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Abstract—Among a large number of tasks on graphs, 

studies related to the placement of objects with the aim of 

increasing the information content of complex multi-parameter 

systems find wide practical application (for example, in 

transport and computer networks, piping systems, in image 

processing). Despite years of research, accurate and efficient 

algorithms cannot be found for placement problems. It is 

proposed to consider the solution of the allocation problem in 

the context of decomposition of the initial network into k 

regions, in each of which a vertex with some centrality 

property is searched. This article provides an analysis of 

sources for solving the problem of placement in graphs, as well 

as methods of decomposition of graph structures. Following the 

main provisions of the theory of spectral clustering, the 

disadvantages of the splitting applied criteria Rcut and Ncut 

are indicated. It is shown that the application of the distance 

minimization criterion Dcut proposed in this paper allows to 

obtain high results in the decomposition of the graph. The 

obtained results are based on the examples of searching for 

sensor placement vertices in the known ZJ and D-Тown 

networks of the EPANET hydraulic modeling system. 
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I. INTRODUCTION 

Graph models provide an opportunity to study an object 
based on its topology, without delving into the physical 
nature of the processes occurring in the system under 
consideration, which, in turn, greatly simplifies the 
calculations [1-3]. Among the many problems on graphs, 
studies related to splitting the original graph into a 
predetermined number of connected disjoint components 
have found wide practical application [4-8]. Methods of 
decomposition of graph structures make a significant 
contribution to the speed of search algorithms, which is 
especially important in conditions of restrictions on 
computational and time resources. However, widespread 
algorithms of spectral clustering based on minimization of 
Rcut and Ncut sections do not always allow to solve the 
problem of object placement in the best way. The reason for 
this is that the decomposition by these criteria takes into 
account the number of cut edges and the size of the resulting 
subgraphs, but does not take into account the distances 
between the vertices and the nature of their location within 
these subdomains. This paper provides an example showing 
that decomposing the original graph of 12 vertices and 12 
edges into two parts, there are two splitting options that meet 
the Rcut and Ncut criteria, but when considering these 
options in terms of the distances between the vertices within 
these subdomains, the second option is preferred. The use of 
this criterion, designated in the paper as Dcut, in the 
decomposition of graphs allowed us to solve the problem of 
placing objects in the network with a high quality result, 
comparable and even better than spectral methods based on 

Rcut or Ncut criteria, which confirms the applicability of the 
Dcut criterion in spectral methods of clustering graphs. 

II. THE ANALYSIS OF THE SOURCES 

The solution of the problem of finding the optimal 
placement of objects in k nodes for a network with the 
number of vertices |𝐶| by the full search method requires 

|𝐶|!

𝑘!(|𝐶|−𝑘)!
 iterations. For example, for a small network with 

|𝐶|=100 and k=5 it is required 107,88 iterations, which makes 
practical application of this method impossible. Trial-and-
error, greedy, and stochastic algorithms are the most widely 
used approaches for solving the placement problem. 

The trial-and-error algorithm is based on iterations. This 
approach provides a fairly close to optimal solution, but 
requires a lot of time. 

The principle of the greedy algorithm is to make locally 
optimal decisions at each stage, assuming that the final 
solution will also be optimal. The solution is fast, but not 
accurate.  

Solving by evolutionary computation, simulated 
annealing algorithms is based on choosing combinations of 
nodes placing objects on the basis of the probabilistic 
approach does not provide warranty of solution time and 
solution as a whole. 

In [8, 9] the solution of the placement problem is 
proposed to be considered in the context of the 
decomposition of the initial network into k regions, in each 
of which a vertex with some property of centrality is 
searched. When decomposing a graph, it is necessary to 
minimize the number of edges connecting the vertices of 
different subdomains. A prerequisite for this is the 
connectivity of the selected subgraphs.  

Many methods are used to solve the graph decomposition 
problem [10-15]. 

Since the 1990s, spectral graph theory has been used in 
many fields [16]. The main advantage of spectral graph 
theory is simplicity, so any system represented as a graph can 
be analyzed only by the spectrum of the associated matrix. 

