
Copyright © 2020 for this paper by its authors.
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0)

Post-training quantization of neural network through

correlation maximization

Maria Pushkareva

Center of Optical Neural Technologies, Scientific Research

Institute of System Analisys RAS

Moscow, Russia

pushkareva.mariia@yandex.ru

Iakov Karandashev

Center of Optical Neural Technologies, Scientific Research

Institute of System Analisys RAS

Moscow, Russia

karandashev@niisi.ras.ru

Abstract—In this paper, we propose a method for

quantizing the weights of neural networks by maximizing the

correlations between the initial and quantized weights, taking

into account the distribution of the weight density in each

layer. Quantization is performed after the neural network

training without further post-training. We tested the algorithm

using the ImageNet dataset for VGG-16, ResNet-50, and

Xception neural networks [2]. In the case of ResNet-50 and

Xception neural networks, 4-5 bits of memory are required for

the weights of a single layer to obtain acceptable Top-5

accuracy, for VGG-16, 3-4 bits are sufficient to store the

weights of a single layer.

Keywords—weights quantization, post-learning, linear

quantization, exponential quantization

I. INTRODUCTION

The majority of neural networks, which we use when
solving image recognition problems, have many parameters
that have to be stored. Consequently, a substantial memory
capacity is necessary and this requirement limits such neural
networks applicability. For example, the storage capacity of
the neural networks VGG-16 and ResNet152V2 are 528 [3]
and 232 [4] MBs, respectively. The quantization and
reduction of the number of weights are basic approaches
allowing us to decrease the memory size necessary to store
the neural network weights.

The quantization is a reduction in the variety of the
different values of the weights in the layer. The most popular
quantization methods are application of the fixed-point
formats in place of the floating-point formats [9],
binarization [10], ternarization [11], use of a logarithmic
scale [12] and so on. Usually, one can reduce the number of
the weights with the aid of such methods as pruning
algorithms [13], sharing weights (including application of the
convolution operation) [14], tensor expansions [15] and so
on.

In the present paper, we explore the quantization process
for trained neural networks. The number B of bits per weight
defines the number of different values of the weights; and it,

consequently, is equal to 2
B

. We perform the quantization
process independently for each layer. In the given layer we
split the whole range of weights from the minimal to the

maximal value into 2
B

intervals. Then the weights belonging
to one interval we replace by a single value. In what follows
we examine a question related the optimal choiсe of the
interval boundaries as well as the values with which we have
to replace the weights.

 The authors of paper [7] discussed the optimal
quantization problem for the Hopfield neural network. They
showed that when maximizing correlations between the
initial and quantized values of the weights it was possible to
minimize the errors of the quantized neural network. We

believe that this result is correct and in what follows, we
choose the interval boundaries and the quantized values of
the weights inside of the intervals proceeding from a
maximal correlation principle.

Frequently to get a sufficient accuracy of the neural
network processing we have to combine the quantization and
the neural network post-training. This procedure requires
substantial resources [5, 6]. In the present paper, we perform
the quantization after the neural network training without the
following post-training. This method allows us to reduce the
quantization costs substantially.

II. ESTIMATE OF CORRELATION AND ITS GRADIENT

For each layer, let us quantize the weights inside the

interval
m in m ax

[,]w w , where
m in

w is the minimal and
m ax

w

is the maximal value of the weights in the given layer,
respectively. (We normalized all the weights, so that

() /
w

w w w  ). Let B be the number of bits necessary to

store the weights of one layer. Then 2
B

n  is the number of

the quantized weight values, as
i

x we define the boundaries

of the intervals where the weight values are constant.
Consequently,

m in 0 1 1 m ax

...
n n

w x x x x w


      . (1)

Let w be the input weights, and
i

y the quantized value

inside the interval
1

(,)
i i

x x


. It is not evident how we have to

choose the interval boundaries
i

x as well as the values
i

x

inside each interval. In the present paper we suppose that the
stronger correlation between the input and the quantized
values the less the error of the quantized neural network
performance compared with the initial neural network:

 (,) m ax

w y

w y
w y

 
  . (2)

where w y is a covariation between the initial and the

quantized values;
w

 and
y

 are standard deviations of

the values of the input weight and their quantized values,
respectively. For simplicity we suppose that inside a layer
the distribution of the weights is symmetric and the averaged
value of the weights is equal to zero. As we show in what
follows this assumption is nearly always carried out in the
case of large deep neural networks.

