑𝐵𝑖𝐿𝑆𝑇𝑀(𝑃)
Sequence 𝑃 ′ is fed into two linear chain CRF layers, that output the most likely tag sequences

according to the Viterbi algorithm [10]. Let 𝑥𝑡𝑎𝑔 and 𝑥𝑡𝑦𝑝𝑒 be the outputs corresponding to the
BMEWO-V tag system and the entity type, respectively; and 𝐶𝑅𝐹𝑡𝑎𝑔 and 𝐶𝑅𝐹𝑡𝑦𝑝𝑒 the respective
linear chain CRF layers, then:

𝑥𝑡𝑎𝑔 = 𝐶𝑅𝐹𝑡𝑎𝑔(𝑃 ′) 𝑥𝑡𝑦𝑝𝑒 = 𝐶𝑅𝐹𝑡𝑦𝑝𝑒(𝑃 ′)
Figure 1 shows the described architecture.
The first CRF layer produces a sequence of tags in the BMEWO-V tag system. This clas-

sification corresponds to B for the begin of an entity, M for tokens in the middle, E for the
ending token, W in the case of tokens that are an entity themselves and O for tokens that do not
represent anything. It also takes into account the possibility of overlapping entities, including
the tag V in such cases.

A process is necessary to transform the tag sequences got from the CRF layers into a list
of entities expected as output for Task A [9]. This process from now on will be referred to as
decoding. There is an important challenge in this process: tokens belonging to an entity are
not necessarily continuous in the sentence. Taking this into account, the decoding process is

127



Figure 1: Task A model architecture (only showing one output).

divided into two stages. First, discontinuous entities are detected and then, at a second moment,
continuous entities.

In accordance to Spanish correct use, the set of tag sequences that must be interpreted as
a group of discontinuous entities were reduced to those that match the regular expressions
(V+)((M*EO*)+)(M*E) and ((BO)+)(B)(V+). The former corresponds to entities that share their
initial tokens, and the latter to those that share their final tokens. These two capture most
of the desired discontinuous entities. Among the examples of the former case, it is found the
fragment cáncer de pulmón y de mama, tagged as V-M-E-O-M-E, where entities cáncer de
pulmón and cáncer de mama are found. And, as example of the latter, the fragment tejidos y
órganos humanos, tagged as B-O-B-V, where entities tejidos humanos and órganos humanos
are found. When a match is detected and the entities are extracted, all the tags in that fragment
are set to tag O.

After the detection of possible discontinuous entities, the second stage starts assuming all the
remaining entities appear as continuous sequences of tokens. To extract continuous entities, an
iterative process is carried on over the tag sequence produced by the model. Due to limitations
in the BMEWO-V system, the procedure also assumes that the maximum overlapping depth is
2. Assuming otherwise only makes the process more ambiguous and does not capture much
more information since deeper overlappings are not frequent on the training and development
collections. Given this, along with the procedure, two in-construction entities are maintained.
In each iteration these two entities are created, extended or emitted in accordance to rules
defined considering only the previous and the current tag.

128



2.3. Relation Extraction Model

The most complete information for solving the RE task is found in the whole input sentence.
However, some authors claim that the dependency tree associated with the input sentence
condenses the most important information, and discards the misleading [6, 7, 8]. To determine
a possible relation between two entities, the system presented uses as input structures derived
from the dependency parse tree associated with the target sentence, to obtain information from
both the sentence and the entity pair.

According to observations, highlighted entities in the sentence collections are complete nom-
inal phrases (or at least sub constituents of them). Some of the criteria taken into consideration
to establish a dependency relation with a header H in a syntactic construction C, is the fact
that H could replace C [11]. Moreover, H could semantically determine C. On the other hand,
multiple-word entities often occur entirely in a dependency subtree rooted at one of its tokens.
Given a sentence 1, we define such subtree corresponding to an entity e, as relevant tree for e,
and is denoted further on as 𝑆𝑒 . The root is called entity e nucleus, and is denoted 𝑛𝑒 .