Fiedler in [17] showed that the eigenvector that 
corresponds to the second smallest eigenvalue of the 
Laplacian matrix can be used to solve the problem of 
bipartite graph decomposition. Hagen and Kahng [18] 
introduce the criterion of rational sections (Rcut) to assess 
the quality of decomposition. Shi and Malik in [19] use 
conclusions by Fiedler for iterative bipartite partitioning and 
introduce the normalized sections criterion (Ncut). The 
development and application of the theory of spectral 
clustering are also considered in [20-25]. 
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III. THEORY OF SPECTRAL CLUSTERING OF GRAPHS 

A. Fundamentals 

The class of spectral decomposition methods [26-29] 
combines elements of graph theory and linear algebra. They 
are based on the application of the properties of eigenvalues 
and vectors of the Laplacian matrix of the graph.  

The eigenvectors contain information about the topology 
of the graph. Based on the problems, the spectral graph 
theory uses: the main eigenvector [30], Fiedler eigenvector 
[17], a group of the first k eigenvectors [19]. A review of 
spectral clustering methods is presented in [31, 32]. 

Spectral clustering algorithms consist of three main steps: 

1) For the original graph G, the adjacency matrix W, the 
matrix of degrees of vertices D, the Laplacian matrix L are 
forming. In addition to the non-normalized Laplacian matrix, 
its normalized equivalents are also used, for example, the 
Laplacian matrix normalized by the random walk method 
[19] or the symmetric normalized Laplacian matrix [20]. 

2) Determination of eigenvalues and eigenvectors of the 
non-normalized or normalized Laplacian matrix, which are 
used in the formation of the matrix of eigenvectors U. 

3) Division of the set of vertices into k clusters by 
classical clustering methods, for example, the k-means 
method in relation to the matrix U. 

B. Graph cut point of view 

Methods of spectral clustering are aimed at obtaining 
such subgraphs that the difference between the constituent 
elements of the subdomain is minimal with the maximum 
difference between the subgraphs. In this case, the subgraphs 
must be connected and balanced in size. To implement these 
conditions, the criteria proposed in [18, 19]: 

             𝑅𝑐𝑢𝑡(𝐶𝑘) = ∑
𝑐𝑢𝑡(𝐶𝑖,𝐺)

|𝐶𝑖|

𝑘
𝑖=1 → 𝑚𝑖𝑛 

𝑁𝑐𝑢𝑡(𝐶𝑘) = ∑
𝑐𝑢𝑡(𝐶𝑖,𝐺)

𝑣𝑜𝑙(𝐶𝑖)
𝑘
𝑖=1  → 𝑚𝑖𝑛 

where G is the initial graph, 𝐶𝑖  is i-th subgraph, k is the 
number of sub-areas to divide the original graph, 𝑐𝑢𝑡(𝐶𝑖 , 𝐺) 
is the sum of the weights of the cut edges, |𝐶𝑖| is the quantity 
of vertices in the subgraph i, 𝑣𝑜𝑙(𝐶𝑖)  is the sum of the 
weights of edges in subgraph i. 

It should be noted that the values of both criteria tend to a 
minimum with decreasing edge sections and with balancing 
subgraphs ( |𝐶1| = |𝐶2| = ⋯ = |𝐶𝑘|  or 𝑣𝑜𝑙(𝐶1) =
𝑣𝑜𝑙(𝐶2) = ⋯ = 𝑣𝑜𝑙(𝐶𝑘)) . According to [32], the Rcut 
criterion is preferred for decomposition by non-normalized 
matrices, and Ncut is preferred for decomposition by 
normalized matrices.  

However, the criteria under consideration do not always 
clearly indicate a solution. Figure 1 shows a graph with 12 
vertices and 12 edges. The weight of each edge, according to 
the figure, is 10. 

 

Fig. 1. The original graph with 12 vertices and 12 edges. 

When searching for the optimal decomposition on k=2 
subgraphs, we get two variants (figure 2). 

 

a) 

 

b) 

Fig. 2. Decomposition of the original graph into 2 parts: a. with a partition 

on edges 2-11 and 5-8; b. with a partition on edges 3-4 and 9-10. 