We can estimate the covariation w y between the input

and the quantized values as

Data Science

VI International Conference on "Information Technology and Nanotechnology" (ITNT-2020) 116

 () ()w y w y w p w d w





  . (3)

Where ()p w is the density of the weight distribution inside

the layer. Since y is a constant inside the interval
1

(,)
i i

x x


,

the last equation takes the form

11

0

()

i

i

x
n

i

i x

w y y w p w d w





   . (4)

Similarly, the variance of the quantized values is

11

2 2 2

0

() ()

i

i

x
n

y i

i x

y p w d w y p w d w

 



    . (5)

If we introduce additional notations

1

()

i

i

x

i

x

с w p w dw



  and

1

()

i

i

x

i

x

p p w d w



  . (6)

we can simplify Eqs. (4-5) significantly:

1

0

n

i i

i

w y y с





 

1

2 2

0

n

y i i

i

y p





  . (7)

To maximize the correlation (see Eq. 2) we have two sets

of parameters. They are the boundaries of the intervals
i

x

and the quantized values
i

y inside the intervals. For some

time, we forget about splitting into intervals and suppose that

we know the boundaries
i

x . Then after the optimization

procedure with regard to
i

y we obtain:

 /
i i i

y c p . (8)

When we substitute this value into Eq. (2), account for

the formulas (4-5), and have in mind that
w

con s t  it is

independent of either
i

x or
i

y , we obtain the following

optimization problem:

1

2

0

(,) / m ax

n

i i

i

w y c p





 . (9)

We differentiate this expression with respect to
i

x and

obtain an expression for the gradient
i

 :

1 1

()()(2)

2

i i i i i i

i

i w

p x y y y y x

x






 
  

  


. (10)

III. DESCRIPTION OF QUANTIZATION PROCEDURE

The obtained expression (10) for the gradient
i



allowed us to implement a quick algorithm for correlation
maximization based on the gradient descent algorithm. In the
course of the algorithm running it adjusts the boundaries of

the intervals
i

x , which we use as the optimization

parameters. For the given values of
i

x we define the

quantized weights
i

y with the aid of Eq. (8).

As the density function ()p w we use its kernel

estimation calculated taking into account 10,000 random
weights from the layer. When the number of the weights is
less than 10,000, all the weights have to be taken into
account.

The integral formulas Eq. (6) we replaced by numerical

estimates for
i

c and
i

p calculated using the real weights in

the layer:

1

1

() /

() /

i i i w

w

i i i w

w

c w I x w x N

p I x w x N





  

  




 (11)

Here
w

N is the number of the weights in the layer,

1
()

i i
I x w x


  is an indicator function that accounts for

the weights belonging to the interval
1

(,)
i i

x x


 only.

 To initialize the gradient ascent it is necessary to
choose an initial partition that is an initial set

m in 1 2 1 m ax
[, , , ..., ,]

n
w x x x w


. In our simulations, we used the

linear and exponential partitions from [8] as the initial sets
and examined quantization of the pre-trained neural networks
ResNet-50, Xception, and VGG-16. We employed the
programming language Python and the framework Keras [2].

Fig. 1. Examples of weight histograms in convolution and fully connected

layers for VGG-16 and ResNet-50.

As a result of minimization we obtained the optimal

boundaries of the intervals
m in 1 2 1 m ax

[, , , ..., ,]
n

w x x x w


as

well as the corresponding set of the quantized weights

0 1 1
[, , ...,]

n
y y y


. Then we used the quantized weights in

place of the input weights without post-training of the neural
networks. The Python code is given in Appendix B.

IV. RESULTS

In Fig. 1, we show weight histograms for convolution

and fully connected layers of the VGG-16 and ResNet-50

Data Science

VI International Conference on "Information Technology and Nanotechnology" (ITNT-2020) 117

neural networks. As we mentioned before, the weight

distributions in the layers of deep neural networks are nearly

symmetric with respect to zero and their average values are

close to zero.

