
Copyright © 2020 for this paper by its authors.
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0)

An extension of the class of Boolean functions used

in symmetric cipher algorithms

Svetlana Korabel’shchikova

Northern (Arctic) Federal University named after M.V. Lomonosov

Arkhangelsk, Russia
s.korabelsschikova@narfu.ru

Abstract—One of the standard cryptographic

transformations is the addition modulo two of an open binary

text with a key binary sequence. In this paper, we have

obtained a description of all Boolean functions from n

arguments that are suitable for use in cryptographic

transformations instead of the modulo-two addition function

(we will call them component-by-component Boolean

functions). An example of their use in the cryptographic

conversion algorithm GOST R 34.12-2015 is also given. The

article proposes an algorithm for generating component-by-

component Boolean functions from n variables for different

values of n and k, where k is the number of the variable whose

value the function returns. For the case n=3 and k=1 or k=2, all

Boolean functions that replace the addition function modulo 2

are represented. The paper proposes an encryption method

based on component-by-component Boolean functions and a

pseudo-random sequence generator of elements from the

GF(2n-1) field. Using Boolean functions that return the value of

one of the arguments when repeated, expands the variety of

intermediate variants of round transformations, gives a new

variable encryption method, ultimately significantly increasing

the cryptographic strength of the cipher.

Keywords—boolean functions, encryption, symmetric cipher,

GOST R 34.12-2015

I. INTRODUCTION

To date, many works on cryptography have been devoted to

Boolean functions, the study of certain cryptographic

properties of Boolean functions, as well as the possibilities

of their use in order to protect information. These issues are

discussed both in scientific articles and in a number of

textbooks for Universities, for example, [1, 2]. For the most

complete overview of the cryptographic properties of

Boolean functions and available results see [3]. This article

is a continuation of work [4], in which the authors proposed

Boolean functions of three arguments that replace the

addition operation modulo 2. In [5], the author has

previously considered the issues of information security

using linear encoding.

One of the standard cryptographic transformations used in

various symmetric encryption algorithms is bitwise addition

modulo two of a plaintext represented in binary form with a

key binary sequence. For example, GOST R 34.12-2015 [6]

is a symmetric cipher in which the beginning of the

transformation sequence is the transformation X[k]:

X[k](a) = k ⊕ a, (1)

where k is the round key, a is the plaintext, k, a ∈ V128.

The decryption method consists in the repeated addition

modulo 2 of the ciphertext with the same key k:

D X[k](a) = (k ⊕ a) ⊕ k = a. (2)

We use the same Boolean function to encrypt and decrypt

information:

F(x, y)=x⊕ y. (3)

This function has the following property:

F(F(x, y), y) = x. (4)

Fig. 1. Modification of the encryption algorithm from GOST R 34.12-

2015 using component-wise functions.

Earlier in [4], we proposed 10 Boolean functions of three

variables to replace addition modulo 2. We introduced the

term component-wise functions for them. In general case, a

Boolean function of n variables, which returns the value of

the first argument, must satisfy the condition:

𝐹(𝐹(𝑥1, 𝑥2, … , 𝑥𝑛), 𝑥2, … , 𝑥𝑛) = 𝑥1. (5)

The figure 1 shows the possible location of the

component functions Fj, which depend on n+ 1 arguments,

in the process of encrypting a 128-bit block of information.

We presented two algorithms: an algorithm from GOST R

34.12-2015 standard (left) and a modification proposed by

the authors (right).

Modern studies of the GOST R 34.12-2015 cipher are

presented in [7- 9] and others. They are mainly devoted to

the study of the cryptographic strength of this encryption

standard, as well as various options for its software

implementation. This article describes all Boolean functions

of n arguments that are suitable for use in symmetric

cryptographic transformations instead of the modulo two

addition function. We proposed an algorithm for their

generation, an encryption method based on component-wise

k10

kn+9

 . . .

kn+

8

kn+1

Permutations

S(а) and L(а)

k1

128-bit
open data

block

k1

kn
F

. . .
. . .

k2

k9

k2

F

k9

F

k10

128-bit

encrypted

text block

ciphertext

F

Nine

rounds of

cryptogra-

phic

transforma

tions

Permutations

S(а) and L(а)

Permutations

S(а) and L(а)

Permutations

S(а) and L(а)

Permutations

S(а) and L(а)

E(a)

D(a)

 . . .

 . . .

 . . .

Permutations

S(а) and L(а)

Data Science

VI International Conference on "Information Technology and Nanotechnology" (ITNT-2020) 107

Boolean functions and a generator of a pseudo-random

sequence of elements of the field GF(2n-1).