Next, according to (1) and (2), we define the values of 
the Rcut and Ncut criteria for the first (figure 2.a) and second 
(figure 2.b) variants of the partition: 

 𝑅𝑐𝑢𝑡1 =
𝑐𝑢𝑡2.11+𝑐𝑢𝑡5.8

|𝐶1|
+

𝑐𝑢𝑡2.11+𝑐𝑢𝑡5.8

|𝐶2|
= 6.67 

 𝑁𝑐𝑢𝑡1 =
𝑐𝑢𝑡2.11+𝑐𝑢𝑡5.8

𝑣𝑜𝑙(𝐶1)
+

𝑐𝑢𝑡2.11+𝑐𝑢𝑡5.8

𝑣𝑜𝑙(𝐶2)
= 0.8 

 𝑅𝑐𝑢𝑡2 =
𝑐𝑢𝑡3.4+𝑐𝑢𝑡9.10

|𝐶1
′|

+
𝑐𝑢𝑡3.4+𝑐𝑢𝑡9.10

|𝐶2
′|

= 6.67 

 𝑁𝑐𝑢𝑡2 =
𝑐𝑢𝑡3.4+𝑐𝑢𝑡9.10

𝑣𝑜𝑙(𝐶1
′)

+
𝑐𝑢𝑡3.4+𝑐𝑢𝑡9.10

𝑣𝑜𝑙(𝐶2
′)

= 0.8 

From calculations it is clear that from the point of view 
of Rcut and Ncut both variants of splitting give the same 
result. However, when solving placement problems, it is 
important to consider the distances between all vertices in 
subgraphs. Tables 1 and 2 show the distances between 
vertices in subgraphs when decomposing by the first (figure 
2.a) and second variants of the partition (figure 2.b). 

It can be seen from the tables that the second variant of 
splitting the graph into 2 parts provides a smaller distance 
length in subgraphs, which indicates a greater degree of 
grouping of vertices in subgraphs in the second variant of 
decomposition. 

TABLE I.  DISTANCES BETWEEN VERTICES IN SUBGRAPHS 

(DECOMPOSING BY THE FIRST VARIANT OF THE PARTITION) 

Subgraph 𝑪𝟏 

Nodes 1 2 3 4 5 6 

1 0 10 20 30 40 50 

2 10 0 10 20 30 40 

3 20 10 0 10 20 30 

4 30 20 10 0 10 20 

5 40 30 20 10 0 10 

6 50 40 30 20 10 0 

 Sum: 700 

Subgraph 𝑪𝟐 

Nodes 7 8 9 10 11 12 

7 0 10 20 30 40 50 

8 10 0 10 20 30 40 

9 20 10 0 10 20 30 

10 30 20 10 0 10 20 

11 40 30 20 10 0 10 

12 50 40 30 20 10 0 

 Sum: 700 
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TABLE II.  DISTANCES BETWEEN VERTICES IN SUBGRAPHS 

(DECOMPOSING BY THE SECOND VARIANT OF THE PARTITION) 

Subgraph 𝑪𝟏
′
 

Nodes 1 2 3 10 11 12 

1 0 10 20 30 20 30 

2 10 0 10 20 10 20 

3 20 10 0 30 20 30 

10 30 20 30 0 10 20 

11 20 10 20 10 0 10 

12 30 20 30 20 10 0 

 Sum: 580 

Subgraph 𝑪𝟐
′
 

Nodes 4 5 6 7 8 9 

4 0 10 20 30 20 30 

5 10 0 10 20 10 20 

6 20 10 0 30 20 30 

7 30 20 30 0 10 20 

8 20 10 20 10 0 10 

9 30 20 30 20 10 0 

 Sum: 580 

C. Distance minimization criteria 

Let us consider the solution of the problem of placing k 
=2 objects on the basis of the preliminary decomposition of 
the graph according to options 1 and 2. 

