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Abstract—In this paper, we propose a method for 

quantizing the weights of neural networks by maximizing the 

correlations between the initial and quantized weights, taking 

into account the distribution of the weight density in each 

layer. Quantization is performed after the neural network 

training without further post-training. We tested the algorithm 

using the ImageNet dataset for VGG-16, ResNet-50, and 

Xception neural networks [2]. In the case of ResNet-50 and 

Xception neural networks, 4-5 bits of memory are required for 

the weights of a single layer to obtain acceptable Top-5 

accuracy, for VGG-16, 3-4 bits are sufficient to store the 

weights of a single layer. 
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I. INTRODUCTION  

The majority of neural networks, which we use when 
solving image recognition problems, have many parameters 
that have to be stored. Consequently, a substantial memory 
capacity is necessary and this requirement limits such neural 
networks applicability. For example, the storage capacity of 
the neural networks VGG-16 and ResNet152V2 are 528 [3] 
and 232 [4] MBs, respectively. The quantization and 
reduction of the number of weights are basic approaches 
allowing us to decrease the memory size necessary to store 
the neural network weights.  

The quantization is a reduction in the variety of the 
different values of the weights in the layer. The most popular 
quantization methods are application of the fixed-point 
formats in place of the floating-point formats [9], 
binarization [10], ternarization [11], use of a logarithmic 
scale [12] and so on. Usually, one can reduce the number of 
the weights with the aid of such methods as pruning 
algorithms [13], sharing weights (including application of the 
convolution operation) [14], tensor expansions [15] and so 
on. 

In the present paper, we explore the quantization process 
for trained neural networks. The number B of bits per weight 
defines the number of different values of the weights; and it, 

consequently, is equal to 2
B

. We perform the quantization 
process independently for each layer. In the given layer we 
split the whole range of weights from the minimal to the 

maximal value into 2
B

intervals.  Then the weights belonging 
to one interval we replace by a single value. In what follows 
we examine a question related the optimal choiсe of the 
interval boundaries as well as the values with which we have 
to replace the weights. 

 The authors of paper [7] discussed the optimal 
quantization problem for the Hopfield neural network. They 
showed that when maximizing correlations between the 
initial and quantized values of the weights it was possible to 
minimize the errors of the quantized neural network. We 

believe that this result is correct and in what follows, we 
choose the interval boundaries and the quantized values of 
the weights inside of the intervals proceeding from a 
maximal correlation principle.  

Frequently to get a sufficient accuracy of the neural 
network processing we have to combine the quantization and 
the neural network post-training. This procedure requires 
substantial resources [5, 6]. In the present paper, we perform 
the quantization after the neural network training without the 
following post-training. This method allows us to reduce the 
quantization costs substantially.  

II. ESTIMATE OF CORRELATION AND ITS GRADIENT  

For each layer, let us quantize the weights inside the 

interval 
m in m ax

[ , ]w w    , where 
m in

w  is the minimal and 
m ax

w

is the maximal value of the weights in the given layer, 
respectively. (We normalized all the weights, so that

( ) /
w

w w w   ). Let B  be the number of bits necessary to 

store the weights of one layer. Then 2
B

n   is the number of 

the quantized weight values, as 
i

x  we define the boundaries 

of the intervals where the weight values are constant. 
Consequently,  

 
m in 0 1 1 m ax

...
n n

w x x x x w


       . (1) 

Let w  be the input weights, and 
i

y  the quantized value 

inside the interval
1

( , )
i i

x x


. It is not evident how we have to 

choose the interval boundaries 
i

x  as well as the values 
i

x   

inside each interval. In the present paper we suppose that the 
stronger correlation between the input and the quantized 
values the less the error of the quantized neural network 
performance compared with the initial neural network: 

 ( , ) m ax

w y

w y
w y

 
   . (2) 

where w y   is a covariation between the initial and the 

quantized values; 
w

  and  
y

   are standard deviations of 

the values of the input weight and their quantized values, 
respectively. For simplicity we suppose that inside a layer 
the distribution of the weights is symmetric and the averaged 
value of the weights is equal to zero. As we show in what 
follows this assumption is nearly always carried out in the 
case of large deep neural networks. 