II. THE GENERATION ALGORITHM AND PROPERTIES OF

COMPONENT-WISE FUNCTIONS

Condition (5) means that the system of equations:

 {
F(F(0, x2, … , xn), x2, … , xn) = 0
F(F(1, x2, … , xn), x2, … , xn) = 1

, (6)

whence it follows that 𝐹(0, 𝑥2, … , 𝑥𝑛) = 0 if and only if

𝐹(1, 𝑥2, … , 𝑥𝑛)=1 and vice versa, 𝐹(0, 𝑥2, … , 𝑥𝑛)=1 if and

only if 𝐹(1, 𝑥2, … , 𝑥𝑛)=0. We will represent the Boolean

function F by the vector of values �̃� =(0,1,…,2𝑛−1),

written in the order of correspondence with the ordered sets

of variable values from zeros to ones. Then the conditions

obtained mean that if the vector of values of the component-

wise Boolean function is divided into two parts, then the

second part will be inverse to the first. Therefore, the

following statement is true.

Theorem 1. The number of Boolean functions of n

variables satisfying condition (5) is 22𝑛−1
. A Boolean

function satisfies condition (5) if and only if the second half

of its value vector is inverse to the first.

Let us prove the first statement. We can define a

Boolean function of n variables by its vector of values of

length 2n. Since the second half of the value vector

completely depends on the first (inverse to the first), you

can set it by specifying the first half of the value vector in an

arbitrary way. It has a length of 2n- 1, and the number of

binary vectors of this length is 22𝑛−1
.

Let us prove the second statement of the theorem. The

values of 𝐹(0, 𝑥2, … , 𝑥𝑛) are in the first half of the vector �̃�,

and in the same order in the second half of the vector �̃� ̃ are

the values of 𝐹(1, 𝑥2, … , 𝑥𝑛). From the conditions obtained

above, it follows that 𝐹(0, 𝑥2, … , 𝑥𝑛) = 𝐹(1, 𝑥2, … , 𝑥𝑛)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , that

is, the second half of the vector �̃� is inverse to the first.

The theorem is proved.

Example 1. For n=2 we have 222−1
=4 Boolean functions

that return the first argument. We list their value vectors.

The first half of the vector of values is set arbitrarily; the

second is completed inversely with the first: 0011, 0110,

1001, 1100.

We got the following 4 functions: F(x, y)= x, F(x, y)=

x+y, F(x, y)= xy and F(x, y)= �̅�.

Example 2. For n=3 we have 223−1
=16 Boolean

functions that return the first argument. They have value

vectors: 00001111, 00011110, 00101101, 00111100,

01001011, 01011010, 01101001, 01111000, 10000111,

10010110, 10100101, 10110100, 11000011, 11010010,

11100001 and 11110000.

Taking into account the requirements for cryptographic

functions, we come to conclusions from examples 1 and 2.

Note that the first and the last functions are the negation of

each other. The second and penultimate functions are related

in a similar way, and so on. Thus, if we are going to use

several component-wise functions in the encryption

algorithm, we will select them only one from each pair.

It is also obvious that some of the functions obtained

contain dummy variables, which is unacceptable for

cryptographic functions. Applying the algorithm for

determining the fictitiousness of the variables x2, ..., xn to the

selected functions, we obtain all Boolean functions that

satisfy condition (5) and substantially depend on all

variables.

Definition 1. A component-wise (n, k) function, where

1 k n, is a Boolean function 𝐹(𝑥1, 𝑥2, … , 𝑥𝑛), that does

not contain fictitious variables and returns the k-th argument

when it is reused, i.e., satisfying the condition:

F(x1, x2, … , xk−1, F(x1, x2, … , xn), xk+1, … , xn) =

= xk (7)

We formulate an algorithm for generating all

component-wise functions 𝐹(𝑥1, 𝑥2, … , 𝑥𝑛) , that

substantially depend on n variables and return the variable xk

when reused. The input of the algorithm: n is the number of

variables, k is the number of the variable whose value the

function returns.

The generation algorithm

Step 1. Enter n, k.

Step 2. Calculate 2n-1 and generate all possible binary

vectors of length 2n-1.

Step 3. (Checking for fictitiousness of all variables). For

verification, we use the algorithm from [10]. We delete all

vectors that did not pass verification.

Step 4. (Adding inverted parts) Run for all vectors

remaining after step 3.

Divide the vector into 2k-1 parts and add the inverse one

after each part.

Include all received vectors in the response.