Another important definition, vastly used in literature to address this task, is the dependency
path between two tokens 𝑡1, 𝑡2. From now on it is going to be referred to as 𝐶(𝑡1, 𝑡2).

The before-mentioned structures are fed into a Deep Neural Network that outputs a vector
whose length is the same as the relations set. Each component of such vector is a score that
measures the strength with which the corresponding relation is present between the input
entities.

To do so, the model first encodes each of the structures 𝑆𝑒1 , 𝑆𝑒2 and 𝐶(𝑛𝑒1 , 𝑛𝑒2) in a vector.
Either 𝑆𝑒1 and 𝑆𝑒2 or 𝐶(𝑛𝑒1 , 𝑛𝑒2) are formed by words from the input sentence. A distributed rep-
resentation of each word is obtained concatenating contextual, character, POS-tag, dependency,
BMEWO-V and entity type embeddings, as described on the previous subsection.

To compute the output vector, a BiLSTM layer encodes the sequence of vectors associated to
the words in 𝐶(𝑛𝑒1 , 𝑛𝑒2) to include bidirectional information in the representation.

𝑃 = 𝐵𝑖𝐿𝑆𝑇𝑀(𝐶(𝑛𝑒1 , 𝑛𝑒2))
This output is fed into a unidirectional LSTM layer so as to emphasize the direction of the

potential relation, processing the sequence 𝑃 from the origin to the destination. This results in
a vector 𝑝 encoding the information present in 𝐶(𝑛𝑒1 , 𝑛𝑒2).

𝑝 = 𝐿𝑆𝑇𝑀(𝑃)
At the same time, a ChildSum Tree-LSTM [12] is applied independently over 𝑆𝑒1 and 𝑆𝑒2 (i.e

the representations are obtained independently but using the same set of weights).

𝑡𝑒1 = 𝑇𝑟𝑒𝑒𝐿𝑆𝑇𝑀(𝑆𝑒1) 𝑡𝑒2 = 𝑇𝑟𝑒𝑒𝐿𝑆𝑇𝑀(𝑆𝑒2)
Vectors encoding the input structures are concatenated. The final output 𝑥 is obtained by

applying a sigmoid function to a linear transformation of it.

1For simplicity, any notation related to the sentence is gonna be omitted as long as is clear by the context.

129



Figure 2: Task B model architecture. Input sentence is El cáncer de pulmón puede causar muerte
prematura with the highlighted entities cáncer de pulmón and muerte.

𝑟 = [𝑡𝑒1 ; 𝑡𝑒2 ; 𝑝]

𝑥 = 𝜎(𝑊 (𝑥)𝑟 + 𝑏(𝑥))
According to the scores present in the output vector 𝑥 , if any of its components exceeds a

given threshold, then the relation with the maximum score is predicted. If none of the scores is
greater than such threshold, then no relation is reported. The threshold value is added as an
hyperparameter and optimized using the development collection. Notice that this approach
allows us to disregard the use of a fake relation none.

Figure 2 shows the described architecture.

2.4. Parameters Setup and Training

For both subtasks, the training procedure was carried out using only the training collection
provided to contestants.

Since the CRF layer is intended to maximize the probability of obtaining a desired tag sequence
𝑦 given an input feature vector 𝑋 , the Task A model is trained to minimize the negative log of
the probability 𝑃(𝑦|𝑋 ). Let 𝑈 and 𝑇 be the CRF emissions and transition matrixes respectively.
Then, that probability is defined as the normalized exponential:

𝑃(𝑦|𝑋 ) = exp(∑𝑙
𝑘=1 𝑈 (𝑥𝑘 , 𝑦𝑘) + ∑𝑙−1

𝑘=1 𝑇 (𝑦𝑘 , 𝑦𝑘+1))
𝑍 (𝑋 )

130



being 𝑍 a normalization factor depending on the input vector 𝑋 . And the loss function is
defined in terms of 𝑋 and 𝑦 as follows:

𝓁 (𝑋 , 𝑦) = −𝑙𝑜𝑔(𝑃(𝑦|𝑋 ))
In the case of Task B model, since each output component is independent to each other, the

model is trained to minimize a binary cross-entropy function over the output vector. Let 𝑘
be the number of relations, 𝑥 the output vector and 𝑦 the target vector, the loss function is
computed as follows:

𝓁 (𝑥, 𝑦) = 1
𝑘 ∑

1≤𝑖≤𝑘
[𝑦𝑖 ⋅ log 𝑥𝑖 + (1 − 𝑦𝑖) ⋅ log(1 − 𝑥𝑖)]

As explained before, the model output does not make use of the fake none relation. A negative
sampling strategy is used so that the model is optimized with examples where no relation is
present. A negative sample is nothing more than a training example where the target output is
the null vector. Such sampling is performed using a fixed proportion of unrelated entity pairs.

Dropout strategies were used during the training procedure in both models to reduce overfit-
ting. For Task A, two dropouts layers were stacked after the first and the second BiLSTM, and a
spatial dropout 2D was added after the CNN layer used to compute the character embedding of
words. In Task B model, three dropout layers were stacked after BiLSTM, LSTM and TreeLSTM
layers respectively.

The number of epochs was selected empirically, based on the convergence of the models, as
learning curves showed. For hyperparameter tuning and model selection, a cross-validation
process was carried out using the development collection. Table 1 shows the hyperparameter
setup for both models.

2.5. Implementation

The systems were implemented using Python programming language, with PyTorch (v1.4.0)
library as the deep neural networks framework. BERT-based contextual embeddings were
obtained from the bert-multilingual-uncased pretrained model, using the Python library
pytorch-pretrained-bert2 (v0.6.2). POS-tag and dependency tree were obtained using the
Python library spaCy3 (v2.2.1), specifically the model es_core_news_md (93MB).

Both of the models were trained in a personal computer with the following features: Intel(R)
Core(TM) i7-6500 CPU at a frequency of 2.50GHz, with an installed memory of 8.00 GB with no
GPU available for CUDA. The total traning time for the entity model took less than 5 hours,
whereas the relation model was close to 12 hours.

3. Results

The evaluation in both tasks was carried out using the annotated corpus proposed in the
challenge. The results were measured with a standard F1 measure as described in detail in the

2https://pypi.org/project/pytorch-pretrained-bert/
3https://spacy.io/

131



Table 1
Hyperparameter setup for NER (left) and RE (right) models

Parameter Value Parameter Value

Input embeddings

Contextual embedding 3072 (last four) Contextual embedding 768 (last layer)
Character embedding 50 Character embedding 50
POS-tag embedding 50 POS-tag embedding 50

Dependency embedding 50
BMEWO-V tags embedding 50
Entity type embedding 50

Neural Net

CNN hidden size 100 CNN hidden size 100
Spatial 2D Dropout 0.5 BiLSTM hidden size 100
BiLSTM_1 hidden size 300 Dropout rate 0.2
Dropout_1 rate 0.5 LSTM hidden size 50
BiLSTM_2 hidden size 300 Dropout rate 0.5
Dropout_2 rate 0.5 Tree-LSTM hidden 50

Dropout rate 0.5

Training

Optimizer Adam Optimizer Adam
Learning rate 0.001 Learning rate 0.001
Epochs 50 Epochs 30

Total parameters 4681528 Total parameters 689713

challenge overview [1]. Also, precision and recall measures were recorded and presented.
Table 2 presents the official results of the competition, given by the evaluation scenario 1. As

shown, our system was ranked as third best, achieving an overall F1 score of 0.625, quite close
to the second best, and rather far from the first and fourth ranked systems.

Table 3 shows the results corresponding scenarios 2 and 3, where Task A and B were evaluated
independently. With F1 scores of 0.814 and 0.598, our system was able to reach the fourth and
second positions on Task A and B evaluation scenarios, respectively.