We can estimate the covariation w y  between the input 

and the quantized values as  
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 ( ) ( )w y w y w p w d w





   . (3) 

Where ( )p w  is the density of the weight distribution inside 

the layer. Since y  is a constant inside the interval 
1

( , )
i i

x x


, 

the last equation takes the form 

 

11

0

( )

i

i

x
n

i

i x

w y y w p w d w





    .  (4) 

Similarly, the variance of the quantized values is   

 

11

2 2 2

0

( ) ( )

i

i

x
n

y i

i x

y p w d w y p w d w

 



     .  (5) 

If we introduce additional notations   

 

1

( )

i

i

x

i

x

с w p w dw



   and  

1

( )

i

i

x

i

x

p p w d w



   . (6) 

we can simplify Eqs. (4-5) significantly: 

  

          

1

0

n

i i

i

w y y с





                 

1

2 2

0

n

y i i

i

y p





   .  (7) 

To maximize the correlation (see Eq. 2) we have two sets 

of parameters. They are the boundaries of the intervals 
i

x  

and the quantized values 
i

y  inside the intervals. For some 

time, we forget about splitting into intervals and suppose that 

we know the boundaries
i

x . Then after the optimization 

procedure with regard to 
i

y  we obtain: 

 /
i i i

y c p  . (8) 

When we substitute this value into Eq. (2), account for 

the formulas (4-5), and have in mind that 
w

con s t  it is 

independent of either 
i

x  or 
i

y , we obtain the following 

optimization problem: 

 

1

2

0

( , ) / m ax

n

i i

i

w y c p





  .  (9) 

We differentiate this expression with respect to 
i

x  and 

obtain an expression for the gradient 
i

 :  

 
1 1

( )( )( 2 )

2

i i i i i i

i

i w

p x y y y y x

x






 
  

  


.  (10) 

III.  DESCRIPTION OF QUANTIZATION PROCEDURE 

The obtained expression (10) for the gradient 
i

   

allowed us to implement a quick algorithm for correlation 
maximization based on the gradient descent algorithm. In the 
course of the algorithm running it adjusts the boundaries of 

the intervals 
i

x , which we use as the optimization 

parameters. For the given values of 
i

x  we define the 

quantized weights 
i

y   with the aid of Eq. (8).  

As the density function ( )p w  we use its kernel 

estimation calculated taking into account 10,000 random 
weights from the layer. When the number of the weights is 
less than 10,000, all the weights have to be taken into 
account. 

The integral formulas Eq. (6) we replaced by numerical 

estimates for 
i

c   and 
i

p  calculated using the real weights in 

the layer: 

 

1

1

( ) /

( ) /

i i i w

w

i i i w

w

c w I x w x N

p I x w x N





  

  




   (11) 

Here 
w

N  is the number of the weights in the layer, 

1
( )

i i
I x w x


   is an indicator function that accounts for 

the weights belonging to the interval 
1

( , )
i i

x x


 only. 

     To initialize the gradient ascent it is necessary to 
choose an initial partition that is an initial set

m in 1 2 1 m ax
[ , , , ..., , ]

n
w x x x w


. In our simulations, we used the 

linear and exponential partitions from [8] as the initial sets 
and examined quantization of the pre-trained neural networks 
ResNet-50, Xception, and VGG-16. We employed the 
programming language Python and the framework Keras [2]. 

 

Fig. 1. Examples of weight histograms in convolution and fully connected 

layers for VGG-16 and ResNet-50. 

As a result of minimization we obtained the optimal 

boundaries of the intervals 
m in 1 2 1 m ax

[ , , , ..., , ]
n

w x x x w


as 

well as the corresponding set of the quantized weights

0 1 1
[ , , ..., ]

n
y y y


. Then we used the quantized weights in 

place of the input weights without post-training of the neural 
networks. The Python code is given in Appendix B. 