In the proposed algorithm, we check for fictitiousness of

variables only half of the value vector. If the check was

successful, then all the variables will be significant for the

full value vector generated in step 4.

Example 3. Here is an example of how the algorithm

works for n=3, k=2.

23-1=4, so we generate all binary vectors of length 4:

0000, 0001, 0010, 0011, ..., 1111.

After step 3, only 10 vectors that have passed

verification will remain out of the 16 vectors:

0001,0010,0100,0110, 0111, 1000, 1001, 1011, 1101,

1110.

Performing step 4, divide each vector into 2 parts, and

add an inversion to each part. We get the following result:

TABLE I. (3,2) COMPONENT-WISE FUNCTIONS

 (3,2) component-wise

functions

 (3,2) component-wise

functions

0001 00110110 1000 10010011

0010 00111001 1001 10010110

0100 01100011 1011 10011100

0110 01101001 1101 11000110

0111 01101100 1110 11001001

Let us show that we actually got functions that return the

second component. Take, for example, F1(x1, x2, x3),

�̃�1=(00110110). We show that for arbitrary values x1 and x3

and for x2=a, the function F1 returns the value a.

If we take n=3 and k=1 in the algorithm, the first steps

of the algorithm will be the same as in example 3. In step 4,

we do not split the remaining 10 vectors, since 2k-1=20=1.

Add the inverse part to them and get the vectors of the

values of (3,1) functions from example 2, with the exception

of six functions containing fictional variables.

Data Science

VI International Conference on "Information Technology and Nanotechnology" (ITNT-2020) 108

(𝑥1, 𝑥3) 𝐹1(𝑥1, 0, 𝑥2) F 1 (x 1 , F 1 (x 1 , 0 , x 3) , x 3)

00 0 0

01 0 0

10 0 0

11 1 0

(𝑥1, 𝑥3) 𝐹1(𝑥1, 1, 𝑥2) F 1 (x 1 , F 1 (x 1 , 1 , x 3) , x 3)

00 1 1

01 1 1

10 1 1

11 0 1

All component-wise (n, k) functions are balanced, that is,

they take the values 0 and 1 equally often. However, they

have a different probability of replacing or saving the

plaintext character. So, the function from example 3 with

the value vector �̃�1 =(00110110) changes the value of the

plaintext a only in 2 cases out of 8, that is, it has a 25% the

probability of replacing the plaintext.

The best characteristics (50% to 50%) of transition

probabilities are those Boolean functions that correspond to

the balanced vectors that remain after step 3 of the above

algorithm.

Example 4. When n=4 of the 256 vectors generated in

step 2, only 220 are checked for the absence of fictive

variables. Of these, 58 vectors are balanced. At n=4, it is

balanced and passes the check for the absence of fictive

variables, for example, the vector 11010100. This means

that (4,1) a component-wise function with the value vector

1101010000101011 has a 50% to 50% transition

probability. The same probability of transitions have (4,2)

component function with the value vector

1101001001001011, (4,3) component function with the

value vector 1100011001100011, (4,4) component function

with the value vector 1010011001100101.

Let r be a non-negative number less than 𝑛. A Boolean

function 𝑓 from n variables is called r-stable if any of its

subfunctions obtained by fixing at most r variables are

balanced.

Theorem 2. For any component-wise (n,k) function

𝐹(𝑥1, 𝑥2, … , 𝑥𝑛) the following conditions are equivalent:

𝐹(𝑥1, 𝑥2, … , 𝑥𝑛) has transition probabilities 50%;

𝐹(𝑥1, 𝑥2, … , 𝑥𝑘−1, 0, 𝑥𝑘+1, … , 𝑥𝑛) is balanced;

𝐹(𝑥1, 𝑥2, … , 𝑥𝑛) is 1-stable.

We prove 12. The length of the vector of values of the

function 𝐹(𝑥1, 𝑥2, … , 𝑥𝑘−1, 0, 𝑥𝑘+1, … , 𝑥𝑛) is 2𝑛−1 . Let the

vector of values of the function

𝐹(𝑥1, 𝑥2, … , 𝑥𝑘−1, 0, 𝑥𝑘+1, … , 𝑥𝑛) have t units. It is necessary

to prove that 𝑡 = 2𝑛−2 , i.e., that the number of units is

exactly half the length of the vector. Since (6) holds, the

vector of values of the function

𝐹(𝑥1, 𝑥2, … , 𝑥𝑘−1, 1, 𝑥𝑘+1, … , 𝑥𝑛) has t zeros. Then the total

number of substitutions is 2t. By condition, the probability

of substitutions is 50%, that is 2𝑡 = 2𝑛−1, whence 𝑡 = 2𝑛−2.