Finally, an additional transfer-learning scenario was proposed in this edition of the challenge.
Scenario 4 evaluates the generalization capabilities of the systems to general-topic domains.
Table 4 compares the results of the participant systems in this evaluation scenario.

As can be seen, all systems performed worse in this scenario that in scenario 1, but the
ordering remained almost identical. Ours was ranked third as in scenario 1, with a F1 score of
0.547.

132



Table 2
Scenario 1 results

Team F1 Precision Recall

Vicomtech 0.665 0.679 0.652
Talp-UPC 0.626 0.626 0.626
UH-MAJA-KD 0.625 0.634 0.615
IXA-NER-RE 0.557 0.580 0.536
UH-MatCom 0.556 0.716 0.455
SINAI 0.420 0.651 0.310
HAPLAP 0.395 0.458 0.347
baseline 0.395 0.458 0.347
ExSim 0.245 0.312 0.202

Table 3
Scenario 2 (left) and 3 (right) results

Team F1 Precision Recall

SINAI 0.825 0.844 0.806
Vicomtech 0.820 0.821 0.820
Talp-UPC 0.815 0.807 0.824
UH-MAJA-KD 0.814 0.820 0.808
UH-MatCom 0.794 0.824 0.767
IXA-NER-RE 0.691 0.726 0.660
HAPLAP 0.541 0.503 0.586
baseline 0.541 0.503 0.586
ExSim 0.314 0.292 0.339

Team F1 Precision Recall

IXA-NER-RE 0.633 0.647 0.619
UH-MAJA-KD 0.598 0.629 0.571
Vicomtech 0.583 0.671 0.515
Talp-UPC 0.574 0.646 0.517
UH-MatCom 0.545 0.682 0.453
SINAI 0.461 0.627 0.365
HAPLAP 0.316 0.327 0.305
ExSim 0.131 0.527 0.075
baseline 0.131 0.527 0.075

Table 4
Scenario 4 results

Team F1 Precision Recall

Talp-UPC 0.583 0.604 0.563
Vicomtech 0.563 0.594 0.535
UH-MAJA-KD 0.547 0.608 0.498
IXA-NER-RE 0.478 0.563 0.416
UH-MatCom 0.373 0.726 0.250
SINAI 0.281 0.626 0.181
HAPLAP 0.137 0.281 0.091
baseline 0.137 0.281 0.091
ExSim 0.122 0.253 0.080

4. Discussion

The BERT-based contextual embeddings proved to contain useful features for solving both NER
and RE tasks. We also experimented using pretrained word embeddings trained on a medical-
content corpus extracted from Wikipedia, and the model with the BERT features outperformed

133



the latter in both tasks. The combined usage of them proved to be rather ineffective. Also, cased
and uncased BERT models were tested and the cased model showed better results in the NER
model. However, the RE task experienced a rather insignificant decay in performance. This
results are based on the model selection process carried out using the development collection.

It is worth mentioning that our experiments showed that BERT is not enough to solve neither
of the tasks as described in eHealth-KD 2020 challenge. BERT-only based models (i.e., models
with BERT-based inputs and a corresponding CRF or MLP output layers), failed to perform well
in both tasks.

For both cases, all the features used as inputs, as described in Section 2, proved to be determi-
nant to achieve top performance. In the particular case of the RE model, aside from BERT-based
contextual embeddings, information obtained from the NER task about the entities (i.e., the
BMEOW-V tag and the entity type), are the most influential.

Finally, regarding the training process, it is worth noting the fact that the training time of the
NER model is significantly shorter than the corresponding to the RE model. This is something
expected, since our RE approach defines as a train example a sentence and a pair of entities (thus,
much more training examples). Also, as for previous eHealth events, systems still perform
significantly poorer in the RE task. These facts might lead to the conclusion that many findings
are yet to be done.