IV. RESULTS 

In Fig. 1, we show weight histograms for convolution 

and fully connected layers of the VGG-16 and ResNet-50 
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neural networks. As we mentioned before, the weight 

distributions in the layers of deep neural networks are nearly 

symmetric with respect to zero and their average values are 

close to zero.  

 
TABLE I. CORRELATIONS AVERAGED OVER ALL LAYERS FOR 

RESNET-50 NEURAL NETWORK AFTER LINEAR (LINEAR) AND 
EXPONENTIAL (EXPONENTIAL) QUANTIZATION AND 

SUBSEQUENT CORRELATION MAXIMIZATION 
Average correlation for ResNet-50  

 

Lin Max Exp Max 

3 bit 0.8169 0.9376 0.9461 0.9659 

4 bit 0.8473 0.9726 0.9822 0.9898 

5 bit 0.9233 0.9890 0.9945 0.9972 

6 bit 0.9739 0.9957 0.9983 0.9990 

7 bit 0.9925 0.9980 0.9995 0.9993 

TABLE II. CORRELATIONS AVERAGED OVER ALL LAYERS FOR 

XCEPTION NEURAL NETWORK AFTER LINEAR (LINEAR) AND 

EXPONENTIAL (EXPONENTIAL) QUANTIZATION AND 
SUBSEQUENT CORRELATION MAXIMIZATION 

Average correlation for Xception  

 

Lin Max Exp Max 

3 bit 0.8630 0.9552 0.9566 0.9735 

4 bit 0.9072 0.9814 0.9855 0.9919 

5 bit 0.9611 0.9926 0.9955 0.9972 

6 bit 0.9880 0.9960 0.9986 0.9984 

7 bit 0.9967 0.9972 0.9996 0.9986 

TABLE III. CORRELATIONS AVERAGED OVER ALL LAYERS FOR 
VGG-16 NEURAL NETWORK AFTER LINEAR (LINEAR) AND 

EXPONENTIAL (EXPONENTIAL) QUANTIZATION AND 

SUBSEQUENT CORRELATION MAXIMIZAION 

Average correlation for VGG-16  

 

Lin Max Exp Max 

3 bit 0.8325 0.9342 0.9464 0.9669 

4 bit 0.8469 0.9659 0.9816 0.9899 

5 bit 0.8968 0.9862 0.9943 0.9973 

6 bit 0.9579 0.9943 0.9983 0.9992 

7 bit 0.9872 0.9980 0.9995 0.9995 

TABLE IVa. TOP-1 ACCURACY FOR RESNET50 NEURAL 

NETWORK; EXP DENOTES EXPONENTIAL QUANTIZATION, OPT 

STANDS FOR OPTIMAL QUANTIZATION, MAX DENOTES THE 
BEST OF TWO WAYS OF QUANTIZATION, AND FAIL OPT IS 

FRACTION OF NEURAL NETWORK LAYERS WHERE 

OPTIMIZATION LEADS TO WORTH CORRELATION THAN 
EXPONENTIAL QUANTIZATION 

 Res-Net-50 

 %fail exp opt max 

3 bit    0% 0.03    0.02 0 

4 bit    0% 0.71 0.82 0.79 

5 bit    0% 0.91 0.93 0.93 

6 bit    7% 0.94 0.94 0.94 

7 bit 26% 0.94 0.94 0.94 

32 bit 0.94 

In Tables 1, 2, and 3, we present the values of the 

average correlations of prior weights and weights after 

quantization for the ResNet-50, Xception, and VGG-16 

neural networks. We used the linear and exponential 

quantization, implemented the correlation maximization 

algorithm, and after that calculated the values of the average 

correlations.  

Tables 1 – 3 show that when the number of bits is small 

(up to 5 bits, i.e. when the number of intervals is less or 

equal to 32) the maximization algorithm does increase the 

correlation averaged over the layers. The linear quantization 

with the subsequent maximization leads to the average 

correlation growth in all the examined cases. The 

exponential quantization with the subsequent maximization 

provides the growth of the average correlation only when 

the number of intervals is equal to 8, 16 or 32. When the 

number of bits is larger (that is when the number of intervals 

is 64 or 128), the maximization algorithm fails since for 

some layers its results are worth comparing with the results 

of the exponential quantization. 