We prove 23. Note that it is the vector of values of the

function 𝐹(𝑥1, 𝑥2, … , 𝑥𝑘−1, 0, 𝑥𝑘+1, … , 𝑥𝑛) that we obtain at

step 3 of the algorithm proposed above. Since, by condition,

it is balanced, the inverse vector

𝐹(𝑥1, 𝑥2, … , 𝑥𝑘−1, 1, 𝑥𝑘+1, … , 𝑥𝑛) will also be balanced.

Now we consider the function

𝐹(0, 𝑥2, … , 𝑥𝑘−1, 𝑥𝑘 , 𝑥𝑘+1, … , 𝑥𝑛). It can be divided into two

subfunctions: 𝐹(0, 𝑥2, … , 𝑥𝑘−1, 0, 𝑥𝑘+1, … , 𝑥𝑛) and

𝐹(0, 𝑥2, … , 𝑥𝑘−1, 1, 𝑥𝑘+1, … , 𝑥𝑛) , and the second will be

inverse to the first. Therefore, the combined vector

𝐹(0, 𝑥2, … , 𝑥𝑘−1, 𝑥𝑘 , 𝑥𝑘+1, … , 𝑥𝑛) has an equal number of

zeros and ones. It is proved in a similar way that the vector

of values of the function 𝐹(1, 𝑥2, … , 𝑥𝑘−1, 𝑥𝑘 , 𝑥𝑘+1, … , 𝑥𝑛) is

balanced. For the same reason, the vectors of subfunction

values are balanced, which are obtained by fixing one of the

variables 𝑥2, … , 𝑥𝑘−1, 𝑥𝑘+1, … , 𝑥𝑛 . Therefore,

𝐹(𝑥1, 𝑥2, … , 𝑥𝑛) is 1-stable.

We prove 31. It follows from the condition that the

function 𝐹(𝑥1, 𝑥2, … , 𝑥𝑘−1, 0, 𝑥𝑘+1, … , 𝑥𝑛) is balanced, that

is, takes 2𝑛−2 times the value 1 and 2𝑛−2 times the value 0.

In addition, the function 𝐹(𝑥1, 𝑥2, … , 𝑥𝑘−1, 1, 𝑥𝑘+1, … , 𝑥𝑛) is

balanced, that is, takes 2𝑛−2 times the value 1 and 2𝑛−2

times the value 0. Then the number of substitutions is 2𝑛−1,

which means the probability of transitions is 50%.

The theorem is proved.

III. ENCRYPTION OPTIONS BASED ON EXPLODED BOOLEAN

FUNCTIONS

One of the encryption options using (3, 1) component-

wise Boolean functions was proposed by us in [4], and is

shown schematically in Figure 1. However, to use

component-wise (n, k) functions for encryption, it is

necessary to have or generate n –1 key binary sequence,

which is not always convenient. Instead, one pseudo-

random sequence of elements of the field GF (2n-1) can be

generated. To do this, you can use, for example, a PSP

generator based on linear registers of shift registers (LFSR).

Let 𝐹(𝑥1, 𝑥2, … , 𝑥𝑛) – be a component-wise (n,1)

function, a –be binary plaintext, K be the key SRP of the

elements of the field GF(2n-1). Then the encryption of the

text a is performed elementwise according to the formula:

 E(a)= 𝐹(𝑎, 𝐾). (8)

To decrypt, we use the same function 𝐹(𝑥1, 𝑥2, … , 𝑥𝑛)

and the key sequence K:

 D(E(a))= 𝐹(𝐹(𝑎, 𝐾), 𝐾)=a. (9)

The organization of calculations largely depends on the

representation of the elements of the field GF (2n- 1),

therefore, we will consider this question in more detail.

Operations on elements of a finite field GF (2m) are easily

performed when they form an index table, where m-

dimensional binary vectors are associated with the powers

of a primitive element. Such a representation is also

convenient when dividing field elements into circular

classes, used, for example, to find primitive polynomials or

in algorithms for obtaining the number of noise-resistant

codes [11].

Consider the algorithm for constructing the index table

of the field GF(2m), where m≤30. Input data: m is the degree

of expansion, f(x) is the primitive polynomial of degree m

over GF(2). At the end of the algorithm, the program

memory contains all 2m-1 nonzero vectors of length m in a

certain order, specifically, in powers of the primitive

element  – the root of the polynomial f(x).