5. Conclusions

In this work were described the system proposed by UH-MAJA-KD team at the IberLEF eHealth-
KD 2020: eHealth Knowledge Discovery challenge. For Subtask A was proposed a hybrid
Stacked-BiLSTM-CRF model, using BERT pretrained contextual embeddings and other syntactic
features. This model obtained competitive performance in Scenario 2, where it was located
in fourth place with a small difference with respect to the top 3. Task B was addressed in a
pairwise-query fashion, encoding information about the sentence and the given pair of entities
using syntactic structures derived from the dependency parse tree, and by the means of LSTM-
based RNN. The output is obtained scoring every possible relation via a Multilayer Perceptron
with a sigmoid activation function. Our model obtained the second place in Scenario 3. The
system reached the third position in the overall standing (Scenario 1), and also in the transfer
learning scenario (Scenario 4).

It is proposed as future work to fine-tune BERT embeddings along with the training process
of the proposed models, looking for contextual embeddings to be trained specifically for these
tasks. Also, to use domain specific features like gazetteers looking to improve performance in
the health domain. Finally, to develop and evaluate the usage of joint models for solving both
tasks.

References

[1] A. Piad-Morffis, Y. Gutiérrez, H. Cañizares-Diaz, S. Estevez-Velarde, Y. Almeida-Cruz,
R. Muñoz, A. Montoyo, Overview of the eHealth Knowledge Discovery Challenge at
IberLEF 2020, in: Proceedings of the Iberian Languages Evaluation Forum co-located with

134



36th Conference of the Spanish Society for Natural Language Processing, IberLEF@SEPLN
2020, Spain, September, 2020., 2020.

[2] E. Martínez Cámara, Y. Almeida Cruz, M. C. Díaz Galiano, S. Estévez-Velarde, M. Á.
García Cumbreras, M. García Vega, Y. Gutiérrez, A. Montejo Ráez, A. Montoyo, R. Muñoz,
et al., Overview of tass 2018: Opinions, health and emotions (2018).

[3] A. Piad-Morffis, Y. Gutiérrez, J. P. Consuegra-Ayala, S. Estevez-Velarde, Y. Almeida-Cruz,
R. Munoz, A. Montoyo, Overview of the ehealth knowledge discovery challenge at iberlef
2019, in: Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2019). CEUR
Workshop Proceedings, CEUR-WS. org, 2019.

[4] J. Li, A. Sun, J. Han, C. Li, A survey on deep learning for named entity recognition, IEEE
Transactions on Knowledge and Data Engineering (2020).

[5] J. Lafferty, A. McCallum, F. C. Pereira, Conditional random fields: Probabilistic models for
segmenting and labeling sequence data (2001).

[6] Y. Liu, F. Wei, S. Li, H. Ji, M. Zhou, H. Wang, A dependency-based neural network for
relation classification, arXiv preprint arXiv:1507.04646 (2015).

[7] S. Zhang, D. Zheng, X. Hu, M. Yang, Bidirectional long short-term memory networks for
relation classification, in: Proceedings of the 29th Pacific Asia conference on language,
information and computation, 2015, pp. 73–78.

[8] Y. Xu, L. Mou, G. Li, Y. Chen, H. Peng, Z. Jin, Classifying relations via long short term
memory networks along shortest dependency paths, in: proceedings of the 2015 conference
on empirical methods in natural language processing, 2015, pp. 1785–1794.

[9] J. M. Alvarado, E. Q. Caballero, A. Rodrıguez, Uh-maja-kd at ehealth-kd challenge 2019
(2019).

[10] A. Viterbi, Error bounds for convolutional codes and an asymptotically optimum decoding
algorithm, IEEE transactions on Information Theory 13 (1967) 260–269.

[11] A. M. Zwicky, Heads, Journal of linguistics 21 (1985) 1–29.
[12] K. S. Tai, R. Socher, C. D. Manning, Improved semantic representations from tree-structured

long short-term memory networks, arXiv preprint arXiv:1503.00075 (2015).

135


	1 Introduction
	2 System Description
	2.1 Preprocessing
	2.2 Named Entity Recognition Model
	2.3 Relation Extraction Model
	2.4 Parameters Setup and Training
	2.5 Implementation

	3 Results
	4 Discussion
	5 Conclusions

