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Abstract—One of the standard cryptographic 

transformations is the addition modulo two of an open binary 

text with a key binary sequence. In this paper, we have 

obtained a description of all Boolean functions from n 

arguments that are suitable for use in cryptographic 

transformations instead of the modulo-two addition function 

(we will call them component-by-component Boolean 

functions). An example of their use in the cryptographic 

conversion algorithm GOST R 34.12-2015 is also given. The 

article proposes an algorithm for generating component-by-

component Boolean functions from n variables for different 

values of n and k, where k is the number of the variable whose 

value the function returns. For the case n=3 and k=1 or k=2, all 

Boolean functions that replace the addition function modulo 2 

are represented. The paper proposes an encryption method 

based on component-by-component Boolean functions and a 

pseudo-random sequence generator of elements from the 

GF(2n-1) field. Using Boolean functions that return the value of 

one of the arguments when repeated, expands the variety of 

intermediate variants of round transformations, gives a new 

variable encryption method, ultimately significantly increasing 

the cryptographic strength of the cipher. 

Keywords—boolean functions, encryption, symmetric cipher, 

GOST R 34.12-2015 

I. INTRODUCTION 

To date, many works on cryptography have been devoted to 

Boolean functions, the study of certain cryptographic 

properties of Boolean functions, as well as the possibilities 

of their use in order to protect information. These issues are 

discussed both in scientific articles and in a number of 

textbooks for Universities, for example, [1, 2]. For the most 

complete overview of the cryptographic properties of 

Boolean functions and available results see [3]. This article 

is a continuation of work [4], in which the authors proposed 

Boolean functions of three arguments that replace the 

addition operation modulo 2. In [5], the author has 

previously considered the issues of information security 

using linear encoding. 

One of the standard cryptographic transformations used in 

various symmetric encryption algorithms is bitwise addition 

modulo two of a plaintext represented in binary form with a 

key binary sequence. For example, GOST R 34.12-2015 [6] 

is a symmetric cipher in which the beginning of the 

transformation sequence is the transformation X[k]: 

X[k](a) = k ⊕ a,   (1) 

where k is the round key, a is the plaintext, k, a ∈ V128. 

The decryption method consists in the repeated addition 

modulo 2 of the ciphertext with the same key k: 

D X[k](a) = (k ⊕ a) ⊕ k = a.  (2) 

We use the same Boolean function to encrypt and decrypt 

information: 

F(x, y)=x⊕ y.   (3) 

This function has the following property: 

F(F(x, y), y) = x.  (4) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Modification of the encryption algorithm from GOST R 34.12-

2015 using component-wise functions. 

Earlier in [4], we proposed 10 Boolean functions of three 

variables to replace addition modulo 2. We introduced the 

term component-wise functions for them. In general case, a 

Boolean function of n variables, which returns the value of 

the first argument, must satisfy the condition: 

𝐹(𝐹(𝑥1, 𝑥2, … , 𝑥𝑛), 𝑥2, … , 𝑥𝑛)  =  𝑥1.  (5) 

The figure 1 shows the possible location of the 

component functions Fj, which depend on n+ 1 arguments, 

in the process of encrypting a 128-bit block of information. 

We presented two algorithms: an algorithm from GOST R 

34.12-2015 standard (left) and a modification proposed by 

the authors (right).  

Modern studies of the GOST R 34.12-2015 cipher are 

presented in [7- 9] and others. They are mainly devoted to 

the study of the cryptographic strength of this encryption 

standard, as well as various options for its software 

implementation. This article describes all Boolean functions 

of n arguments that are suitable for use in symmetric 

cryptographic transformations instead of the modulo two 

addition function. We proposed an algorithm for their 

generation, an encryption method based on component-wise 
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Boolean functions and a generator of a pseudo-random 

sequence of elements of the field GF(2n-1). 

II. THE GENERATION ALGORITHM AND PROPERTIES OF 

COMPONENT-WISE FUNCTIONS 

Condition (5) means that the system of equations: 

 {
F(F(0, x2, … , xn), x2, … , xn) = 0
F(F(1, x2, … , xn), x2, … , xn)  = 1

,  (6) 

whence it follows that 𝐹(0, 𝑥2, … , 𝑥𝑛) = 0  if and only if 

𝐹(1, 𝑥2, … , 𝑥𝑛)=1 and vice versa, 𝐹(0, 𝑥2, … , 𝑥𝑛)=1 if and 

only if 𝐹(1, 𝑥2, … , 𝑥𝑛)=0. We will represent the Boolean 

function F by the vector of values �̃� =(0,1,…,2𝑛−1 ), 

written in the order of correspondence with the ordered sets 

of variable values from zeros to ones. Then the conditions 

obtained mean that if the vector of values of the component-

wise Boolean function is divided into two parts, then the 

second part will be inverse to the first. Therefore, the 

following statement is true. 