To optimize the speed of calculations, we will store each

vector of coefficients in a 32-bit integer data type. At the

position of the i-th bit in the binary notation of the number,

the i-th coefficient of the vector will be stored. Due to this,

the multiplication of the vector by will be carried out by a

bitwise left shift. The search for the remainder of division

Data Science

VI International Conference on "Information Technology and Nanotechnology" (ITNT-2020) 109

by the primitive polynomial f(x) will be expressed through

the operation of bitwise addition modulo 2. Thus, the

storage of the index table GF(2m) requires about 4 ∙ 2m

bytes of memory.

Note that the calculation of each subsequent coefficient

vector is performed sequentially. Thus, lines 0, 1, 2, …, 2m-

3, 2m-2. are filled. In order to calculate the table using

parallel technologies, we break all the rows into k

consecutive blocks. To calculate the j-th block, you need to

calculate the coefficient vector that is the first in this block.

For this, there is no need to find all previous vectors. We use

the binary exponentiation algorithm to significantly speed

up the calculations.

We tested the work of the program for constructing the

index table of the GF(2m), where m=26, 27, 28, 29 and 30.

The calculations were performed on 4 cores on an NArFU

cluster with 20 computing nodes, each of which had 2 10-

core Intel Xeon processors and 64 GB of RAM. The table

contains data on the operating time for various m and for a

different number of threads.

TABLE II. EXECUTION TIME OF SERIAL AND PARALLEL ALGORITHMS

(IN SECONDS)

Threads \ m 26 27 28 29 30

Sequential algorithm 0.507 1.003 2.013 4.034 8.290

1 thread 0.535 1.077 2.143 4.283 8.869

2 threads 0.311 0.624 1.247 2.495 5.103

3 threads 0.242 0.473 0.945 1.910 3.877

4 threads 0.205 0.403 0.794 1.597 3.283

 From the presented table we can conclude that the

program shows an acceleration of about 2,5 times with

parallel implementation of 4 threads.

IV. CONCLUSION

Component-wise (n, k) functions extend the modes of

standard cryptographic transformations, in particular, GOST

R 34.12-2015. Using them instead of the modulo 2 addition

operation increases the possibilities of choosing round

transformations for symmetric ciphers. But a significant

disadvantage of the functions under consideration is a large

redundancy. We believe that consideration of K- digit

component-wise functions will help overcome this

disadvantage. Further research will be aimed at introducing

the encryption method using component-wise functions in

the hardware-software complex.

REFERENCES

[1] N.N. Tokareva, “Simmetrichnaya kriptografiya,” Novosibirsk: NSU,
2012, 232 p.

[2] S.N. Selezneva, “Multiplicative complexity of some functions of the
algebra of logic,” Discrete Mathematics, vol. 26, no. 4, pp. 100-109,
2014.

[3] A.A. Gorodilova, “From cryptanalysis of a cipher to the
cryptographic property of a Boolean function,” Applied Discrete
Mathematics, vol. 3, no. 33, pp. 4-44, 2016.

[4] I.I. Vasilishin and S.Yu. Korabelshchikova, “Using component-wise
function in cryptographical transformation algorithm from Russian
national standard GOST R 34.12-2015,” CEUR Workshop
Proceedings, vol. 2212, pp. 392-398, 2018.

[5] S.Y. Korabelshchikova, L.V. Zyablitseva, B.F. Melnikov and S.V.
Pivneva, “Linear codes and some their applications,” Journal of
Physics: Conference Series, 012174, 2018.

[6] GOST R 34.12-2015. Information technology. “Cryptographic
information security. Block ciphers,” M .: Standartinform, 2015, 25 p.

[7] E.A. Ishchukova, L.K. Babenko and M.V. Anikeev, “Fast
Implementation and Cryptanalysis of GOST R 34.12-2015 Block
Ciphers,” 9th International Conference on Security of Information
and Networks SIN, Newark, Nj, pp. 104-111, 2016.

[8] T. Isobe, “A single-key attack on the full GOST block cipher,”
Journal of Cryptology, vol. 26, pp. 172-189, 2013.

[9] J. Kim, “On the security of the block cipher GOST suitable for the
protection in U-business services,” Personal and ubiquitous
computing, vol. 17, pp. 1429-1435, 2013.

[10] S.V. Yablonskiy, “Vvedeniye v diskretnuyu matematiku,” M.: Nauka,
2005, 384 p.

[11] B.F. Melnikov and S.Yu. Korabelshchikova, “Algorithms for
estimation the number of noise-immune codes of general and special
types,” Informatization and communication, vol. 1, pp. 55-60, 2019.