TABLE IVb. TOP-1 ACCURACY FOR VGG-16 NEURAL NETWORK; 

EXP DENOTES EXPONENTIAL QUANTIZATION, OPT STANDS 

FOR OPTIMAL QUANTIZATION, MAX DENOTES THE BEST OF 
TWO WAYS OF QUANTIZATION, AND FAIL OPT IS FRACTION OF 

NEURAL NETWORK LAYERS WHERE OPTIMIZATION LEADS TO 

WORTH CORRELATION THAN EXPONENTIAL QUANTIZATION 
 VGG-16 

 %fail exp opt max 

3 bit      0% 0.69 0.73 0.76 

4 bit     0% 0.87 0.91 0.91 

5 bit     0% 0.89 0.9 0.93 

6 bit     0% 0.9 0.93 0.93 

7 bit     6% 0.9 0.94 0.94 

32 bit 0.94 

TABLE IVc. TOP-1 ACCURACY FOR XCEPTION NEURAL 

NETWORK; EXP DENOTES EXPONENTIAL QUANTIZATION, OPT 
STANDS FOR OPTIMAL QUANTIZATION, MAX DENOTES THE 

BEST OF TWO WAYS OF QUANTIZATION, AND FAIL OPT IS 

FRACTION OF NEURAL NETWORK LAYERS WHERE 
OPTIMIZATION LEADS TO WORTH CORRELATION THAN 

EXPONENTIAL QUANTIZATION 
 Xception 

 %fail exp opt max 

3 bit      0%     0 0.02 0.01 

4 bit      0%  0.43 0.65 0.61 

5 bit    10%  0.89 0.86 0.89 

6 bit    15%  0.89 0.9 0.9 

7 bit 34% 0.92 0.86 0.92 

32 bit 0.92 

May be the maximization algorithm does not always run 

correctly because the speed of the gradient ascent lr  has to 

be chosen more accurately. This was the reason why for 

each layer we also used an algorithm allowing us to select a 

quantization with the maximal correlation. When after our 

optimization the correlation decreased, we used the initial 

exponential quantization. Such an algorithm for quantizing a 

neural network, we called the “best”.  

In Tables 4a-c are Top-5 accuracies for the ResNet-50, 

VGG-16 and Xception neural networks quantized using the 

exponential scale (exp), by the algorithm for maximizing the 

correlation with the prior exponential splitting (opt), and 

with the aid of the algorithm holding the exponential 

distribution in the layers where the correlation maximization 

failed (max).  The column %fail max shows the percentage 

of layers for which
m ax ex pco r r

  . The examined neural 

networks confirmed our hypothesis that the larger the 

correlation between the input and quantized values the better 
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the accuracy of the quantized neural network. This is true 

only if the above-mentioned correlation is larger on each 

layer of the neural network while an increase of the 

correlation averaged over all the layers does not guarantee 

an increase of the accuracy. 

     In Tables 4a-c, we also compare the Top-5 accuracies of 

the neural networks quantized with the aid of our best 

algorithm (max) with Top-5 accuracies of the initial neural 

networks (32 bit). For the neural networks ResNet-50 and 

Xception the Top-5 accuracy drop was 20-30% and less 

than 3.5% when for storing weights we reserved 4 bit and   5 

bit, respectively.  

 
Fig. 2. Top-5 accuracies for ResNet-50, Xception and VGG-16: linear 

quantization and quantization with correlation maximization with prior 

linear splitting (max corr). 

In the case of the VGG-16 neural network, the Top-5 

accuracy drop was about 20% when we reserved 3 bits per 

layer and it was less than 3% when the number of the 

reserved bits was larger. 

In Figure 3a-b, for the Xception, ResNet-50 and VGG-

16 neural networks we show the dependences of the Top-5 

accuracies on the number of bits reserved for storage of each 

weight obtained when we initialized them by linear and 

exponential splitting. The model accuracy increases when 

we choose the quantization with the maximal correlation 

between the quantized and input weights. The figures for 

Top-1 accuracies are given in Appendix A.  