The problem under consideration can be formulated as 
follows. There is a graph G whose nodes are characterized by 
certain parameter estimates Pi, and whose edges are 
characterized by weights Wj. After setting the next object in 
the vertex, the estimates are recalculated according to the 
formulas:  

 𝑃𝑆 = 1 

 𝑃𝑖 = 𝑚𝑎𝑥(𝑃𝑦 ∙ 1/𝑊𝑖,𝑦) 

where 𝑃𝑆  is evaluation of the deterministic value of the 
parameter in the node setup of the object, 𝑃𝑦 is evaluation of 

the deterministic value of the parameter of node neighbor, 
𝑊𝑖,𝑦 is the weight of edge connecting two adjacent vertices i 

and y. 

It is necessary to find such an arrangement of objects in 
the nodes that provides a minimum of the average value of 
the uncertainty estimation of the target parameter: 

 𝐹 = 1 − 𝑚𝑒𝑎𝑛(𝑃) → 𝑚𝑖𝑛 
The values of the estimates Pi of each vertex for the 

decomposition variants 1 and 2 are shown in figure 3: 

 

a) 

 
b) 

Fig. 3. Values of Pi scores: a. splitting by edges 2-11 and 5-8; b. splitting 

by edges 3-4 and 9-10. 

White color indicates the vertices where the objects are 
placed, next to the vertices are given the values of the 
determinism estimates Pi. As a result, we get: 

 𝐹1 = 1 − 𝑚𝑒𝑎𝑛(𝑃) = 0.796 
 𝐹2 = 1 − 𝑚𝑒𝑎𝑛(𝑃′) = 0.780 

The value of 𝐹1 is greater than 𝐹2, which means that the 
placement based on the decomposition of the second option 
gives better results. This result is mainly due to the fact that 
the vertices in the subgraphs of the second variant of the 
decomposition are grouped more tightly. 

Thus, the use of a criterion that takes into account the 
length of distances in subgraphs is justified in solving the 
problems of placing objects on graphs. In this paper, we 
propose the following criterion for minimizing distances 
(12): 

𝐷𝑐𝑢𝑡(𝐶𝑘) = ∑ (
𝑐𝑢𝑡(𝐶𝑖,𝐺)

𝑣𝑜𝑙(𝐶𝑖)
∗

𝑑𝑖𝑠𝑡𝑖

|𝐶𝑖|∗(|𝐶𝑖|−1)
∗

|𝐶|

|𝐶𝑖|
)𝑘

𝑖=1 → 𝑚𝑖𝑛 

where 𝑑𝑖𝑠𝑡𝑖  is the sum of the distances between all vertices 
in subgraph i, |𝐶|  is the number of all nodes in the original 
graph. 

D. The algorithm of nodes priority distribution 

The structurally optimal number of subgraphs can be 
estimated by the largest difference between the eigenvalues 
of the normalized Laplace matrix. Figure 4 shows the first 10 
eigenvalues of the normalized Laplace matrix for the D-
Town network graph. 

 
Fig. 4. Eigenvalues of the normalized Laplace matrix. 

In the figure, you can see that the largest difference is 
between the eigenvalues equal to 7 and 8, which means that 
the best partition of this graph corresponds to 7 subgraphs. 

 
Fig. 5. Fiedler eigenvector coordinates (7 subgraphs). 

Consider the plot (figure 5) of the values of elements of 

the Fiedler eigenvector for the graph under consideration. 
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Each node of the graph corresponds to the value of an 

element of the eigenvector. Dotted lines mark the 

boundaries between clusters. The nature of the graph shows 

that, indeed, you can distinguish 7 grouped sections. 

But what happens if you need to divide the graph into 
more parts? Figure 6 shows the values of elements of the 
Fiedler eigenvector for the graph under consideration, 
divided into 10 subgraphs. It is obvious that the boundaries 
between subgraphs become less unambiguous, and the 
probability of some nodes falling into neighboring 
subdomains increases, which can lead to subgraphs of an 
unrelated structure. As the number of subdomains increases, 
the probability of disjoint subgraphs will increase. 

 
Fig. 6. Fiedler eigenvector coordinates (10 subgraphs). 