Theorem 1. The number of Boolean functions of n 

variables satisfying condition (5) is 22𝑛−1
. A Boolean 

function satisfies condition (5) if and only if the second half 

of its value vector is inverse to the first.  

Let us prove the first statement. We can define a 

Boolean function of n variables by its vector of values of 

length 2n. Since the second half of the value vector 

completely depends on the first (inverse to the first), you 

can set it by specifying the first half of the value vector in an 

arbitrary way. It has a length of 2n- 1, and the number of 

binary vectors of this length is 22𝑛−1
.  

Let us prove the second statement of the theorem. The 

values of 𝐹(0, 𝑥2, … , 𝑥𝑛) are in the first half of the vector �̃�, 

and in the same order in the second half of the vector �̃� ̃ are 

the values of 𝐹(1, 𝑥2, … , 𝑥𝑛). From the conditions obtained 

above, it follows that 𝐹(0, 𝑥2, … , 𝑥𝑛) = 𝐹(1, 𝑥2, … , 𝑥𝑛)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , that 

is, the second half of the vector �̃� is inverse to the first. 

The theorem is proved. 

Example 1. For n=2 we have 222−1
=4 Boolean functions 

that return the first argument. We list their value vectors. 

The first half of the vector of values is set arbitrarily; the 

second is completed inversely with the first: 0011, 0110, 

1001, 1100. 

We got the following 4 functions: F(x, y)= x, F(x, y)= 

x+y, F(x, y)= xy and F(x, y)= �̅�. 

Example 2. For n=3 we have 223−1
=16 Boolean 

functions that return the first argument. They have value 

vectors: 00001111, 00011110, 00101101, 00111100, 

01001011, 01011010, 01101001, 01111000, 10000111, 

10010110, 10100101, 10110100, 11000011, 11010010, 

11100001 and 11110000. 

Taking into account the requirements for cryptographic 

functions, we come to conclusions from examples 1 and 2. 

Note that the first and the last functions are the negation of 

each other. The second and penultimate functions are related 

in a similar way, and so on. Thus, if we are going to use 

several component-wise functions in the encryption 

algorithm, we will select them only one from each pair. 

It is also obvious that some of the functions obtained 

contain dummy variables, which is unacceptable for 

cryptographic functions. Applying the algorithm for 

determining the fictitiousness of the variables x2, ..., xn to the 

selected functions, we obtain all Boolean functions that 

satisfy condition (5) and substantially depend on all 

variables. 

Definition 1. A component-wise (n, k) function, where 

1 k n, is a Boolean function 𝐹(𝑥1, 𝑥2, … , 𝑥𝑛), that does 

not contain fictitious variables and returns the k-th argument 

when it is reused, i.e., satisfying the condition: 

F(x1, x2, … , xk−1, F(x1, x2, … , xn), xk+1, … , xn) = 

= xk    (7) 

We formulate an algorithm for generating all 

component-wise functions 𝐹(𝑥1, 𝑥2, … , 𝑥𝑛) , that 

substantially depend on n variables and return the variable xk 

when reused. The input of the algorithm: n is the number of 

variables, k is the number of the variable whose value the 

function returns. 

The generation algorithm 

Step 1. Enter n, k. 

Step 2. Calculate 2n-1 and generate all possible binary 

vectors of length 2n-1.  

Step 3. (Checking for fictitiousness of all variables). For 

verification, we use the algorithm from [10]. We delete all 

vectors that did not pass verification. 

Step 4. (Adding inverted parts) Run for all vectors 

remaining after step 3.  

Divide the vector into 2k-1 parts and add the inverse one 

after each part. 

Include all received vectors in the response. 

In the proposed algorithm, we check for fictitiousness of 

variables only half of the value vector. If the check was 

successful, then all the variables will be significant for the 

full value vector generated in step 4. 

Example 3. Here is an example of how the algorithm 

works for n=3, k=2. 

23-1=4, so we generate all binary vectors of length 4: 

0000, 0001, 0010, 0011, ..., 1111. 

After step 3, only 10 vectors that have passed 

verification will remain out of the 16 vectors: 

0001,0010,0100,0110, 0111, 1000, 1001, 1011, 1101, 

1110. 