TABLE I. CORRELATIONS AVERAGED OVER ALL LAYERS FOR

RESNET-50 NEURAL NETWORK AFTER LINEAR (LINEAR) AND
EXPONENTIAL (EXPONENTIAL) QUANTIZATION AND

SUBSEQUENT CORRELATION MAXIMIZATION
Average correlation for ResNet-50

Lin Max Exp Max

3 bit 0.8169 0.9376 0.9461 0.9659

4 bit 0.8473 0.9726 0.9822 0.9898

5 bit 0.9233 0.9890 0.9945 0.9972

6 bit 0.9739 0.9957 0.9983 0.9990

7 bit 0.9925 0.9980 0.9995 0.9993

TABLE II. CORRELATIONS AVERAGED OVER ALL LAYERS FOR

XCEPTION NEURAL NETWORK AFTER LINEAR (LINEAR) AND

EXPONENTIAL (EXPONENTIAL) QUANTIZATION AND
SUBSEQUENT CORRELATION MAXIMIZATION

Average correlation for Xception

Lin Max Exp Max

3 bit 0.8630 0.9552 0.9566 0.9735

4 bit 0.9072 0.9814 0.9855 0.9919

5 bit 0.9611 0.9926 0.9955 0.9972

6 bit 0.9880 0.9960 0.9986 0.9984

7 bit 0.9967 0.9972 0.9996 0.9986

TABLE III. CORRELATIONS AVERAGED OVER ALL LAYERS FOR
VGG-16 NEURAL NETWORK AFTER LINEAR (LINEAR) AND

EXPONENTIAL (EXPONENTIAL) QUANTIZATION AND

SUBSEQUENT CORRELATION MAXIMIZAION

Average correlation for VGG-16

Lin Max Exp Max

3 bit 0.8325 0.9342 0.9464 0.9669

4 bit 0.8469 0.9659 0.9816 0.9899

5 bit 0.8968 0.9862 0.9943 0.9973

6 bit 0.9579 0.9943 0.9983 0.9992

7 bit 0.9872 0.9980 0.9995 0.9995

TABLE IVa. TOP-1 ACCURACY FOR RESNET50 NEURAL

NETWORK; EXP DENOTES EXPONENTIAL QUANTIZATION, OPT

STANDS FOR OPTIMAL QUANTIZATION, MAX DENOTES THE
BEST OF TWO WAYS OF QUANTIZATION, AND FAIL OPT IS

FRACTION OF NEURAL NETWORK LAYERS WHERE

OPTIMIZATION LEADS TO WORTH CORRELATION THAN
EXPONENTIAL QUANTIZATION

 Res-Net-50

 %fail exp opt max

3 bit 0% 0.03 0.02 0

4 bit 0% 0.71 0.82 0.79

5 bit 0% 0.91 0.93 0.93

6 bit 7% 0.94 0.94 0.94

7 bit 26% 0.94 0.94 0.94

32 bit 0.94

In Tables 1, 2, and 3, we present the values of the

average correlations of prior weights and weights after

quantization for the ResNet-50, Xception, and VGG-16

neural networks. We used the linear and exponential

quantization, implemented the correlation maximization

algorithm, and after that calculated the values of the average

correlations.

Tables 1 – 3 show that when the number of bits is small

(up to 5 bits, i.e. when the number of intervals is less or

equal to 32) the maximization algorithm does increase the

correlation averaged over the layers. The linear quantization

with the subsequent maximization leads to the average

correlation growth in all the examined cases. The

exponential quantization with the subsequent maximization

provides the growth of the average correlation only when

the number of intervals is equal to 8, 16 or 32. When the

number of bits is larger (that is when the number of intervals

is 64 or 128), the maximization algorithm fails since for

some layers its results are worth comparing with the results

of the exponential quantization.

TABLE IVb. TOP-1 ACCURACY FOR VGG-16 NEURAL NETWORK;