Figure 7 shows the pipeline network represented by the 
original graph model divided into 10 subgraphs. Multi-
colored sections correspond to different subgraphs, and white 
nodes are the Central points of the subgraphs. The area 
highlighted in the figure is part of subgraph "4" and is not 
related to the second half. The values of the Fiedler 
eigenvector elements of these "cut off" nodes are marked in 
black in figure 6. As you can see, these nodes are spread 
across three clusters with borders (-0,069; -0,046], (-0,046; -
0,032], (-0,032; -0,019], which corresponds to the original 
subgraph "4" and neighboring subgraphs "2" and "3". 

 
Fig. 7. The graph divided into 10 sub-areas. The "cut off" area is 

highlighted. 

 However, with the growth of the number of k clusters, 
the probability of formation of disconnected subgraphs 
increases.  

Connectivity of subgraphs is a necessary condition, for 
example, when solving problems of division, path search, 
etc. The solution of this connectivity problem is using 
proposed  priority node distribution algorithm: 

Input: graph G(V, E), number of subdomains k. 

Output: the k connected subgraphs. 

Steps: 

 Step 1. A standard procedure for spectral clustering of 
the graph is performed. 

 Step 2. Subgraphs are formed. 

 Step 3. Connectivity is checked. If the subgraph is 
connected, go to step 10. If the subgraph is not 
connected, go to step 4. 

 Step 4. The boundary node is located (the vertex with 
the largest distance from the values of the 
components of the eigenvector to the cluster 
centroid). 

 Step 5. Determined by the neighboring boundary 
vertices that are not part of the current subgraph. 

 Step 6. Subgraphs of neighboring nodes found in step 
5 are defined. 

 Step 7. The subgraph whose centroid is closest to the 
boundary vertex is determined. 

 Step 8. This boundary node is passed to the subgraph 
defined in step 7. 

 Step 9. Go to step 2. 

 Step 10. If the subgraph is the last one, exit, otherwise 
go to the next subgraph (step 3). 

Using this nodes priority distribution algorithm 
guarantees the connectivity of the resulting subgraphs at low 
computational cost. 

IV. CASE STUDY 

The proposed solution, based on the application of a 
criterion that takes into account the distance lengths in 
subgraphs, was tested on the example of solving the problem 
of placing pressure sensors in water supply networks ZJ and 
D-Тown of EPANET hydraulic modeling system (figure 8). 

ZJ is a network with 114 nodes and 164 pipes, D-Town 
has 407 nodes and 459 pipes. Nodes (consumers) of the 
considered networks are characterized by pressure 
determinism estimates, and edges (pipelines) are 
characterized by lengths Lj. After installing the next sensor in 
the network, the determinism estimates are recalculated by 
the formulas: 

 𝑃𝑆 = 1 

 𝑃𝑖 = 𝑚𝑎𝑥 (𝑃𝑦  ∙ 𝛼1 ∙ 𝛼2
2 ∙ 𝑓(𝐿𝑖,𝑦)) 

where 𝑃𝑆 is assessment of determination of pressure values in 
the node setup of the sensor, 𝑃𝑦   is assessment of 

determination of pressure values of the node-neighbor, 𝛼1 is 
the estimated error of determination of specific resistance of 
the pipeline, 𝛼2 is estimating the error of determining the 

values of water consumption, 𝑓(𝐿𝑖,𝑦)  is a function of the 

length of the pipeline section to the next node. 

The task is to arrange these sensors in the nodes in such a 
way that provides a minimum of the average value of the 
estimation of the uncertainty of pressure in the network (9). 
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a) 

 
b) 

Fig. 8. Water supply networks: a. ZJ, b. D-Тown. 

For the ZJ network, options for installing sensors in the 
number from 1 to 10 are considered, for the D-Тown 
network - from 1 to 20. Nodes with the highest centrality in 
the group are selected as sensor placement vertices. 

Solutions are considered: trial and error (TE), greedy 
algorithm (Gr), algorithms based on spectral clustering (SC). 
Algorithms based on spectral clustering (SC) are considered 
in the context of using various criteria: SCr - spectral 
clustering by Rcut criterion, SCn - spectral clustering by Ncut 
criterion, SCd - spectral clustering by Dcut criterion. The 
criteria to assess the effectiveness of the algorithms: 1) 
average uncertainty estimates (F), 2) number of iterations 

(∑ 𝐼𝑡𝑒𝑟), 3) elapsed time (T), 4) accuracy rate (1 − 𝛿̅), where 

δ is the relative error between the results of the considered 

algorithm and the algorithm of trial-and-error, 5) the highest 

relative error (max(δ)).  