Performing step 4, divide each vector into 2 parts, and 

add an inversion to each part. We get the following result: 

TABLE I.   (3,2) COMPONENT-WISE FUNCTIONS 

 (3,2) component-wise 

functions 

 (3,2) component-wise 

functions 

0001 00110110 1000 10010011 

0010 00111001 1001 10010110 

0100 01100011 1011 10011100 

0110 01101001 1101 11000110 

0111 01101100 1110 11001001 

Let us show that we actually got functions that return the 

second component. Take, for example, F1(x1, x2, x3), 

�̃�1=(00110110). We show that for arbitrary values x1 and x3 

and for x2=a, the function F1 returns the value a. 

If we take n=3 and k=1 in the algorithm, the first steps 

of the algorithm will be the same as in example 3. In step 4, 

we do not split the remaining 10 vectors, since 2k-1=20=1. 

Add the inverse part to them and get the vectors of the 

values of (3,1) functions from example 2, with the exception 

of six functions containing fictional variables. 
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(𝑥1, 𝑥3) 𝐹1(𝑥1, 0, 𝑥2) F 1 ( x 1 , F 1 ( x 1 ,  0 ,  x 3 ) ,  x 3 ) 

00 0 0 

01 0 0 

10 0 0 

11 1 0 

 

(𝑥1, 𝑥3) 𝐹1(𝑥1, 1, 𝑥2) F 1 ( x 1 , F 1 ( x 1 , 1 , x 3 ) , x 3 ) 

00 1 1 

01 1 1 

10 1 1 

11 0 1 

All component-wise (n, k) functions are balanced, that is, 

they take the values 0 and 1 equally often. However, they 

have a different probability of replacing or saving the 

plaintext character. So, the function from example 3 with 

the value vector �̃�1 =(00110110) changes the value of the 

plaintext a only in 2 cases out of 8, that is, it has a 25% the 

probability of replacing the plaintext. 

The best characteristics (50% to 50%) of transition 

probabilities are those Boolean functions that correspond to 

the balanced vectors that remain after step 3 of the above 

algorithm. 

Example 4. When n=4 of the 256 vectors generated in 

step 2, only 220 are checked for the absence of fictive 

variables. Of these, 58 vectors are balanced. At n=4, it is 

balanced and passes the check for the absence of fictive 

variables, for example, the vector 11010100. This means 

that (4,1) a component-wise function with the value vector 

1101010000101011 has a 50% to 50% transition 

probability. The same probability of transitions have (4,2) 

component function with the value vector 

1101001001001011, (4,3) component function with the 

value vector 1100011001100011, (4,4) component function 

with the value vector 1010011001100101. 

Let r be a non-negative number less than 𝑛. A Boolean 

function 𝑓 from n variables is called r-stable if any of its 

subfunctions obtained by fixing at most r variables are 

balanced. 

Theorem 2. For any component-wise (n,k) function 

𝐹(𝑥1, 𝑥2, … , 𝑥𝑛) the following conditions are equivalent: 

𝐹(𝑥1, 𝑥2, … , 𝑥𝑛) has transition probabilities 50%; 

𝐹(𝑥1, 𝑥2, … , 𝑥𝑘−1, 0, 𝑥𝑘+1, … , 𝑥𝑛) is balanced; 

𝐹(𝑥1, 𝑥2, … , 𝑥𝑛) is 1-stable. 

We prove 12. The length of the vector of values of the 

function 𝐹(𝑥1, 𝑥2, … , 𝑥𝑘−1, 0, 𝑥𝑘+1, … , 𝑥𝑛)  is 2𝑛−1 . Let the 

vector of values of the function 

𝐹(𝑥1, 𝑥2, … , 𝑥𝑘−1, 0, 𝑥𝑘+1, … , 𝑥𝑛) have t units. It is necessary 

to prove that 𝑡 = 2𝑛−2 , i.e., that the number of units is 

exactly half the length of the vector. Since (6) holds, the 

vector of values of the function 

𝐹(𝑥1, 𝑥2, … , 𝑥𝑘−1, 1, 𝑥𝑘+1, … , 𝑥𝑛) has t zeros. Then the total 

number of substitutions is 2t. By condition, the probability 

of substitutions is 50%, that is 2𝑡 = 2𝑛−1, whence 𝑡 = 2𝑛−2. 