EXP DENOTES EXPONENTIAL QUANTIZATION, OPT STANDS

FOR OPTIMAL QUANTIZATION, MAX DENOTES THE BEST OF
TWO WAYS OF QUANTIZATION, AND FAIL OPT IS FRACTION OF

NEURAL NETWORK LAYERS WHERE OPTIMIZATION LEADS TO

WORTH CORRELATION THAN EXPONENTIAL QUANTIZATION
 VGG-16

 %fail exp opt max

3 bit 0% 0.69 0.73 0.76

4 bit 0% 0.87 0.91 0.91

5 bit 0% 0.89 0.9 0.93

6 bit 0% 0.9 0.93 0.93

7 bit 6% 0.9 0.94 0.94

32 bit 0.94

TABLE IVc. TOP-1 ACCURACY FOR XCEPTION NEURAL

NETWORK; EXP DENOTES EXPONENTIAL QUANTIZATION, OPT
STANDS FOR OPTIMAL QUANTIZATION, MAX DENOTES THE

BEST OF TWO WAYS OF QUANTIZATION, AND FAIL OPT IS

FRACTION OF NEURAL NETWORK LAYERS WHERE
OPTIMIZATION LEADS TO WORTH CORRELATION THAN

EXPONENTIAL QUANTIZATION
 Xception

 %fail exp opt max

3 bit 0% 0 0.02 0.01

4 bit 0% 0.43 0.65 0.61

5 bit 10% 0.89 0.86 0.89

6 bit 15% 0.89 0.9 0.9

7 bit 34% 0.92 0.86 0.92

32 bit 0.92

May be the maximization algorithm does not always run

correctly because the speed of the gradient ascent lr has to

be chosen more accurately. This was the reason why for

each layer we also used an algorithm allowing us to select a

quantization with the maximal correlation. When after our

optimization the correlation decreased, we used the initial

exponential quantization. Such an algorithm for quantizing a

neural network, we called the “best”.

In Tables 4a-c are Top-5 accuracies for the ResNet-50,

VGG-16 and Xception neural networks quantized using the

exponential scale (exp), by the algorithm for maximizing the

correlation with the prior exponential splitting (opt), and

with the aid of the algorithm holding the exponential

distribution in the layers where the correlation maximization

failed (max). The column %fail max shows the percentage

of layers for which
m ax ex pco r r

  . The examined neural

networks confirmed our hypothesis that the larger the

correlation between the input and quantized values the better

Data Science

VI International Conference on "Information Technology and Nanotechnology" (ITNT-2020) 118

the accuracy of the quantized neural network. This is true

only if the above-mentioned correlation is larger on each

layer of the neural network while an increase of the

correlation averaged over all the layers does not guarantee

an increase of the accuracy.

 In Tables 4a-c, we also compare the Top-5 accuracies of

the neural networks quantized with the aid of our best

algorithm (max) with Top-5 accuracies of the initial neural

networks (32 bit). For the neural networks ResNet-50 and

Xception the Top-5 accuracy drop was 20-30% and less

than 3.5% when for storing weights we reserved 4 bit and 5

bit, respectively.

Fig. 2. Top-5 accuracies for ResNet-50, Xception and VGG-16: linear

quantization and quantization with correlation maximization with prior

linear splitting (max corr).

In the case of the VGG-16 neural network, the Top-5

accuracy drop was about 20% when we reserved 3 bits per

layer and it was less than 3% when the number of the

reserved bits was larger.

In Figure 3a-b, for the Xception, ResNet-50 and VGG-

16 neural networks we show the dependences of the Top-5

accuracies on the number of bits reserved for storage of each

weight obtained when we initialized them by linear and

exponential splitting. The model accuracy increases when

we choose the quantization with the maximal correlation

between the quantized and input weights. The figures for

Top-1 accuracies are given in Appendix A.

Fig. 3. Top-5 accuracies for ResNet-50, Xception and VGG-16:

exponential quantization and quantization with correlation maximization
with prior exponential splitting (max corr).

V. CONCLUSIONS

 We developed the algorithm for neural network
quantization based on maximization of correlations between
the quantized and the input weights. When using this
algorithm no post-training of the neural network is necessary.
Reserving 5 bits per layer, we succeeded in quantization of
the VGG-16 neural network that leaded to 1% of the Top-5
accuracy drop only. Under such compression, the required
memory necessary to store weights is approximately 6 times
less than in the case of the full precision float (32 bits). For
comparison, in paper [5] the VGG-16 neural network was
compressed about 2.5 times by quantization and full
algorithm compression is around 49 times, however their
neural network required a post-training for which a
substantial computing power was necessary. When
comparing with the results of paper [8] we see that for the
ResNet-50, VGG-16 and Xception neural networks at the
same compression our Top-1 and Top-5 accuracies are
better. Our compression allows to use only 3-4 bits to
achieve more than 0.6 Top-5 accuracy for different
architecture without re-training.