Tables 3 and 4 show the results of calculating the 
performance indicators of the algorithms. The best accuracy 
scores are shown in bold. 

TABLE III.  PERFORMANCE INDICATORS OF ALGORITHMS (ZJ 

NETWORK)WITH DIFFERENT CRITERIAS (RCUT, NCUT, DCUT) 

Indicator TE Gr SCr SCn SCd 

𝑭 0.571 0.590 0.572 0.570 0.570 

∑ 𝑰𝒕𝒆𝒓 1140 55 10 10 10 

Т, мин 18.9 0.6 1.7 1.8 1.8 

𝟏 − �̅�, % 100.0 96.8 100.1 100.2 100.2 

max(𝜹),% 0.0 7.6 1.1 1.0 1.0 

 

TABLE IV.  PERFORMANCE INDICATORS OF ALGORITHMS (D-ТOWN 

NETWORK) WITH DIFFERENT CRITERIAS (RCUT, NCUT, DCUT) 

Indicator TE Gr SCr SCn SCd 

𝑭 0.535 0.591 0.561 0.542 0.539 

∑ 𝑰𝒕𝒆𝒓 8140 210 20 20 20 

Т, мин 188.5 4.6 6.5 6.6 6.7 

𝟏 − �̅�, % 100.0 89.5 95.2 98.7 99.3 

max(𝜹),% 0.0 17.4 9.8 7.3 3.2 

The solution obtained by the trial-and-error algorithm 
was chosen as the reference solution. The main problem of 
this algorithm is the necessary time and computational 
resources (1140 and 8140 iterations take 18.9 and 188.5 
minutes, respectively). The fastest (0.6 and 4.6 minutes) and 
at the same time less accurate is greedy algorithm (96.8% 
and 89.5%). Algorithms based on spectral clustering showed 
close to the reference result at low computational cost (about 
1.7-1.8 and 6.5-6.7 minutes). The application of the Rcut 
criterion provides a solution with an accuracy of 100.1% and 
95.2%, the Ncut criterion - 100.2% and 98.7%. The best 
results among the methods of spectral clustering for the Dcut 
criterion are 100.2% and 99.3% in relation to the results of 
the trial-and-error algorithm. 

Thus, the application of the proposed Dcut distance 
minimization criterion for graph decomposition allowed us 
to solve the problem of placing objects in the network with a 
high quality result, comparable and even better than spectral 
methods based on Rcut or Ncut criteria, which confirms the 
applicability of the Dcut criterion in spectral methods of 
graph clustering. 

V. CONCLUSION 

This article offers a look at the problems of solving the 
problems of placing objects in the network in the context of 
finding a solution in pre-defined subdomains obtained using 
the tools of the theory of spectral clustering of graphs by the 
criterion of minimizing distances in the desired subgraphs. 
The analysis of sources for solving the problem of placement 
in graphs, as well as methods of decomposition of graph 
structures are given. It is shown that many combinatorial 
problems on graphs can be solved with acceptable accuracy 
and in a short time, performing a search not in the entire set 
of graph elements, but on local sets grouped by a certain 
criterion. The proven theory of spectral clustering of graphs 
is proposed as a decomposition tool. Following the main 
provisions of this theory, the disadvantages of the applied 
criteria for splitting Rcut and Ncut are indicated. It is shown 
that the application of the Dcut distance minimization 
criterion proposed in this paper allows us to obtain good 
results when decomposing a graph. The obtained results are 
based on the examples of searching for sensor placement 
vertices in the known ZJ and D-Тown networks of the 
EPANET hydraulic modeling system.  

Further work will be aimed at studying the possibilities 
of applying the Dcut criterion in solving various 
combinatorial problems on graphs using spectral clustering 
methods. 
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