We prove 23. Note that it is the vector of values of the 

function 𝐹(𝑥1, 𝑥2, … , 𝑥𝑘−1, 0, 𝑥𝑘+1, … , 𝑥𝑛) that we obtain at 

step 3 of the algorithm proposed above. Since, by condition, 

it is balanced, the inverse vector 

𝐹(𝑥1, 𝑥2, … , 𝑥𝑘−1, 1, 𝑥𝑘+1, … , 𝑥𝑛) will also be balanced.  

Now we consider the function 

𝐹(0, 𝑥2, … , 𝑥𝑘−1, 𝑥𝑘 , 𝑥𝑘+1, … , 𝑥𝑛). It can be divided into two 

subfunctions: 𝐹(0, 𝑥2, … , 𝑥𝑘−1, 0, 𝑥𝑘+1, … , 𝑥𝑛)  and 

𝐹(0, 𝑥2, … , 𝑥𝑘−1, 1, 𝑥𝑘+1, … , 𝑥𝑛) , and the second will be 

inverse to the first. Therefore, the combined vector 

𝐹(0, 𝑥2, … , 𝑥𝑘−1, 𝑥𝑘 , 𝑥𝑘+1, … , 𝑥𝑛)  has an equal number of 

zeros and ones. It is proved in a similar way that the vector 

of values of the function 𝐹(1, 𝑥2, … , 𝑥𝑘−1, 𝑥𝑘 , 𝑥𝑘+1, … , 𝑥𝑛) is 

balanced. For the same reason, the vectors of subfunction 

values are balanced, which are obtained by fixing one of the 

variables 𝑥2, … , 𝑥𝑘−1, 𝑥𝑘+1, … , 𝑥𝑛 . Therefore, 

𝐹(𝑥1, 𝑥2, … , 𝑥𝑛) is 1-stable. 

We prove 31. It follows from the condition that the 

function 𝐹(𝑥1, 𝑥2, … , 𝑥𝑘−1, 0, 𝑥𝑘+1, … , 𝑥𝑛)  is balanced, that 

is, takes 2𝑛−2 times the value 1 and 2𝑛−2 times the value 0. 

In addition, the function 𝐹(𝑥1, 𝑥2, … , 𝑥𝑘−1, 1, 𝑥𝑘+1, … , 𝑥𝑛) is 

balanced, that is, takes 2𝑛−2  times the value 1 and 2𝑛−2 

times the value 0. Then the number of substitutions is 2𝑛−1, 

which means the probability of transitions is 50%. 

The theorem is proved. 

III. ENCRYPTION OPTIONS BASED ON EXPLODED BOOLEAN 

FUNCTIONS 

One of the encryption options using (3, 1) component-

wise Boolean functions was proposed by us in [4], and is 

shown schematically in Figure 1. However, to use 

component-wise (n, k) functions for encryption, it is 

necessary to have or generate n –1 key binary sequence, 

which is not always convenient. Instead, one pseudo-

random sequence of elements of the field GF (2n-1) can be 

generated. To do this, you can use, for example, a PSP 

generator based on linear registers of shift registers (LFSR). 

Let 𝐹(𝑥1, 𝑥2, … , 𝑥𝑛)  – be a component-wise (n,1) 

function, a –be binary plaintext, K be the key SRP of the 

elements of the field GF(2n-1). Then the encryption of the 

text a is performed elementwise according to the formula: 

    E(a)= 𝐹(𝑎, 𝐾).       (8) 

To decrypt, we use the same function 𝐹(𝑥1, 𝑥2, … , 𝑥𝑛) 

and the key sequence K: 

   D(E(a))= 𝐹( 𝐹(𝑎, 𝐾), 𝐾)=a.       (9) 

The organization of calculations largely depends on the 

representation of the elements of the field GF (2n- 1), 

therefore, we will consider this question in more detail. 

Operations on elements of a finite field GF (2m) are easily 

performed when they form an index table, where m-

dimensional binary vectors are associated with the powers 

of a primitive element. Such a representation is also 

convenient when dividing field elements into circular 

classes, used, for example, to find primitive polynomials or 

in algorithms for obtaining the number of noise-resistant 

codes [11].  

Consider the algorithm for constructing the index table 

of the field GF(2m), where m≤30. Input data: m is the degree 

of expansion, f(x) is the primitive polynomial of degree m 

over GF(2). At the end of the algorithm, the program 

memory contains all 2m-1 nonzero vectors of length m in a 

certain order, specifically, in powers of the primitive 

element  – the root of the polynomial f(x).  