0

0,5

1

3 bit 4 bit 5 bit 6 bit 7 bit

To
p

 5
 a

cc
u

ra
cy

ResNet-50 linear

max corr linear

0

0,5

1

3 bit 4 bit 5 bit 6 bit 7 bit

To
p

 5
 a

cc
u

ra
cy

ResNet exp

max corr exponential

0

0,5

1

3 bit 4 bit 5 bit 6 bit 7 bit

To
p

 5
 a

cc
u

ra
cy

Xception linear

max corr linear

0

0,5

1

3 bit 4 bit 5 bit 6 bit 7 bit

To
p

 5
 a

cc
u

ra
cy

ResNet exp

max corr exponential

0

0,5

1

3 bit 4 bit 5 bit 6 bit 7 bit
To

p
 5

 a
cc

u
ra

cy

Xception exp

max corr exponential

0

0,5

1

3 bit 4 bit 5 bit 6 bit 7 bit

To
p

 5
 a

cc
u

ra
cy

VGG-16 exp

max corr exponential

Data Science

VI International Conference on "Information Technology and Nanotechnology" (ITNT-2020) 119

ACKNOWLEDGMENT

The work financially supported by State Program of
SRISA RAS No. 0065-2019-0003 (AAA-A19-
119011590090-2).

REFERENCES

[1] ImageNet – huge image dataset [Online]. URL: http://www.image-
net.org.

[2] Models for image classification with weights trained on ImageNet
[Online]. URL: https://keras.io/applications/.

[3] K. Simonyan and A. Zisserman, “Very Deep Convolutional
Networks for Large-Scale Image Recognition,” arXiv Preprint:
1409.1556.

[4] K. He, X. Zhang, S. Ren and J. Sun, “Deep Residual Learning for
Image Recognition,” arXiv Preprint: 1512.03385.

[5] S. Han, H. Mao and W.J. Dally, “Deep compression: Compressing
deep neural network with pruning, trained quantization and huffman
coding,” CoRR, ArXiv Preprint: 1510.00149. 2, 2015.

[6] Sh. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen and Y. Zou, “Dorefa-net:
Training low bitwidth convolutional neural networks with low
bitwidth gradients,” arXiv Preprint: 1606.06160.

[7] B.V. Kryzhanovsky, M.V. Kryzhanovsky and M.Yu. Malsagov,
“Discretization of a matrix in quadratic functional binary
optimization,” Doklady Mathematics, vol. 83, pp. 413-417, 2011.
DOI: 10.1134/S1064562411030197.

[8] M.Yu. Malsagov, E.M. Khayrov, M.M. Pushkareva and I.M.
Karandashev, “Exponential discretization of weights of neural
network connections in pre-trained neural networks,” preprint, 2020.

[9] M. Courbariaux, Y. Bengio and J. David, “Training deep neural
networks with low precision multiplications,” arXiv Preprint:
1412.7024.

[10] M. Courbariaux, Y. Bengio, J.-P. David, “BinaryConnect: Training
deep neural networks with binary weights during propagations,”
Conference on Neural Information Processing Systems,
arXiv:1511.00363.

[11] Zh. Lin, M. Courbariaux, R. Memisevic and Y. Bengio, “Neural
networks with few multiplications,” Proceedings of the International
Conference on Learning Representations, arXiv:1510.03009.

[12] E.H. Lee, D. Miyashita, E. Chai, B. Murmann and S.S. Wong,
“LogNet: Energy-efficient neural networks using logarithmic
computation,” Proceedings of the IEEE International Conference on
Acoustics, Speech and Signal Processing, 2017.

[13] S. Han, J. Pool, J. Tran and W. Dally, “Learning both Weights and
Connections for Efficient Neural Networks,” arXiv: 1506.02626,
2015.

[14] W. Chen, J. Wilson, S. Tyree and K. Weinberger, “Compressing
Neural Networks with the Hashing Trick. Compressing Neural
Networks with the Hashing Trick,” arXiv: 1504.04788, 2015.

[15] V. Lebedev, Y. Ganin, M. Rakhuba, I. Oseledets and V. Lempitsky,
“Speeding-up Convolutional Neural Networks Using Fine-tuned CP-
Decomposition,” 3rd International Conference on Learning
Representations, ICLR San Diego, CA, USA, Conference Track
Proceedings, 2015.