 
Fig. 3. Top-5 accuracies for ResNet-50, Xception and VGG-16: 

exponential quantization and quantization with correlation maximization 
with prior exponential splitting (max corr). 

V. CONCLUSIONS 

     We developed the algorithm for neural network 
quantization based on maximization of correlations between 
the quantized and the input weights. When using this 
algorithm no post-training of the neural network is necessary. 
Reserving 5 bits per layer, we succeeded in quantization of 
the VGG-16 neural network that leaded to 1% of the Top-5 
accuracy drop only. Under such compression, the required 
memory necessary to store weights is approximately 6 times 
less than in the case of the full precision float (32 bits). For 
comparison, in paper [5] the VGG-16 neural network was 
compressed about 2.5 times by quantization and full 
algorithm compression is around 49 times, however their 
neural network required a post-training for which a 
substantial computing power was necessary. When 
comparing with the results of paper [8] we see that for the 
ResNet-50, VGG-16 and Xception neural networks at the 
same compression our Top-1 and Top-5 accuracies are 
better. Our compression allows to use only 3-4 bits to 
achieve more than 0.6 Top-5 accuracy for different 
architecture without re-training. 
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APPENDIX A: TOP-1 ACCURACIES 

 

Fig. 4. Top-1 accuracies for ResNet-50, Xception and VGG-16: linear/ 

exponential (lin/exp) quantization and quantization with correlation 

maximization with prior linear/exponential splitting (max corr). 
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APPENDIX B: ALGORITHM 

 
 

 
 

 

 

 

# accessory functions 

def f(x, func, kde, X, x_min, x_max): 

    y, px, cov, p = func(x, kde, X, x_min, x_max) 
    return cov 

 

def grad(x, func, kde, X, x_min, x_max, alpha=10): 
    y, px, cov, p = func(x, kde, X, x_min, x_max) 

    step = alpha * px  * (y[1:] - y[:-1]) * (y[1:] + y[:-

1] - 2 * x) / 2 
    return step 

 

def cov_kde(x0, kde, X, x_min, x_max):  
    ''' 

    calculate distribution function, quantized values 

and covariation on the set x0 
    X – weights in this layer,  

    x_min and x_max – minimal and maximal weight 

value in the layer 
    x0 current set (variable values only) 

    ''' 

    p = np.zeros(len(x0) + 1) 
    C = np.zeros(len(x0) + 1)  

    y = np.zeros(len(x0) + 1)  

    x_ext = sorted(np.append(x0, [x_min, x_max])) 
    for i in range(len(x_ext)-1):  

        mask = np.logical_and(x_ext[i] < X, X <= 

x_ext[i + 1]) 
        p[i] = len(X[mask])  

        C[i] = np.sum(X[mask])  

        if p[i] == 0:  
            C[i] = 0 

            p[i] = 1 

    y = C / p 
    px = kde.evaluate(x0) 

    cov = np.linalg.norm(C / np.sqrt(p)) #/ sigma_kde 

    return y, px, cov, p 
 

def results(kde, w, x0, x_min, x_max, func, bits, 

kde_std, ans_case='CG'): 
    ''' 

    correlation maximization procedure for initial set 
x0 (only variable values),  

    w – layer,  

    kde – kernel density estimation on random sample 
from weights,  

    x_min and x_max – minimal and maximal weight 

values 
    '''  

    n_d = 2 ** bits 

    fx = lambda x: -f(x, func, kde, w, x_min, x_max) 
    gradx = lambda x: -grad(x, func, kde, w, x_min, 

x_max, alpha) 

    tol_curr = 1e-4 
    alpha = 10  

    ans = minimize(fun=fx, x0=x0, jac=gradx, 

method='CG', tol=tol_curr 
    solutions = ans['x'] 

    correlations = -ans['fun']  

    gradients = np.linalg.norm(gradx(ans['x'])) / alpha 
/ n_d 

    return solutions, correlations, gradients 

 