To optimize the speed of calculations, we will store each 

vector of coefficients in a 32-bit integer data type. At the 

position of the i-th bit in the binary notation of the number, 

the i-th coefficient of the vector will be stored. Due to this, 

the multiplication of the vector by will be carried out by a 

bitwise left shift. The search for the remainder of division 
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by the primitive polynomial f(x) will be expressed through 

the operation of bitwise addition modulo 2. Thus, the 

storage of the index table GF(2m) requires about 4  ∙  2m 

bytes of memory. 

Note that the calculation of each subsequent coefficient 

vector is performed sequentially. Thus, lines 0, 1, 2, …, 2m-

3, 2m-2. are filled. In order to calculate the table using 

parallel technologies, we break all the rows into k 

consecutive blocks. To calculate the j-th block, you need to 

calculate the coefficient vector that is the first in this block. 

For this, there is no need to find all previous vectors. We use 

the binary exponentiation algorithm to significantly speed 

up the calculations. 

We tested the work of the program for constructing the 

index table of the GF(2m), where m=26, 27, 28, 29 and 30. 

The calculations were performed on 4 cores on an NArFU 

cluster with 20 computing nodes, each of which had 2 10-

core Intel Xeon processors and 64 GB of RAM. The table 

contains data on the operating time for various m and for a 

different number of threads. 

TABLE II.  EXECUTION TIME OF SERIAL AND PARALLEL ALGORITHMS 

(IN SECONDS) 

Threads \ m 26 27 28 29 30 

Sequential algorithm 0.507 1.003 2.013 4.034 8.290 

1 thread 0.535 1.077 2.143 4.283 8.869 

2 threads 0.311 0.624 1.247 2.495 5.103 

3 threads 0.242 0.473 0.945 1.910 3.877 

4 threads 0.205 0.403 0.794 1.597 3.283 

 From the presented table we can conclude that the 

program shows an acceleration of about 2,5 times with 

parallel implementation of 4 threads. 

IV. CONCLUSION 

Component-wise (n, k) functions extend the modes of 

standard cryptographic transformations, in particular, GOST 

R 34.12-2015. Using them instead of the modulo 2 addition 

operation increases the possibilities of choosing round 

transformations for symmetric ciphers. But a significant 

disadvantage of the functions under consideration is a large 

redundancy. We believe that consideration of K- digit 

component-wise functions will help overcome this 

disadvantage. Further research will be aimed at introducing 

the encryption method using component-wise functions in 

the hardware-software complex. 

REFERENCES 

[1] N.N. Tokareva, “Simmetrichnaya kriptografiya,” Novosibirsk: NSU, 
2012, 232 p. 

[2] S.N. Selezneva, “Multiplicative complexity of some functions of the 
algebra of logic,” Discrete Mathematics, vol. 26, no. 4, pp. 100-109, 
2014. 

[3] A.A. Gorodilova, “From cryptanalysis of a cipher to the 
cryptographic property of a Boolean function,” Applied Discrete 
Mathematics, vol. 3, no. 33, pp. 4-44, 2016. 

[4] I.I. Vasilishin and S.Yu. Korabelshchikova, “Using component-wise 
function in cryptographical transformation algorithm from Russian 
national standard GOST R 34.12-2015,” CEUR Workshop 
Proceedings, vol. 2212, pp. 392-398, 2018. 

[5] S.Y. Korabelshchikova, L.V. Zyablitseva, B.F. Melnikov and S.V. 
Pivneva, “Linear codes and some their applications,” Journal of 
Physics: Conference Series, 012174, 2018.  

[6] GOST R 34.12-2015. Information technology. “Cryptographic 
information security. Block ciphers,” M .: Standartinform, 2015, 25 p. 

[7] E.A. Ishchukova, L.K. Babenko and M.V. Anikeev, “Fast 
Implementation and Cryptanalysis of GOST R 34.12-2015 Block 
Ciphers,” 9th International Conference on Security of Information 
and Networks SIN, Newark, Nj, pp. 104-111, 2016.  

[8] T. Isobe, “A single-key attack on the full GOST block cipher,” 
Journal of Cryptology, vol. 26, pp. 172-189, 2013. 

[9] J. Kim, “On the security of the block cipher GOST suitable for the 
protection in U-business services,” Personal and ubiquitous 
computing, vol. 17, pp. 1429-1435, 2013. 

[10] S.V. Yablonskiy, “Vvedeniye v diskretnuyu matematiku,” M.: Nauka, 
2005, 384 p. 

[11] B.F. Melnikov and S.Yu. Korabelshchikova, “Algorithms for 
estimation the number of noise-immune codes of general and special 
types,” Informatization and communication, vol. 1, pp. 55-60, 2019. 

 
 

 