APPENDIX A: TOP-1 ACCURACIES

Fig. 4. Top-1 accuracies for ResNet-50, Xception and VGG-16: linear/

exponential (lin/exp) quantization and quantization with correlation

maximization with prior linear/exponential splitting (max corr).

0

1

3 bit 4 bit 5 bit 6 bit 7 bitTo
p

 1
 a

cc
u

ra
cy

ResNet-50 linear

max corr linear

0

1

3 bit 4 bit 5 bit 6 bit 7 bitTo
p

 1
 a

cc
u

ra
cy

Xception linear

max corr linear

0

1

3 bit 4 bit 5 bit 6 bit 7 bitTo
p

 1
 a

cc
u

ra
cy

VGG-16 linear

max corr linear

0

1

3 bit 4 bit 5 bit 6 bit 7 bitTo
p

 1
 a

cc
u

ra
cy

ResNet exp

max corr exponential

0

1

3 bit 4 bit 5 bit 6 bit 7 bitTo
p

 1
 a

cc
u

ra
cy

Xception exp

max corr exponential

0

1

3 bit 4 bit 5 bit 6 bit 7 bitTo
p

 1
 a

cc
u

ar
cy

VGG-16 exp

max corr exponential

http://www.image-net.org/
http://www.image-net.org/
https://keras.io/applications/
https://arxiv.org/abs/1409.1556
https://arxiv.org/search/cs?searchtype=author&query=He%2C+K
https://arxiv.org/search/cs?searchtype=author&query=Zhang%2C+X
https://arxiv.org/search/cs?searchtype=author&query=Ren%2C+S
https://arxiv.org/search/cs?searchtype=author&query=Sun%2C+J
https://arxiv.org/abs/1512.03385
https://doi.org/10.1134/S1064562411030197
http://arxiv.org/abs/1412.7024

Data Science

VI International Conference on "Information Technology and Nanotechnology" (ITNT-2020) 120

APPENDIX B: ALGORITHM

accessory functions

def f(x, func, kde, X, x_min, x_max):

 y, px, cov, p = func(x, kde, X, x_min, x_max)
 return cov

def grad(x, func, kde, X, x_min, x_max, alpha=10):
 y, px, cov, p = func(x, kde, X, x_min, x_max)

 step = alpha * px * (y[1:] - y[:-1]) * (y[1:] + y[:-

1] - 2 * x) / 2
 return step

def cov_kde(x0, kde, X, x_min, x_max):
 '''

 calculate distribution function, quantized values

and covariation on the set x0
 X – weights in this layer,

 x_min and x_max – minimal and maximal weight

value in the layer
 x0 current set (variable values only)

 '''

 p = np.zeros(len(x0) + 1)
 C = np.zeros(len(x0) + 1)

 y = np.zeros(len(x0) + 1)

 x_ext = sorted(np.append(x0, [x_min, x_max]))
 for i in range(len(x_ext)-1):

 mask = np.logical_and(x_ext[i] < X, X <=

x_ext[i + 1])
 p[i] = len(X[mask])

 C[i] = np.sum(X[mask])

 if p[i] == 0:
 C[i] = 0

 p[i] = 1

 y = C / p
 px = kde.evaluate(x0)

 cov = np.linalg.norm(C / np.sqrt(p)) #/ sigma_kde

 return y, px, cov, p

def results(kde, w, x0, x_min, x_max, func, bits,

kde_std, ans_case='CG'):
 '''

 correlation maximization procedure for initial set
x0 (only variable values),

 w – layer,

 kde – kernel density estimation on random sample
from weights,

 x_min and x_max – minimal and maximal weight

values
 '''

 n_d = 2 ** bits

 fx = lambda x: -f(x, func, kde, w, x_min, x_max)
 gradx = lambda x: -grad(x, func, kde, w, x_min,

x_max, alpha)

 tol_curr = 1e-4
 alpha = 10

 ans = minimize(fun=fx, x0=x0, jac=gradx,

method='CG', tol=tol_curr
 solutions = ans['x']

 correlations = -ans['fun']

 gradients = np.linalg.norm(gradx(ans['x'])) / alpha
/ n_d

 return solutions, correlations, gradients

